Blood Concentration of Macro- and Microelements in Women Who Are Overweight/Obesity and Their Associations with Serum Biochemistry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Participants
2.2. Anthropometric Measurements
2.3. Biological Material
2.4. Analysis of Biochemical Parameters
2.5. Analysis of Elements in Blood Serum
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soylak, M.; Aydin, A. Determination of some heavy metals in food and environmental samples by flame atomic absorption spectrometry after coprecipitation. Food Chem. Toxicol. 2011, 49, 1242–1248. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2020, 12, 643972. [Google Scholar] [CrossRef]
- Kňažická, Z.; Ďúranová, H.; Fialková, V.; Bilčíková, J.; Lukáč, N. Potentially Toxic Elements in Relation to Sexual Steroid Hormones, 1st ed.; Slovak University of Agriculture in Nitra: Nitra, Slovakia, 2021; p. 230. [Google Scholar]
- Massanyi, P.; Stawarz, R.; Halo, M.; Formicki, G.; Lukac, N.; Cupka, P.; Schwarcz, P.; Kovacik, A.; Tusimova, E.; Kovacik, J. Blood concentration of copper, cadmium, zinc and lead in horses and its relation to hematological and biochemical parameters. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2014, 49, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Kovacik, A.; Tvrda, E.; Miskeje, M.; Arvay, J.; Tomka, M.; Zbynovska, K.; Andreji, J.; Hleba, L.; Kovacikova, E.; Fik, M.; et al. Trace Metals in the Freshwater Fish Cyprinus carpio: Effect to Serum Biochemistry and Oxidative Status Markers. Biol. Trace Elem. Res. 2019, 188, 494–507. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.F., Jr.; Williams, R.J.P. The Biological Chemistry of the Elements, 2nd ed.; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The Importance of Mineral Elements for Humans, Domestic Animals and Plants: A Review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar]
- Kamunda, C.; Mathuthu, M.; Madhuku, M. Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa. Int. J. Environ. Res. Public Health 2016, 13, 663. [Google Scholar] [CrossRef]
- Celep, G.S.; Kaynar, P.; Rastmanesh, R. Biochemical functions of micronutrients. Adv. Obes. Weight Manag. Control 2017, 6, 43–45. [Google Scholar] [CrossRef]
- Knazicka, Z.; Lukac, N.; Forgacs, Z.; Tvrdá, E.; Lukacova, J.; Slivkova, J.; Binkowski, Ł.; Massanyi, P. Effects of mercury on the steroidogenesis of human adrenocarcinoma (NCI-H295R) cell line. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2013, 48, 348–353. [Google Scholar] [CrossRef]
- Knazicka, Z.; Forgacs, Z.; Lukacova, J.; Roychoudhury, S.; Massanyi, P.; Lukac, N. Endocrine disruptive effects of cadmium on steroidogenesis: Human adrenocortical carcinoma cell line NCI-H295R as a cellular model for reproductive toxicity testing. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2015, 50, 348–356. [Google Scholar] [CrossRef]
- Keil, D.E.; Berger-Ritchie, J.; McMillin, G.A. Testing for toxic elements: A focus on arsenic, cadmium, lead and mercury. Labmedicine 2011, 42, 735–742. [Google Scholar] [CrossRef]
- Harrington, J.M.; Young, D.J.; Essader, A.S.; Sumner, S.J.; Levine, K.E. Analysis of human serum and whole blood for mineral content by ICP-MS and ICP-OES: Development of a mineralomics method. Biol. Trace Elem. Res. 2014, 160, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Ruan, Y.; Xu, N.; Wu, P.; Lin, N.; Yuan, K.; An, S.; Kang, P.; Li, S.; Huang, Q.; et al. The effect of dietary carbohydrate and calorie restriction on weight and metabolic health in overweight/obese individuals: A multi-center randomized controlled trial. BMC Med. 2023, 21, 192. [Google Scholar] [CrossRef] [PubMed]
- Frühbeck, G.; Toplak, H.; Woodward, E.; Yumuk, V.; Maislos, M.; Oppert, J.M. Obesity: The gateway to ill health—An EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes. Facts 2013, 6, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Németh, Z.; Siptár, M.; Tóth, N.; Tóth, K.; Csontos, C.; Kovács-Ábrahám, Z.; Csongor, A.; Molnár, F.; Márton, Z.; Márton, S. Indications for Sleeve Gastrectomy—Is It Worth Waiting for Comorbidities to Develop? Medicina 2023, 59, 2092. [Google Scholar] [CrossRef]
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef]
- Lobstein, T.; Brinsden, H.; Neveux, M. World Obesity Atlas 2022. World Obesity Federation. Available online: https://s3-eu-west-1.amazonaws.com/woffiles/World_Obesity_Atlas_2022.pdf (accessed on 1 December 2023).
- Obesity Prevalence 2019. Available online: https://data.worldobesity.org/country/slovakia-193/#data_prevalence (accessed on 1 December 2023).
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 9 July 2023).
- World Health Organisation. A Healthy Lifestyle—WHO Recommendations. Available online: https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations (accessed on 6 December 2023).
- Arnold, M.; Leitzmann, M.; Freisling, H.; Bray, F.; Romieu, I.; Renehan, A.; Soerjomataram, I. Obesity and cancer: An update of the global impact. Cancer Epidemiol. 2016, 41, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Bihari, M.; Habánová, M.; Jančichová, K.; Gažarová, M. Diagnosis of obesity and evaluation of the risk of premature death (ABSI) based on body mass index and visceral fat area. Rocz. Panstw. Zakl. Hig. 2022, 73, 191–198. [Google Scholar] [CrossRef]
- Ranasinghe, C.; Gamage, P.T.; Katulanda, P.; Andraweera, N.D.; Thilakarathne, S.; Tharanga, P. Relationship between Body Mass Index (BMI) and body fat percentage, estimated by bioelectrical impedance, in a group of Sri Lankan adults: A cross sectional study. BMC Public Health 2013, 13, 797. [Google Scholar] [CrossRef]
- Freedman, D.S.; Ogden, C.L.; Kit, B.K. Interrelationships between BMI, skinfold thicknesses, percent body fat, and cardiovascular disease risk factors among U.S. children and adolescents. BMC Pediatr. 2015, 15, 188. [Google Scholar] [CrossRef]
- Gažarová, M.; Galšneiderová, M.; Mečiarová, L. Obesity diagnosis and mortality risk based on a body shape index (ABSI) and other indices and anthropometric parameters in university students. Rocz. Panstw. Zakl. Hig. 2019, 70, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhu, W.; Qiao, Q.; Huang, L.; Li, Y.; Chen, L. Novel and traditional anthropometric indices for identifying metabolic syndrome in non-overweight/obese adults. Nutr. Metab. 2021, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Gažarová, M.; Bihari, M.; Lorková, M.; Lenártová, P.; Habánová, M. The Use of Different Anthropometric Indices to Assess the Body Composition of Young Women in Relation to the Incidence of Obesity, Sarcopenia and the Premature Mortality Risk. Int. J. Environ. Res. Public Health 2022, 19, 12449. [Google Scholar] [CrossRef]
- Zeng, Q.; Dong, S.Y.; Sun, X.N.; Xie, J.; Cui, Y. Percent body fat is a better predictor of cardiovascular risk factors than body mass index. Braz. J. Med. Biol. Res. 2012, 45, 591–600. [Google Scholar] [CrossRef]
- Trang, L.T.; Trung, N.N.; Chu, D.T.; Hanh, N.T.H. Percentage Body Fat is As a Good Indicator for Determining Adolescents Who Are Overweight or Obese: A Cross-Sectional Study in Vietnam. Osong Public Health Res. Perspect. 2019, 10, 108–114. [Google Scholar] [CrossRef]
- Liu, H.; Yang, D.; Li, S.; Xiao, Y.; Tu, Y.; Peng, D.; Bao, Y.; Han, J.; Yu, H. A Reliable Estimate of Visceral Fat Area From Simple Anthropometric Measurements in Chinese Overweight and Obese Individuals. Front. Endocrinol. 2022, 13, 916124. [Google Scholar] [CrossRef]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H. Obesity Managemenet Task Force of the European Association for the Study of Obesity. European Guidelines for Obesity Management in Adults. Obes. Facts 2015, 8, 402–424. [Google Scholar] [CrossRef] [PubMed]
- McKay, J.; Ho, S.; Jane, M.; Pal, S. Overweight & obese Australian adults and micronutrient deficiency. BMC Nutr. 2020, 6, 12. [Google Scholar] [CrossRef]
- Khaodhiar, L.; McCowen, K.C.; Blackburn, G.L. Obesity and its comorbid conditions. Clin. Cornerstone 1999, 2, 17–31. [Google Scholar] [CrossRef]
- Fruh, S.M. Obesity: Risk factors, complications, and strategies for sustainable long-term weight management (Review). J. Am. Assoc. Nurse Pract. 2017, 29, 3–14. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; World Health Organization: Geneva Switzerland, 2000; Volume 894, pp. 1–253. [Google Scholar]
- Lim, Y.; Boster, J. Obesity and Comorbid Conditions; StatPearls Publishing LLC: Treasure Island, FL, USA, 2023. [Google Scholar]
- Habanova, M.; Holovicova, M.; Scepankova, H.; Lorkova, M.; Gazo, J.; Gazarova, M.; Pinto, C.A.; Saraiva, J.A.; Estevinho, L.M. Modulation of Lipid Profile and Lipoprotein Subfractions in Overweight/Obese Women at Risk of Cardiovascular Diseases through the Consumption of Apple/Berry Juice. Antioxidants 2022, 11, 2239. [Google Scholar] [CrossRef]
- Árvay, J.; Šnirc, M.; Hauptvogl, M.; Bilčíková, J.; Bobková, A.; Demková, L.; Hudáček, M.; Hrstková, M.; Lošák, T.; Král, M.; et al. Concentration of Micro- and Macro-elements in green and roasted coffee: Influence of roasting degree and risk assessment for the consumers. Biol. Trace Elem. Res. 2019, 190, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Harangozo, L.; Šnirc, M.; Árvay, J.; Jakabová, S.; Čéryová, S. Biogenic and risk elements in Walnuts (Juglans regia L.) from chosen localities of Slovakia. Biol. Trace Elem. Res. 2021, 199, 2047–2056. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Biospace: InBody 720—The Precision Body Composition Analyzer (User’s Manual). Seoul, South Korea. Available online: https://www.bodyanalyse.no/gammel/images/stories/inbody/dokumenter/InBody720_User_manual.pdf (accessed on 11 November 2023).
- Schaefer, E.J.; McNamara, J. Overview of the diagnosis and treatment of lipid disorders. In Handbook of Lipoprotein Testing; Rifai, N., Warnick, G.R., Dominiczak, M.H., Eds.; AACC Press: Washington, DC, USA, 1997; pp. 25–48. [Google Scholar]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef]
- Thomas, L. Clinical Laboratory Diagnostics, 1st ed.; TH-Books Verlagsgesellschaft: Frankfurt, Germany, 1998; pp. 131–137. [Google Scholar]
- Schumann, G.; Bonora, R.; Ceriotti, F.; Férard, G.; Ferrero, C.A.; Franck, P.F.; Gella, F.J.; Hoelzel, W.; Jørgensen, P.J.; Kanno, T.; et al. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C. International Federation of Clinical Chemistry and Laboratory Medicine. Part 5: Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase. Clin. Chem. Lab. Med. 2002, 40, 725–733. [Google Scholar] [CrossRef]
- Schumann, G.; Bonora, R.; Ceriotti, F.; Férard, G.; Ferrero, C.A.; Franck, P.F.; Gella, F.J.; Hoelzel, W.; Jørgensen, P.J.; Kanno, T.; et al. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C. International Federation of Clinical Chemistry and Laboratory Medicine. Part 4: Reference procedure for the measurement of catalytic concentration of alanine aminotransferase. Clin. Chem. Lab. Med. 2002, 40, 718–724. [Google Scholar] [CrossRef]
- Siekmann, L.; Bonora, R.; Burtis, C.A.; Ceriotti, F.; Clerc-Renaud, P.; Férard, G.; Ferrero, C.A.; Forest, J.C.; Franck, P.F.; Gella, F.J.; et al. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C. International Federation of Clinical Chemistry and Laboratory Medicine. Part 7: Certification of four reference materials for the determination of enzymatic activity of gamma-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase accord. Clin. Chem. Lab. Med. 2002, 40, 739–745. [Google Scholar] [CrossRef]
- Górnicka, M.; Szewczyk, K.; Białkowska, A.; Jancichova, K.; Habanova, M.; Górnicki, K.; Hamulka, J. Anthropometric Indices as Predictive Screening Tools for Obesity in Adults; The Need to Define Sex-Specific Cut-Off Points for Anthropometric Indices. Appl. Sci. 2022, 12, 6165. [Google Scholar] [CrossRef]
- Jeon, H.H.; Lee, Y.K.; Kim, D.H.; Pak, H.; Shin, S.Y.; Seo, J.H. Risk for metabolic syndrome in the population with visceral fat area measured by bioelectrical impedance analysis. Korean J. Intern. Med. 2021, 36, 97–105. [Google Scholar] [CrossRef]
- Zając-Gawlak, I.; Kłapcińska, B.; Kroemeke, A.; Pośpiech, D.; Pelclová, J.; Přidalová, M. Associations of visceral fat area and physical activity levels with the risk of metabolic syndrome in postmenopausal women. Biogerontology 2017, 18, 357–366. [Google Scholar] [CrossRef]
- World Health Organization. Mortality and Burden of Disease Attributable to Selected Major Risks. Available online: https://www.who.int/publications/i/item/9789241563871 (accessed on 9 July 2023).
- Banach, W.; Nitschke, K.; Krajewska, N.; Mongiałło, W.; Matuszak, O.; Muszyński, J.; Skrypnik, D. The Association between Excess Body Mass and Disturbances in Somatic Mineral Levels. Int. J. Mol. Sci. 2020, 21, 7306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, J.; Li, J.; Yu, Y.; Song, Y.A. A positive association between dietary sodium intake and obesity and central obesity: Results from the National Health and Nutrition Examination Survey 1999–2006. Nutr. Res. 2018, 55, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Lanaspa, M.A.; Kuwabara, M.; Andres-Hernando, A.; Li, N.; Cicerchi, C.; Jensen, T.; Orlicky, D.J.; Roncal-Jimenez, C.A.; Ishimoto, T.; Nakagawa, T.; et al. High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. Proc. Natl. Acad. Sci. USA 2018, 115, 3138–3143. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.B.; Severo, J.S.; Santos, L.R.; de Sousa Melo, S.R.; de Oliveira Santos, R.; de Oliveira, A.R.; Cruz, K.J.; do Nascimento Marreiro, D. Role of Magnesium in Oxidative Stress in Individuals with Obesity. Biol. Trace Elem. Res. 2017, 176, 20–26. [Google Scholar] [CrossRef]
- Chen, J.M.; Wu, T.Y.; Wu, Y.F.; Kuo, K.L. Association of the serum calcium level with metabolic syndrome and its components among adults in Taiwan. Arch. Endocrinol. Metab. 2023, 67, e000632. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.H.; Yao, Y.S.; He, L.P.; Jin, Y.L.; Chang, W.W.; Li, J.; Chen, Y.; Song, X.L.; Tang, H.; Ding, L.L.; et al. Overweight and obesity associated with increased total serum calcium level: Comparison of cross-sectional data in the health screening for teaching faculty. Biol. Trace Elem. Res. 2013, 156, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Zohal, M.; Jam-Ashkezari, S.; Namiranian, N.; Moosavi, A.; Ghadiri-Anari, A. Association between selected trace elements and body mass index and waist circumference: A cross sectional study. Diabetes Metab. Syndr. 2019, 13, 1293–1297. [Google Scholar] [CrossRef]
- Mainous, A.G., 3rd; Wright, R.U.; Hulihan, M.M.; Twal, W.O.; McLaren, C.E.; Diaz, V.A.; McLaren, G.D.; Argraves, W.S.; Grant, A.M. Elevated transferrin saturation, health-related quality of life and telomere length. Biometals 2014, 27, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Tokuda, E.; Okawa, E.; Watanabe, S.; Ono, S. Overexpression of metallothionein-I, a copper-regulating protein, attenuates intracellular copper dyshomeostasis and extends lifespan in a mouse model of amyotrophic lateral sclerosis caused by mutant superoxide dismutase-1. Hum. Mol. Genet. 2014, 23, 1271–1285. [Google Scholar] [CrossRef]
- Lecube, A.; Carrera, A.; Losada, E.; Hernández, C.; Simó, R.; Mesa, J. Iron deficiency in obese postmenopausal women. Obesity 2006, 14, 1724–1730. [Google Scholar] [CrossRef] [PubMed]
- Menzie, C.M.; Yanoff, L.B.; Denkinger, B.I.; McHugh, T.; Sebring, N.G.; Calis, K.A.; Yanovski, J.A. Obesity-related hypoferremia is not explained by differences in reported intake of heme and nonheme iron or intake of dietary factors that can affect iron absorption. J. Am. Diet. Assoc. 2008, 108, 145–148. [Google Scholar] [CrossRef]
- Alshwaiyat, N.M.; Ahmad, A.; Wan Hassan, W.M.R.; Al-Jamal, H.A.N. Association between obesity and iron deficiency (Review). Exp. Ther. Med. 2021, 22, 1268. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, C.N.; Wolf, R.M.; Ralle, M.; Dev, S.; Pierson, H.; Askin, F.; Steele, K.E.; Magnuson, T.H.; Schweitzer, M.A.; et al. Obesity is associated with copper elevation in serum and tissues. Metallomics 2019, 11, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- Habib, S.A.; Saad, E.A.; Elsharkawy, A.A.; Attia, Z.R. Pro-inflammatory adipocytokines, oxidative stress, insulin, Zn and Cu: Interrelations with obesity in Egyptian non-diabetic obese children and adolescents. Adv. Med. Sci. 2015, 60, 179–185. [Google Scholar] [CrossRef]
- Mailloux, R.J.; Lemire, J.; Appanna, V.D. Hepatic response to aluminum toxicity: Dyslipidemia and liver diseases (Review). Exp. Cell Res. 2011, 317, 2231–2238. [Google Scholar] [CrossRef]
- Bignucolo, A.; Lemire, J.; Auger, C.; Castonguay, Z.; Appanna, V.; Appanna, V.D. The Molecular Connection between Aluminum Toxicity, Anemia, Inflammation and Obesity: Therapeutic Cues; InTech: Rijeka, Croatia, 2012; pp. 403–424. [Google Scholar]
- Parris, W.E.; Adeli, K. In Vitro toxicological assessment of heavy metals and intracellular mechanisms of toxicity. In Heavy Metals in the Environment; Sarkar, B., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2002; pp. 69–93. [Google Scholar]
- Shi, X.; Dalal, N.S.; Kasprzak, K.S. Generation of free radicals in reactions of Ni (II)-thiol complexes with molecular oxygen and model lipid hydroperoxides. J. Inorg. Biochem. 1993, 50, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Morris, H.; Cronin, M.T.D. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef]
- Fu, Z.; Xi, S. The effects of heavy metals on human metabolism. Toxicol. Mech. Methods 2020, 30, 167–176. [Google Scholar] [CrossRef]
- Kipp, Z.A.; Xu, M.; Bates, E.A.; Lee, W.H.; Kern, P.A.; Hinds, T.D., Jr. Bilirubin Levels Are Negatively Correlated with Adiposity in Obese Men and Women, and Its Catabolized Product, Urobilin, Is Positively Associated with Insulin Resistance. Antioxidants 2023, 12, 170. [Google Scholar] [CrossRef] [PubMed]
- Mota Martins, L.; Soares de Oliveira, A.R.; Clímaco Cruz, K.J.; Borges de Araújo, C.G.; de Oliveira, F.E.; Santos de Sousa, G.; do Nascimento Nogueira, N.; do Nascimento Marreiro, D. Influence of corticol on zinc metabolism in morbidly obese women. Nutr. Hosp. 2014, 29, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Payahoo, L.; Ostadrahimi, A.; Mobasseri, M.; Khaje Bishak, Y.; Farrin, N.; Asghari Jafarabadi, M.; Mahluji, S. Effects of zinc supplementation on the anthropometric measurements, lipid profiles and fasting blood glucose in the healthy obese adults. Adv. Pharm. Bull. 2013, 3, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Ock, J.; Moon, K.W.; Park, C.H. Association between Pb, Cd, and Hg Exposure and Liver Injury among Korean Adults. Int. J. Environ. Res. Public Health 2021, 18, 6783. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Su, J.; Chen, H.; Zhao, P.; Qian, H.; Gao, X.; Ye, Q.; Zhang, G.; Li, X. Associations of blood metals with liver function: Analysis of NHANES from 2011 to 2018. Chemosphere 2023, 317, 137854. [Google Scholar] [CrossRef]
- Li, T.; Yu, L.; Yang, Z.; Shen, P.; Lin, H.; Shui, L.; Tang, M.; Jin, M.; Chen, K.; Wang, J. Associations of Diet Quality and Heavy Metals with Obesity in Adults: A Cross-Sectional Study from National Health and Nutrition Examination Survey (NHANES). Nutrients 2022, 14, 4038. [Google Scholar] [CrossRef] [PubMed]
- Rothenberg, S.E.; Korrick, S.A.; Fayad, R. The influence of obesity on blood mercury levels for U.S. non-pregnant adults and children: NHANES 2007–2010. Environ. Res. 2015, 138, 173–180. [Google Scholar] [CrossRef]
- Rechtman, E.; Curtin, P.; Papazaharias, D.M.; Renzetti, S.; Cagna, G.; Peli, M.; Levin-Schwartz, Y.; Placidi, D.; Smith, D.R.; Lucchini, R.G.; et al. Sex-specific associations between co-exposure to multiple metals and visuospatial learning in early adolescence. Transl. Psychiatry 2020, 10, 358. [Google Scholar] [CrossRef]
- Gade, M.; Comfort, N.; Re, D.B. Sex-specific neurotoxic effects of heavy metal pollutants: Epidemiological, experimental evidence and candidate mechanisms. Environ. Res. 2021, 201, 111558. [Google Scholar] [CrossRef]
- Chang, L.; Shen, S.; Zhang, Z.; Song, X.; Jiang, Q. Study on the relationship between age and the concentrations of heavy metal elements in human bone. Ann. Transl. Med. 2018, 6, 320. [Google Scholar] [CrossRef]
Method Parameters/Units | |
---|---|
RF power (kW) | 0.90 |
Plasma gas flow (L/min) | 15.0 |
Auxiliary gas flow (L/min) | 1.50 |
Nebulizer gas flow (L/min) | 1.0 |
Replicated read time (s) | 3.0 |
Instrument stabilization (s) | 20.0 |
Sample uptake delay (s) | 25.0 |
Pump rate (rpm) | 15.0 |
Rinse time (s) | 20.0 |
CCD detector temperature (°C) | −35 |
Element (λ/nm) | Ag 328.068; Al 167.019; As 188.980; Ba 455.403; Ca 315.887; Cd 226.502; Co 228.615; Cr 267.716; Cu 324.754; Fe 234.350; K 766.491; Li 670.783; Mg 383.829; Mn 257.610; Na 589.592; Ni 231.604; Pb 220.353; Sb 206.834; Se 196.026; Sr 407.771; Zn 206.200 |
Parameters/ Units | Standard/Optimal Reference Range for Adult | Women (n = 48) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Overweight (n = 26) | Obesity (n = 22) | p-Value | ||||||||
x ± SD | min | max | CV (%) | x ± SD | min | max | CV (%) | |||
Age (years) | - | 56.92 ± 4.20 | 50.00 | 64.00 | 7.39 | 56.91 ± 3.89 | 50.00 | 63.00 | 6.84 | ns |
Anthropometric parameters | ||||||||||
Body height (cm) | - | 166.30 ± 5.82 | 156.00 | 180.00 | 3.50 | 163.20 ± 6.04 | 151.00 | 174.00 | 3.70 | ns |
Body weight (kg) | - | 75.86 ± 5.55 | 63.50 | 86.80 | 7.31 | 90.12 ± 10.86 | 70.80 | 113.75 | 12.05 | <0.001 |
BMI (≥25–29.90 kg/m2) | 18.50–24.90 1 | 27.43 ± 1.37 | 25.11 | 29.72 | 4.98 | <0.001 | ||||
BMI (≥30 kg/m2) | 33.76 ± 2.81 | 30.27 | 39.47 | 8.31 | <0.001 | |||||
PBF (%) | 18.0–28.0 2 | 38.74 ± 2.83 | 33.88 | 43.84 | 7.31 | 44.86 ± 4.31 | 35.70 | 50.69 | 9.60 | <0.001 |
VFA (cm2) | <100 2 | 120.03 ± 13.08 | 97.91 | 144.03 | 10.88 | 148.90 ± 18.97 | 116.31 | 188.78 | 12.75 | <0.001 |
Blood pressure | ||||||||||
Systolic blood pressure (mm Hg) | <120 | 130.00 ± 13.47 | 105.50 | 157.00 | 10.36 | 130.14 ± 12.38 | 106.00 | 150.50 | 9.52 | ns |
Diastolic blood pressure (mm Hg) | <80 | 85.85 ± 6.75 | 70.50 | 102.50 | 7.86 | 87.30 ± 6.63 | 75.00 | 101.00 | 7.59 | ns |
Parameters/ Units | Standard/Optimal Reference Range for Adult | Women (n = 48) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Overweight (n = 26) | Obesity (n = 22) | p-Value | ||||||||
x ± SD | min | max | CV (%) | x ± SD | min | max | CV (%) | |||
Biochemical parameters | ||||||||||
TC (mmol/L) | <5.20 1 | 6.17 ± 1.04 | 4.37 | 8.49 | 16.85 | 6.58 ± 0.91 | 5.34 | 8.59 | 13.90 | ns |
Glucose (mmol/L) | 3.90–6.10 2 | 5.17 ± 0.56 | 4.09 | 6.35 | 10.81 | 5.35 ± 0.60 | 4.62 | 7.06 | 11.17 | ns |
tbil (µmol/L) | 1.70–21.0 2 | 9.16 ± 3.06 | 3.79 | 15.42 | 33.42 | 8.63 ± 1.87 | 4.65 | 12.38 | 21.67 | ns |
dbil (µmol/L) | <3.40 2 | 3.07 ± 0.87 | 1.70 | 5.25 | 28.42 | 2.86 ± 0.55 | 1.73 | 4.04 | 19.16 | ns |
Liver enzymatic parameters | ||||||||||
AST (µkat/L) | <0.52 3 | 0.33 ± 0.08 | 0.23 | 0.55 | 25.94 | 0.34 ± 0.10 | 0.25 | 0.74 | 30.29 | ns |
ALT (µkat/L) | <0.57 4 | 0.30 ± 0.09 | 0.18 | 0.57 | 30.17 | 0.39 ± 0.15 | 0.20 | 0.76 | 37.98 | 0.010 |
GGT (µkat/L) | <0.63 5 | 0.40 ± 0.20 | 0.21 | 0.93 | 49.98 | 0.53 ± 0.22 | 0.24 | 0.97 | 41.27 | 0.036 |
Oxidative parameters | ||||||||||
TAS (mmol/L) | 1.30–1.77 6 | 1.72 ± 0.13 | 1.42 | 1.98 | 7.70 | 1.71 ± 0.13 | 1.41 | 1.95 | 7.84 | ns |
Elements/λ (nm) | Women (n = 48) | ||
---|---|---|---|
Overweight (n = 26) | Obesity (n = 22) | p-Value | |
x ± SD | x ± SD | ||
Al mg/mL/167.019 | 1.19 ± 0.92 | 1.23 ± 0.87 | ns |
Ba mg/mL/455.403 | 0.62 ± 0.15 | 0.61 ± 0.14 | ns |
Ca mg/mL/315.887 | 157.39 ± 18.89 | 162.51 ± 19.98 | ns |
Cu mg/mL/324.754 | 1.12 ± 0.11 | 1.09 ± 0.17 | ns |
Fe mg/mL/234.350 | 1.31 ± 0.36 | 1.36 ± 0.61 | ns |
K mg/mL/766.491 | 159.78 ± 10.81 | 159.33 ± 15.82 | ns |
Mg mg/mL/383.829 | 3.57 ± 0.45 | 3.73 ± 0.48 | ns |
Na mg/mL/589.592 | 2558.87 ± 102.37 | 2555.03 ± 175.78 | ns |
Ni mg/mL/231.604 | 0.14 ± 0.12 | 0.08 ± 0.06 | ns |
Pb mg/mL/220.353 | 0.14 ± 0.04 | 0.15 ± 0.06 | ns |
Sb mg/mL/206.834 | 0.22 ± 0.07 | 0.21 ± 0.07 | ns |
Se mg/mL/196.026 | 0.44 ± 0.15 | 0.40 ± 0.15 | ns |
Sr mg/mL/407.771 | 0.67 ± 0.18 | 0.72 ± 0.14 | ns |
Zn mg/mL/206.200 | 0.99 ± 0.33 | 0.93 ± 0.26 | ns |
Hg ng/µL 1/253.65 | 0.06 ± 0.02 1 | 0.07 ± 0.03 1 | ns |
Ag (328.068); As (188.980); Cd (226.502); Co (228.615); Cr (267.716); Li (670.783); Mn (257.610) | nd |
Glucose | TC | tbil | dbil | AST | ALT | GGT | |
---|---|---|---|---|---|---|---|
TC | 0.2628 | ||||||
tbil | 0.0186 | 0.4575 * | |||||
dbil | −0.2638 | 0.2791 | 0.9139 *** | ||||
AST | 0.4529 * | −0.1155 | −0.4434 * | −0.4781 * | |||
ALT | 0.5334 ** | −0.3127 | −0.2491 | −0.2715 | 0.5693 ** | ||
GGT | −0.0175 | −0.2582 | −0.3652 | −0.2390 | 0.1514 | 0.3436 | |
TAS | 0.1418 | −0.0777 | 0.2118 | 0.1274 | −0.0488 | 0.3626 | 0.3981 |
Glucose | TC | tbil | dbil | AST | ALT | GGT | |
---|---|---|---|---|---|---|---|
TC | 0.0403 | ||||||
tbil | 0.2400 | 0.0909 | |||||
dbil | 0.2196 | −0.0097 | 0.8916 *** | ||||
AST | 0.0097 | −0.2390 | 0.2430 | 0.2749 | |||
ALT | 0.1515 | −0.1385 | 0.0735 | 0.0754 | 0.7652 *** | ||
GGT | 0.1468 | 0.0489 | 0.1306 | 0.1325 | 0.4348 | 0.4194 | |
TAS | 0.3445 | 0.2145 | 0.2645 | 0.2216 | −0.1250 | −0.2691 | −0.2296 |
Ca | Na | K | Mg | Al | Ba | Cu | Fe | Ni | Pb | Sr | Zn | Se | Sb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na | 0.3246 | |||||||||||||
K | 0.2592 | 0.1954 | ||||||||||||
Mg | 0.9285 *** | 0.4523 * | 0.2254 | |||||||||||
Al | 0.7623 ** | −0.0294 | −0.1054 | 0.6103 ** | ||||||||||
Ba | 0.6254 ** | 0.0192 | 0.1862 | 0.5785 ** | 0.3578 | |||||||||
Cu | 0.0989 | −0.1808 | 0.3455 | 0.0246 | 0.0368 | 0.2566 | ||||||||
Fe | −0.0108 | 0.3015 | −0.1754 | 0.0177 | 0.0931 | −0.0885 | −0.2524 | |||||||
Ni | 0.0343 | 0.2377 | 0.0074 | −0.0221 | −0.0545 | −0.5833 * | −0.2170 | 0.5049 * | ||||||
Pb | 0.0797 | −0.1667 | 0.0034 | 0.0463 | 0.1716 | −0.1322 | −0.1492 | 0.1379 | 0.3964 | |||||
Sr | 0.9515 *** | 0.2615 | 0.2185 | 0.8777 *** | 0.6789 ** | 0.6623 ** | 0.0854 | −0.1446 | −0.1054 | 0.0667 | ||||
Zn | −0.0054 | −0.1946 | −0.1762 | 0.0077 | −0.0809 | −0.0808 | −0.0308 | 0.1800 | 0.4093 | 0.1904 | −0.1292 | |||
Se | −0.1814 | −0.0618 | 0.1388 | −0.0753 | −0.6152 ** | −0.0122 | −0.3430 | −0.0035 | −0.1589 | −0.0023 | −0.0874 | −0.0383 | ||
Sb | 0.4647 * | 0.2407 | 0.1058 | 0.4973 * | 0.3299 | 0.3183 | 0.2932 | −0.1404 | −0.1626 | −0.2323 | 0.4607 * | 0.1720 | −0.3792 | |
Hg | 0.1774 | 0.5036 * | 0.0004 | 0.2427 | 0.1029 | 0.2553 | 0.0217 | 0.3505 | −0.0618 | 0.0725 | 0.1796 | −0.2909 | −0.3136 | 0.4114 |
Ca | Na | K | Mg | Al | Ba | Cu | Fe | Ni | Pb | Sr | Zn | Se | Sb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na | 0.7764 *** | |||||||||||||
K | 0.3665 | 0.4828 * | ||||||||||||
Mg | 0.8938 *** | 0.7154 *** | 0.3371 | |||||||||||
Al | 0.2714 | 0.2652 | −0.1166 | 0.2487 | ||||||||||
Ba | 0.5381 ** | 0.2445 | 0.1327 | 0.6014 ** | −0.2921 | |||||||||
Cu | 0.3988 | 0.2056 | −0.0006 | 0.4213 | 0.2570 | −0.0260 | ||||||||
Fe | 0.2106 | 0.0446 | 0.4907 * | 0.1711 | −0.4510 | 0.0785 | −0.0768 | |||||||
Ni | 0.1226 | −0.0245 | 0.2277 | 0.1051 | 0.4316 | −0.2802 | 0.6410 * | 0.4413 | ||||||
Pb | 0.0209 | −0.2129 | −0.1112 | −0.0740 | 0.0444 | −0.0096 | 0.2480 | 0.0920 | 0.4448 | |||||
Sr | 0.9187 *** | 0.7290 *** | 0.3179 | 0.9176 *** | 0.2198 | 0.6657 ** | 0.2649 | 0.0480 | −0.0105 | −0.0503 | ||||
Zn | 0.5508 ** | 0.3836 | 0.3780 | 0.5085 * | 0.1880 | 0.3130 | 0.0463 | 0.4119 | 0.0561 | 0.1407 | 0.4192 | |||
Se | −0.6219 ** | −0.4637 * | −0.3581 | −0.7365 *** | 0.0650 | −0.6224 ** | −0.1833 | −0.1909 | −0.1086 | 0.1666 | −0.7060 *** | −0.2577 | ||
Sb | 0.3187 | 0.3696 | 0.1580 | 0.4996 * | 0.0822 | 0.1958 | 0.1419 | 0.3266 | 0.6276 | 0.0667 | 0.3766 | 0.2512 | −0.4756 * | |
Hg | −0.2696 | −0.1897 | −0.4605 * | −0.1864 | 0.1913 | −0.1546 | 0.0474 | −0.3020 | 0.0729 | −0.0195 | −0.1559 | −0.2576 | 0.1020 | 0.3096 |
Women (n = 48) | |||||
---|---|---|---|---|---|
Overweight (n = 26) | Obesity (n = 22) | ||||
Investigated Parameter | Element | Spearman R (p-Value) | Investigated Parameter | Element | Spearman R (p-Value) |
Glucose | Sb | −0.4451 (0.0465) | TC | Cu | 0.5530 (0.0134) |
TC | Al | 0.5441 (0.0351) | AST | K | 0.4529 (0.0428) |
tbil | Zn | −0.5400 (0.0096) | ALT | Sb | 0.5241 (0.0307) |
dbil | Zn | −0.5243 (0.0119) | TAS | Al | 0.5939 (0.0175) |
GGT | Pb | 0.6263 (0.0079) | TAS | Ni | 0.6485 (0.0315) |
TAS | Cu | 0.4055 (0.0470) | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knazicka, Z.; Bihari, M.; Janco, I.; Harangozo, L.; Arvay, J.; Kovacik, A.; Massanyi, P.; Galik, B.; Saraiva, J.M.A.; Habanova, M. Blood Concentration of Macro- and Microelements in Women Who Are Overweight/Obesity and Their Associations with Serum Biochemistry. Life 2024, 14, 465. https://doi.org/10.3390/life14040465
Knazicka Z, Bihari M, Janco I, Harangozo L, Arvay J, Kovacik A, Massanyi P, Galik B, Saraiva JMA, Habanova M. Blood Concentration of Macro- and Microelements in Women Who Are Overweight/Obesity and Their Associations with Serum Biochemistry. Life. 2024; 14(4):465. https://doi.org/10.3390/life14040465
Chicago/Turabian StyleKnazicka, Zuzana, Maros Bihari, Ivona Janco, Lubos Harangozo, Julius Arvay, Anton Kovacik, Peter Massanyi, Branislav Galik, Jorge M. A. Saraiva, and Marta Habanova. 2024. "Blood Concentration of Macro- and Microelements in Women Who Are Overweight/Obesity and Their Associations with Serum Biochemistry" Life 14, no. 4: 465. https://doi.org/10.3390/life14040465
APA StyleKnazicka, Z., Bihari, M., Janco, I., Harangozo, L., Arvay, J., Kovacik, A., Massanyi, P., Galik, B., Saraiva, J. M. A., & Habanova, M. (2024). Blood Concentration of Macro- and Microelements in Women Who Are Overweight/Obesity and Their Associations with Serum Biochemistry. Life, 14(4), 465. https://doi.org/10.3390/life14040465