Surgical Skill Decay as a Result of the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
- Injury of the gallbladder wall;
- Evacuation of gallstones into the peritoneum;
- Intraoperative bleeding with no need for conversion to laparotomy.
- Postoperative fluid collection;
- Biliary leakage;
- Postoperative bleeding;
- Wound infection;
- Necessity of readmission to the hospital;
- Necessity of reoperation.
- Enlarged gallbladder;
- Hard gallbladder wall;
- Thick gallbladder wall;
- Inflammation seen during surgery;
- Intraperitoneal adhesions.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO-Convened Global Study of Origins of SARS-CoV-2: China Part. 2020. Available online: https://www.who.int/publications/i/item/who-convened-global-study-of-origins-of-sars-cov-2-china-part (accessed on 10 June 2024).
- Gujski, M.; Raciborski, F.; Jankowski, M.; Nowicka, P.M.; Rakocy, K.; Pinkas, J. Epidemiological Analysis of the First 1389 Cases of COVID-19 in Poland: A Preliminary Report. Med. Sci. Monit. 2020, 26, e924702. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.Y.; Yu, J.L.; Um, G.T.; Beck, C.M.; Vedder, N.B.; Friedrich, J.B. The Early Effects of COVID-19 on Plastic Surgery Residency Training: The University of Washington Experience. Plast. Reconstr. Surg. 2020, 146, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Report of Coronaviruse SARS-CoV-2 Infections in Poland. Available online: https://www.gov.pl/web/koronawirus/wykaz-zarazen-koronawirusem-sars-cov-2 (accessed on 10 June 2024).
- Ferreira, J.; Cavalcante, T.F.; Jansen, R.C.; Damasceno, D.F.O.; Oliveira, L.R.; Silva, M.J.N.; Rodrigues, A.P. Challenges for maintaining surgical care practices in the COVID-19 pandemic: An integrative review. Investig. Educ. Enferm. 2022, 40, e16. [Google Scholar] [CrossRef] [PubMed]
- Office, S.A. Funkcjonowanie Szpitali w Warunkach Pandemii COVID-19; Do, H., Ed.; NIK: Warsaw, Poland, 2022.
- Kapila, A.K.; Schettino, M.; Farid, Y.; Ortiz, S.; Hamdi, M. The Impact of Coronavirus Disease 2019 on Plastic Surgery Training: The Resident Perspective. Plast. Reconstr. Surg. Glob. Open 2020, 8, e3054. [Google Scholar] [CrossRef] [PubMed]
- Boekhorst, F.; Khattak, H.; Topcu, E.G.; Horala, A.; Gonçalves Henriques, M. The influence of the COVID-19 outbreak on European trainees in obstetrics and gynaecology: A survey of the impact on training and trainee. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 261, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Bitonti, G.; Palumbo, A.R.; Gallo, C.; Rania, E.; Saccone, G.; De Vivo, V.; Zullo, F.; Di Carlo, C.; Venturella, R. Being an obstetrics and gynaecology resident during the COVID-19: Impact of the pandemic on the residency training program. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 253, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Nofi, C.; Roberts, B.; Demyan, L.; Sodhi, N.; DePeralta, D.; Zimmern, A.; Aronsohn, J.; Molmenti, E.; Patel, V. A Survey of the Impact of the COVID-19 Crisis on Skill Decay Among Surgery and Anesthesia Residents. J. Surg. Educ. 2022, 79, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Arthur, W., Jr.; Bennett, W., Jr.; Stanush, P.L.; McNelly, T.L. Factors That Influence Skill Decay and Retention: A Quantitative Review and Analysis. Hum. Perform. 1998, 11, 57–101. [Google Scholar] [CrossRef]
- Perez, R.S.; Skinner, A.; Weyhrauch, P.; Niehaus, J.; Lathan, C.; Schwaitzberg, S.D.; Cao, C.G. Prevention of surgical skill decay. Mil. Med. 2013, 178 (Suppl. S10), 76–86. [Google Scholar] [CrossRef]
- Bodilly, S.; Fernandez, J.; Kimbrough, J.; Purnell, S. Individual Ready Reserve Skill Retention and Refresher Training Options; Report No AD-A183 416; Rand Corporation: Santa Monica, CA, USA, 1986. [Google Scholar]
- Stansfield, T.; Tai, N. Skill decay in surgeons deployed on military operations: A systematic review. BMJ Mil. Health 2024, 170, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Nofi, C.P.; Roberts, B.K.; Hansen, L.; Coppa, G.F.; Patel, V. Surgical Rehabilitation for Research Residents: A Pilot Program to Offset Surgical Skill Decay. J. Surg. Educ. 2023, 80, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Grova, M.M.; Yang, A.D.; Humphries, M.D.; Galante, J.M.; Salcedo, E.S. Dedicated Research Time during Surgery Residency Leads to a Significant Decline in Self-Assessed Clinical Aptitude and Surgical Skills. J. Surg. Educ. 2017, 74, 980–985. [Google Scholar] [CrossRef] [PubMed]
- Pavlidis, E.T.; Symeonidis, N.G.; Stavrati, K.E.; Shulga, I.N.; Psarras, K.K.; Nikolaidou, C.C.; Andreou, E.A.; Monioudis, P.M.; Meitanidou, M.C.; Savvidis, M.; et al. The Impact of COVID-19 on the Training of Surgical Residents in Greece: Results of a Survey Conducted One Year after the Onset of the Pandemic. Chirurgia 2022, 117, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Oropeza-Aguilar, M.; Cendejas-Gómez, J.J.; Quiroz-Compeán, A.; Buerba, G.A.; Domínguez-Rosado, I.; Mendez-Probst, C.E. Impact of COVID-19 on surgical residency training programs in Mexico City: The third victim of the pandemic. A resident’s perspective. Cirugía Cir. 2022, 90, 165–171. [Google Scholar] [CrossRef]
- Alsafran, S.; Albloushi, D.; Quttaineh, D.; Alfawaz, A.A.; Alkhamis, A.; Alkhayat, A.; Alsejari, M.; Alsabah, S. The Impact of the COVID-19 Pandemic on Surgeons’ and Surgical Residents’ Caseload, Surgical Skills, and Mental Health in Kuwait. Med. Princ. Pract. 2022, 31, 224–230. [Google Scholar] [CrossRef]
- Qedair, J.T.; Alnahdi, W.A.; Mortada, H.; Alnamlah, A.A.; Almadani, R.Z.; Hakami, A.Y. The lasting impact of COVID-19 on surgical training from the perspective of surgical residents and consultants in Saudi Arabia: A nationwide cross-sectional study. BMC Med. Educ. 2023, 23, 330. [Google Scholar] [CrossRef]
- Lerendegui, L.; Boudou, R.; Percul, C.; Curiel, A.; Durante, E.; Moldes, J.M.; de Badiola, F.; Liberto, D.H.; Delorenzi, E.; Lobos, P.A. Impact of the COVID-19 pandemic on surgical skills training in pediatric surgery residents. Pediatr. Surg. Int. 2021, 37, 1415–1420. [Google Scholar] [CrossRef] [PubMed]
- Vailas, M.; Sotiropoulou, M.; Mulita, F.; Drakos, N.; Ambalov, E.; Maroulis, I. The impact of COVID-19 on surgical training at a tertiary hospital in Greece: A ‘hidden infectious enemy’ for junior surgeons? Eur. Surg. 2021, 53, 240–245. [Google Scholar] [CrossRef]
- Khan, K.S.; Keay, R.; McLellan, M.; Mahmud, S. Impact of the COVID-19 pandemic on core surgical training. Scott. Med. J. 2020, 65, 133–137. [Google Scholar] [CrossRef]
- NFZ. Zalecenia dla Świadczeniodawców Dotyczące Zasad Udzielania Świadczeń Opieki Zdrowotnej w Związku z Zapobieganiem Przeciwdziałaniem i Zwalczaniem COVID-19 2020. Available online: https://www.nfz.gov.pl/aktualnosci/aktualnosci-centrali/komunikat-dla-swiadczeniodawcow-w-sprawie-zasad-udzielania-swiadczen-opieki-zdrowotnej,7646.html (accessed on 10 June 2024).
- Terhune, K.P.; Shelton, J.; Koller, F. Surgical Intern Olympics: Skills assessment. Med. Educ. 2009, 43, 1104–1105. [Google Scholar] [CrossRef]
- Osband, A.J.; Patel, N.M.; Dombrovskiy, V.; Trooskin, S.Z. Intern olympics as a tool to reinforce surgical skills acquisition. J. Grad. Med. Educ. 2012, 4, 266. [Google Scholar] [CrossRef]
- Sturm, L.P.; Windsor, J.A.; Cosman, P.H.; Cregan, P.; Hewett, P.J.; Maddern, G.J. A systematic review of skills transfer after surgical simulation training. Ann. Surg. 2008, 248, 166–179. [Google Scholar] [CrossRef] [PubMed]
- Dawe, S.R.; Pena, G.N.; Windsor, J.A.; Broeders, J.A.J.L.; Cregan, P.C.; Hewett, P.J.; Maddern, G.J. Systematic review of skills transfer after surgical simulation-based training. Br. J. Surg. 2014, 101, 1063–1076. [Google Scholar] [CrossRef]
- Humm, G.; Peckham-Cooper, A.; Hamade, A.; Wood, C.; Dawas, K.; Stoyanov, D.; Lovat, L.B. Automated analysis of intraoperative phase in laparoscopic cholecystectomy: A comparison of one attending surgeon and their residents. J. Surg. Educ. 2023, 80, 994–1004. [Google Scholar] [CrossRef]
- Nofi, C.P.; Roberts, B.K.; Demyan, L.; Balakrishnan, N.; DePeralta, D.K.; Coppa, G.F.; Patel, V. Recovery of Skill Decay After COVID-19 Redeployments and Implications for Competency Attainment. J. Surg. Res. 2023, 285, 150–157. [Google Scholar] [CrossRef]
- Sommer, G.M.; Broschewitz, J.; Huppert, S.; Sommer, C.G.; Jahn, N.; Jansen-Winkeln, B.; Gockel, I.; Hau, H.M. The role of virtual reality simulation in surgical training in the light of COVID-19 pandemic: Visual spatial ability as a predictor for improved surgical performance: A randomized trial. Medicine 2021, 100, e27844. [Google Scholar] [CrossRef]
- Cecilio-Fernandes, D.; Cnossen, F.; Jaarsma, D.; Tio, R.A. Avoiding Surgical Skill Decay: A Systematic Review on the Spacing of Training Sessions. J. Surg. Educ. 2018, 75, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Dornan, T.; Conn, R.; Monaghan, H.; Kearney, G.; Gillespie, H.; Bennett, D. Experience Based Learning (ExBL): Clinical teaching for the twenty-first century. Med. Teach. 2019, 41, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Stefanidis, D.; Acker, C.; Heniford, B.T. Proficiency-based laparoscopic simulator training leads to improved operating room skill that is resistant to decay. Surg. Innov. 2008, 15, 69–73. [Google Scholar] [CrossRef]
- Feenstra, T.M.; van der Storm, S.L.; Barsom, E.Z.; Bonjer, J.H.; Nieveen van Dijkum, E.J.M.; Schijven, M.P. Which, how, and what? Using digital tools to train surgical skills; a systematic review and meta-analysis. Surg. Open Sci. 2023, 16, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Behl, A.; Nair, A.; Mohagaonkar, S.; Yadav, P.; Gambhir, K.; Tyagi, N.; Sharma, R.K.; Butola, B.S.; Sharma, N. Threat, challenges, and preparedness for future pandemics: A descriptive review of phylogenetic analysis based predictions. Infect. Genet. Evol. 2022, 98, 105217. [Google Scholar] [CrossRef] [PubMed]
Before COVID-19 | After COVID-19 | ||
---|---|---|---|
(n = 76) | (n = 72) | ||
Demographics: | n (%) or | n (%) or | p-value |
median [IQR] | median [IQR] | ||
Sex: Male | 32 (42.1) | 28 (38.9) | 0.69 |
Age (years) | 51 [19–84] | 54 [25–87] | 0.69 |
Body mass (kg) | 78.5 [49.5–129] | 79 [50–144] | 0.51 |
BMI (kg/m2) | 27.2 [18.8–44.6] | 28.5 [17.5–42.1] | 0.36 |
Operative conditions: | |||
Acute gallbladder | 27 (35.5) | 15 (20.8) | 0.047 |
Difficult gallbladder # | 53 (69.7) | 34 (47.2) | 0.005 |
Specialist as lead surgeon | 50 (65.8) | 42 (58.3) | 0.35 |
Before COVID-19 | After COVID-19 | ||
---|---|---|---|
n (%) or Mean ± SD | n (%) or Mean ± SD | p-Value | |
Number of intraoperative adverse events: | 33 (43.4) | 37 (51.4) | 0.33 |
· Injury of the gallbladder wall | 15 (19.7) | 21 (29.2) | 0.18 |
· Evacuation of gallstones | 1 (1.3) | 5 (6.9) | 0.08 |
· Intraoperative bleeding | 21 (27.6) | 23 (31.9) | 0.57 |
Postoperative complications # | 10 (13.2) | 7 (9.7) | 0.51 |
Conversion | 14 (18.4) | 6 (8.3) | 0.07 |
Readmission | 1 (1.3) | 2 (2.8) | 0.53 |
Duration of surgery (min) | 102.4 ± 40.4 | 119.9 ± 42.6 | 0.024 |
Hospitalization time (days) | 6.2 ± 2.8 | 5.6 ± 3.3 | 0.011 |
Factors of Interest | OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
---|---|---|---|---|---|---|---|
Intraoperative adverse events before COVID-19 | Intraoperative adverse events after COVID-19 | ||||||
Operative conditions: | |||||||
Specialist as the lead surgeon | 0.85 | 0.33–2.19 | 0.73 | 0.70 | 0.27–1.78 | 0.45 | |
Difficult gallbladder | 2.94 | 1.00–8.62 | 0.049 | 2.81 | 1.08–7.33 | 0.035 | |
Acute gallbladder | 1.07 | 0.41–2.75 | 0.894 | 2.22 | 0.67–7.32 | 0.19 | |
Demographics: | |||||||
Sex: Male | 1.28 | 0.51–3.19 | 0.61 | 3.97 | 1.43–11.0 | 0.008 | |
Age [per 1 years] | 1.02 | 0.99–1.05 | 0.19 | 1.02 | 0.98–1.05 | 0.33 | |
Body mass [per 1 kg] | 1.04 | 1.01–1.07 | 0.016 | 1.01 | 0.99–1.04 | 0.37 | |
BMI [per 1 kg/m2] | 1.18 | 1.05–1.31 | 0.004 | 1.03 | 0.94–1.13 | 0.52 | |
Postoperative complications before COVID-19 | Postoperative complications after COVID-19 | ||||||
Operative conditions: | |||||||
Specialist as the lead surgeon | 0.47 | 0.12–1.79 | 0.27 | 0.50 | 0.10–2.42 | 0.39 | |
Difficult gallbladder | 4.50 | 0.54–37.8 | 0.17 | 1.56 | 0.32–7.51 | 0.58 | |
Acute gallbladder | 3.21 | 0.82–12.6 | 0.09 | 1.60 | 0.28–9.20 | 0.60 | |
Demographics: | |||||||
Sex: Male | 0.30 | 0.06–1.52 | 0.15 | 2.28 | 0.47–11.1 | 0.31 | |
Age [per 1 years] | 1.00 | 0.96–1.04 | 0.82 | 1.02 | 0.96–1.08 | 0.48 | |
Body mass [per 1 kg] | 1.02 | 0.98–1.06 | 0.29 | 1.00 | 0.96–1.04 | 0.93 | |
BMI [per 1 kg/m2] | 1.10 | 0.98–1.24 | 0.11 | 1.00 | 0.87–1.16 | 0.97 | |
Conversion before COVID-19 | Conversion after COVID-19 | ||||||
Operative conditions: | |||||||
Specialist as the lead surgeon | 0.92 | 0.27–3.10 | 0.90 | 1.47 | 0.25–8.62 | 0.67 | |
Difficult gallbladder | 7.15 | 0.88–58.4 | 0.07 | # | # | 0.93 | |
Acute gallbladder | 10.5 | 2.61–42.7 | 0.001 | 4.50 | 0.81–25.1 | 0.09 | |
Demographics: | |||||||
Sex: Male | 4.55 | 1.28–16.2 | 0.020 | 9.35 | 1.03–84.9 | 0.047 | |
Age [per 1 years] | 1.01 | 0.97–1.05 | 0.59 | 1.05 | 0.98–1.12 | 0.18 | |
Body mass [per 1 kg] | 1.02 | 0.98–1.05 | 0.36 | 0.97 | 0.91–1.04 | 0.35 | |
BMI [per 1 kg/m2] | 1.02 | 0.92–1.14 | 0.70 | 0.88 | 0.71–1.10 | 0.25 |
aOR | 95% CI | p-Value | Factors of Interest | aOR | 95% CI | p-Value | |
---|---|---|---|---|---|---|---|
Risk of intraoperative adverse events | |||||||
After vs. Before | 1.38 | 0.72–2.63 | 0.33 | # | |||
After vs. Before | 1.80 | 0.89–3.61 | 0.10 | Difficult gallbladder | 2.87 | 1.40–5.86 | 0.004 |
After vs. Before | 1.35 | 0.71–2.59 | 0.36 | Specialist as the lead surgeon | 0.77 | 0.39–1.50 | 0.43 |
After vs. Before | 1.46 | 0.75–2.81 | 0.27 | Acute gallbladder | 1.43 | 0.69–2.96 | 0.34 |
After vs. Before | 1.43 | 0.74–2.77 | 0.29 | Sex: Male | 2.16 | 1.10–4.22 | 0.030 |
After vs. Before | 1.37 | 0.71–2.62 | 0.35 | Age (per 1 year) | 1.02 | 1.00–1.04 | 0.11 |
After vs. Before | 1.27 | 0.63–2.53 | 0.50 | Body mass [per 1 kg] | 1.02 | 1.00–1.04 | 0.020 |
After vs. Before | 1.27 | 0.63–2.56 | 0.51 | BMI [per 1 kg/m2] | 1.10 | 1.02–1.17 | 0.009 |
Risk of postoperative complications | |||||||
After vs. Before | 0.71 | 0.26–1.98 | 0.51 | # | |||
After vs. Before | 0.85 | 0.30–2.43 | 0.76 | Difficult gallbladder | 2.41 | 0.73–7.98 | 0.15 |
After vs. Before | 0.67 | 0.24–1.88 | 0.45 | Specialist as the lead surgeon | 0.48 | 0.17–1.34 | 0.16 |
After vs. Before | 0.82 | 0.29–2.34 | 0.71 | Acute gallbladder | 2.45 | 0.86–6.97 | 0.09 |
After vs. Before | 0.71 | 0.25–1.97 | 0.50 | Sex: Male | 0.77 | 0.27–2.21 | 0.63 |
After vs. Before | 0.71 | 0.25–1.98 | 0.51 | Age (per 1 year) | 1.00 | 0.97–1.04 | 0.81 |
After vs. Before | 0.83 | 0.29–2.33 | 0.72 | Body mass [per 1 kg] | 1.01 | 0.98–1.04 | 0.49 |
After vs. Before | 0.82 | 0.29–2.31 | 0.70 | BMI [per 1 kg/m2] | 1.06 | 0.97–1.16 | 0.21 |
Risk of conversion | |||||||
After vs. Before | 0.40 | 0.15–1.11 | 0.08 | # | |||
After vs. Before | 0.57 | 0.20–1.64 | 0.29 | Difficult gallbladder | 14.9 | 1.92–116.1 | 0.010 |
After vs. Before | 0.41 | 0.15–1.12 | 0.08 | Specialist as the lead surgeon | 1.08 | 0.40–2.93 | 0.88 |
After vs. Before | 0.52 | 0.18–1.55 | 0.24 | Acute gallbladder | 7.64 | 2.66–21.9 | 0.0002 |
After vs. Before | 0.40 | 0.14–1.14 | 0.09 | Sex: Male | 5.58 | 1.88–16.5 | 0.002 |
After vs. Before | 0.40 | 0.14–1.10 | 0.08 | Age (per 1 year) | 1.02 | 0.99–1.05 | 0.25 |
After vs. Before | 0.31 | 0.10–0.99 | 0.049 | Body mass [per 1 kg] | 1.00 | 0.98–1.03 | 0.83 |
After vs. Before | 0.31 | 0.10–1.01 | 0.053 | BMI [per 1 kg/m2] | 0.99 | 0.89–1.09 | 0.78 |
Factors of Interest | Before COVID-19 (BC) | After COVID-19 (AC) | Difference in Time (After vs. Before) | |||
---|---|---|---|---|---|---|
Lead surgeon: | Mean time (min) | p-value | Mean time (min) | p-value | ||
Specialist | 96.2 ± 39.0 | 113.1 ± 39.0 | 16.9 | |||
0.033 | 0.22 | |||||
Resident | 114.4 ± 41.0 | 129.0 ± 47.0 | 14.6 | |||
Intraoperative conditions: | ||||||
Difficult # | 111.4 ± 41.1 | 130.9 ± 47.1 | 19.5 | |||
0.005 | 0.14 | |||||
Normal # | 81.6 ± 31.3 | 111.2 ± 37.8 | 29.6 | |||
Type of surgery: | ||||||
Acute | 114.3 ± 33.9 | 139.2 ± 55.3 | 24.9 | |||
0.017 | 0.19 | |||||
Elective | 95.8 ± 42.8 | 115.2 ± 38.6 | 19.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olszewska, N.; Guzel, T.; Carus, T.; Słodkowski, M. Surgical Skill Decay as a Result of the COVID-19 Pandemic. Life 2024, 14, 1020. https://doi.org/10.3390/life14081020
Olszewska N, Guzel T, Carus T, Słodkowski M. Surgical Skill Decay as a Result of the COVID-19 Pandemic. Life. 2024; 14(8):1020. https://doi.org/10.3390/life14081020
Chicago/Turabian StyleOlszewska, Natalia, Tomasz Guzel, Thomas Carus, and Maciej Słodkowski. 2024. "Surgical Skill Decay as a Result of the COVID-19 Pandemic" Life 14, no. 8: 1020. https://doi.org/10.3390/life14081020
APA StyleOlszewska, N., Guzel, T., Carus, T., & Słodkowski, M. (2024). Surgical Skill Decay as a Result of the COVID-19 Pandemic. Life, 14(8), 1020. https://doi.org/10.3390/life14081020