Comparative Assessment of the Addictive Potential of Synthetic Cathinones by Zebrafish Conditioned Place Preference (CPP) Paradigm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Drugs
2.3. CPP Paradigm
2.4. Statistical Analyses
3. Results
3.1. Dose-Dependent Effects of Pentylone, Eutylone, and NEP CPP
3.2. Extinction of Pentylone, Eutylone, and NEP CPP
3.3. Drug-Primed Reinstatement of Pentylone, Eutylone, and NEP CPP
3.4. Effects of Long Abstinence on NEP, Pentylone, and Eutylone CPP Expression and Reinstatement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalix, P. The pharmacology of khat. Gen. Pharmacol. 1984, 15, 179–187. [Google Scholar] [CrossRef]
- Glatfelter, G.C.; Walther, D.; Evans-Brown, M.; Baumann, M.H. Eutylone and Its Structural Isomers Interact with Monoamine Transporters and Induce Locomotor Stimulation. ACS Chem. Neurosci. 2021, 12, 1170–1177. [Google Scholar] [CrossRef]
- Costa, J.L.; Cunha, K.F.; Lanaro, R.; Cunha, R.L.; Walther, D.; Baumann, M.H. Analytical quantification, intoxication case series, and pharmacological mechanism of action for N-ethylnorpentylone (N-ethylpentylone or ephylone). Drug Test. Anal. 2019, 11, 461–471. [Google Scholar] [CrossRef]
- Mohr, A.L.A.; Logan, B.K.; Fogarty, M.F.; Krotulski, A.J.; Papsun, D.M.; Kacinko, S.L.; Huestis, M.A.; Ropero-Miller, J.D. Reports of Adverse Events Associated with Use of Novel Psychoactive Substances, 2017–2020: A Review. J. Anal. Toxicol. 2022, 46, E116–E185. [Google Scholar] [CrossRef]
- Zawadzki, M.; Nowak, K.; Szpot, P. Fatal intoxication with N-ethylpentylone: A case report and method for determining N-ethylpentylone in biological material. Forensic Toxicol. 2020, 38, 255–263. [Google Scholar] [CrossRef]
- Krotulski, A.J.; Papsun, D.M.; Chronister, C.W.; Homan, J.; Crosby, M.M.; Hoyer, J.; Goldberger, B.A.; Logan, B.K. Eutylone Intoxications-An Emerging Synthetic Stimulant in Forensic Investigations. J. Anal. Toxicol. 2021, 45, 8–20. [Google Scholar] [CrossRef]
- Fabregat-Safont, D.; Barneo-Muñoz, M.; Carbón, X.; Hernández, F.; Martinez-Garcia, F.; Ventura, M.; Stove, C.P.; Sancho, J.V.; Ibáñez, M. Understanding the pharmacokinetics of synthetic cathinones: Evaluation of the blood-brain barrier permeability of 13 related compounds in rats. Addict. Biol. 2021, 26, e12979. [Google Scholar] [CrossRef]
- Gatch, M.B.; Dolan, S.B.; Forster, M.J. Locomotor activity and discriminative stimulus effects of five novel synthetic cathinone analogs in mice and rats. Drug Alcohol. Depend. 2019, 199, 50–58. [Google Scholar] [CrossRef]
- Gatch, M.B.; Rutledge, M.A.; Forster, M.J. Discriminative and locomotor effects of five synthetic cathinones in rats and mice. Psychopharmacology 2015, 232, 1197–1205. [Google Scholar] [CrossRef]
- Javadi-Paydar, M.; Nguyen, J.D.; Vandewater, S.A.; Dickerson, T.J.; Taffe, M.A. Locomotor and reinforcing effects of pentedrone, pentylone and methylone in rats. Neuropharmacology 2018, 134, 57–64. [Google Scholar] [CrossRef]
- Espinosa-Velasco, M.; Reguilon, M.D.; Bellot, M.; Nadal-Gratacos, N.; Berzosa, X.; Puigseslloses, P.; Gomez-Canela, C.; Rodriguez-Arias, M.; Pubill, D.; Camarasa, J.; et al. Behavioural and neurochemical effects after repeated administration of N-ethylpentylone (ephylone) in mice. J. Neurochem. 2022, 160, 218–233. [Google Scholar] [CrossRef]
- Li, J.L.; Lin, Z.B.; Tao, X.Y.; Huang, Z.B.; Zhang, Y.R.; Zheng, S.Q.; Wang, H.; Rao, Y.L. Effects of N-ethylpentylone on locomotor activity and anxiety-like behavior in rats. Behav. Pharmacol. 2019, 30, 500–505. [Google Scholar] [CrossRef]
- Nadal-Gratacós, N.; Alberto-Silva, A.S.; Rodríguez-Soler, M.; Urquizu, E.; Espinosa-Velasco, M.; Jäntsch, K.; Holy, M.; Batllori, X.; Berzosa, X.; Pubill, D.; et al. Structure-Activity Relationship of Novel Second-Generation Synthetic Cathinones: Mechanism of Action, Locomotion, Reward, and Immediate-Early Genes. Front. Pharmacol. 2021, 12, 749429. [Google Scholar] [CrossRef]
- Jones, R.A.; Huang, S.; Manke, H.N.; Riley, A.L. Conditioned taste avoidance and conditioned place preference induced by the third-generation synthetic cathinone eutylone in female sprague-dawley rats. Exp. Clin. Psychopharmacol. 2023, 31, 1069–1079. [Google Scholar] [CrossRef]
- McKendrick, G.; Graziane, N.M. Drug-Induced Conditioned Place Preference and Its Practical Use in Substance Use Disorder Research. Front. Behav. Neurosci. 2020, 14, 582147. [Google Scholar] [CrossRef]
- Rutten, K.; van der Kam, E.L.; De Vry, J.; Tzschentke, T.M. Critical evaluation of the use of extinction paradigms for the assessment of opioid-induced conditioned place preference in rats. Pharmacology 2011, 87, 286–296. [Google Scholar] [CrossRef]
- Kalueff, A.V.; Stewart, A.M.; Gerlai, R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci. 2014, 35, 63–75. [Google Scholar] [CrossRef]
- Kedikian, X.; Faillace, M.P.; Bernabeu, R. Behavioral and molecular analysis of nicotine-conditioned place preference in zebrafish. PLoS ONE 2013, 8, e69453. [Google Scholar] [CrossRef]
- Collier, A.D.; Khan, K.M.; Caramillo, E.M.; Mohn, R.S.; Echevarria, D.J. Zebrafish and conditioned place preference: A translational model of drug reward. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 55, 16–25. [Google Scholar] [CrossRef]
- Kily, L.J.; Cowe, Y.C.; Hussain, O.; Patel, S.; McElwaine, S.; Cotter, F.E.; Brennan, C.H. Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J. Exp. Biol. 2008, 211, 1623–1634. [Google Scholar] [CrossRef]
- Jiang, M.; Chen, Y.; Li, C.; Peng, Q.; Fang, M.; Liu, W.; Kang, Q.; Lin, Y.; Yung, K.K.; Mo, Z. Inhibiting effects of rhynchophylline on zebrafish methamphetamine dependence are associated with amelioration of neurotransmitters content and down-regulation of TH and NR2B expression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 68, 31–43. [Google Scholar] [CrossRef]
- Chen, L.C.; Chan, M.H.; Chen, H.H. Extinction and reinstatement of methamphetamine-induced conditioned place preference in zebrafish. Addict. Biol. 2023, 28, e13351. [Google Scholar] [CrossRef] [PubMed]
- Pavlik, W.B.; Collier, A.C. Magnitude and Schedule of Reinforcement in Rats Resistance to Extinction—Within Subjects. Am. J. Psychol. 1977, 90, 195–205. [Google Scholar] [CrossRef]
- Ritz, M.C.; Lamb, R.J.; Goldberg, S.R.; Kuhar, M.J. Cocaine Receptors on Dopamine Transporters Are Related to Self-Administration of Cocaine. Science 1987, 237, 1219–1223. [Google Scholar] [CrossRef]
- Wee, S.; Anderson, K.G.; Baumann, M.H.; Rothman, R.B.; Blough, B.E.; Woolverton, W.L. Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs. J. Pharmacol. Exp. Ther. 2005, 313, 848–854. [Google Scholar] [CrossRef]
- Gannon, B.M.; Baumann, M.H.; Walther, D.; Jimenez-Morigosa, C.; Sulima, A.; Rice, K.C.; Collins, G.T. The abuse-related effects of pyrrolidine-containing cathinones are related to their potency and selectivity to inhibit the dopamine transporter. Neuropsychopharmacology 2018, 43, 2399–2407. [Google Scholar] [CrossRef] [PubMed]
- Suyama, J.A.; Banks, M.L.; Negus, S.S. Effects of repeated treatment with methcathinone, mephedrone, and fenfluramine on intracranial self-stimulation in rats. Psychopharmacology 2019, 236, 1057–1066. [Google Scholar] [CrossRef]
- Rothman, R.B.; Partilla, J.S.; Baumann, M.H.; Lightfoot-Siordia, C.; Blough, B.E. Studies of the Biogenic Amine Transporters. 14. Identification of Low-Efficacy “Partial” Substrates for the Biogenic Amine Transporters. J. Pharmacol. Exp. Ther. 2012, 341, 251–262. [Google Scholar] [CrossRef]
- Niello, M.; Gradisch, R.; Loland, C.J.; Stockner, T.; Sitte, H.H. Allosteric Modulation of Neurotransmitter Transporters as a Therapeutic Strategy. Trends Pharmacol. Sci. 2020, 41, 446–463. [Google Scholar] [CrossRef]
- Reith, M.E.A.; Blough, B.E.; Hong, W.M.C.; Jones, K.T.; Schmitt, K.C.; Baumann, M.H.; Partilla, J.S.; Rothman, R.B.; Katz, J.L. Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug Alcohol. Depend. 2015, 147, 1–19. [Google Scholar] [CrossRef] [PubMed]
- de Moura, F.B.; Sherwood, A.; Prisinzano, T.E.; Paronis, C.A.; Bergman, J.; Kohut, S.J. Reinforcing effects of synthetic cathinones in rhesus monkeys: Dose-response and behavioral economic analyses. Pharmacol. Biochem. Behav. 2021, 202, 173112. [Google Scholar] [CrossRef]
- Lai, M.; Fu, D.; Xu, Z.; Du, H.; Liu, H.; Wang, Y.; Xu, P.; Zhou, W. Relative reinforcing effects of dibutylone, ethylone, and N-ethylpentylone: Self-administration and behavioral economics analysis in rats. Psychopharmacology 2022, 239, 2875–2884. [Google Scholar] [CrossRef]
- Nalbant, P.; Boehmer, C.; Dehmelt, L.; Wehner, F.; Werner, A. Functional characterization of a Na-phosphate cotransporter (NaP-II) from zebrafish and identification of related transcripts. J. Physiol. 1999, 520, 79–89. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.-C.; Chan, M.-H.; Chen, H.-H. Comparative Assessment of the Addictive Potential of Synthetic Cathinones by Zebrafish Conditioned Place Preference (CPP) Paradigm. Life 2024, 14, 820. https://doi.org/10.3390/life14070820
Chen L-C, Chan M-H, Chen H-H. Comparative Assessment of the Addictive Potential of Synthetic Cathinones by Zebrafish Conditioned Place Preference (CPP) Paradigm. Life. 2024; 14(7):820. https://doi.org/10.3390/life14070820
Chicago/Turabian StyleChen, Liao-Chen, Ming-Huan Chan, and Hwei-Hsien Chen. 2024. "Comparative Assessment of the Addictive Potential of Synthetic Cathinones by Zebrafish Conditioned Place Preference (CPP) Paradigm" Life 14, no. 7: 820. https://doi.org/10.3390/life14070820
APA StyleChen, L. -C., Chan, M. -H., & Chen, H. -H. (2024). Comparative Assessment of the Addictive Potential of Synthetic Cathinones by Zebrafish Conditioned Place Preference (CPP) Paradigm. Life, 14(7), 820. https://doi.org/10.3390/life14070820