Revisiting the COVID-19 Pandemic: Mortality and Predictors of Death in Adult Patients in the Intensive Care Unit
Abstract
:1. Introduction
2. Methods
2.1. Type of Study and Data Collection
2.2. Data Recoding
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alizadehsani, R.; Alizadeh Sani, Z.; Behjati, M.; Roshanzamir, Z.; Hussain, S.; Abedini, N.; Hasanzadeh, F.; Khosravi, A.; Shoeibi, A.; Roshanzamir, M.; et al. Risk Factors Prediction, Clinical Outcomes, and Mortality in COVID-19 Patients. J. Med. Virol. 2021, 93, 2307–2320. [Google Scholar] [CrossRef]
- WHO World Health Organization. COVID-19 Epidemiological Update, Edition 165 Published 15 March 2024. Available online: https://www.who.int/publications/m/item/covid-19-epidemiological-update-15-march-2024 (accessed on 2 April 2024).
- Grasselli, G.; Greco, M.; Zanella, A.; Albano, G.; Antonelli, M.; Bellani, G.; Bonanomi, E.; Cabrini, L.; Carlesso, E.; Castelli, G.; et al. Risk Factors Associated With Mortality among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern. Med. 2020, 180, 1345–1355. [Google Scholar] [CrossRef]
- Rezaei, F.; Ghelichi -Ghojogh, M.; Hemmati, A.; Ghaem, H.; Mirahmadizadeh, A. Risk Factors for COVID-19 Severity and Mortality among Inpatients in Southern Iran. J. Prev. Med. Hyg. 2021, 62, E808. [Google Scholar] [CrossRef] [PubMed]
- Zanella, A. Time Course of Risk Factors Associated with Mortality of 1260 Critically Ill Patients with COVID-19 Admitted to 24 Italian Intensive Care Units. Intensive Care Med. 2021, 47, 995–1008. [Google Scholar]
- Iacovelli, A.; Oliva, A.; Siccardi, G.; Tramontano, A.; Pellegrino, D.; Mastroianni, C.M.; Venditti, M.; Palange, P. Risk Factors and Effect on Mortality of Superinfections in a Newly Established COVID-19 Respiratory Sub-Intensive Care Unit at University Hospital in Rome. BMC Pulm. Med. 2023, 23, 30. [Google Scholar] [CrossRef]
- Osme, S.F.; Almeida, A.P.S.; Lemes, M.F.; Barbosa, W.O.; Arantes, A.; Mendes-Rodrigues, C.; Filho, P.P.G.; Ribas, R.M. Costs of Healthcare-Associated Infections to the Brazilian Public Unified Health System in a Tertiary-Care Teaching Hospital: A Matched Case–Control Study. J. Hosp. Infect. 2020, 106, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Osme, S.F.; Souza, J.M.; Osme, I.T.; Almeida, A.P.S.; Arantes, A.; Mendes-Rodrigues, C.; Filho, P.P.G.; Ribas, R.M. Financial Impact of Healthcare-Associated Infections on Intensive Care Units Estimated for Fifty Brazilian University Hospitals Affiliated to the Unified Health System. J. Hosp. Infect. 2021, 117, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Neto, A.; Mendes-Rodrigues, C.; Pedroso, R.; Brito Röder, D. Aspergillosis and COVID-19 in an Intensive Care Unit in Brazil: A Series of Cases. Divers. J. 2023, 8, 1349–1361. [Google Scholar] [CrossRef]
- Neto, A.L.d.S.; Campos, T.; Mendes-Rodrigues, C.; dos Pedroso, R.S.; de Röder, D.V.D.B. Factors Influencing Central Venous Catheter-Associated Bloodstream Infections in COVID-19 Patients. Microbiol. Res. 2024, 15, 1134–1143. [Google Scholar] [CrossRef]
- Ferreira, G.M.; Claro, I.M.; Grosche, V.R.; Cândido, D.; José, D.P.; Rocha, E.C.; de Moura Coletti, T.; Manuli, E.R.; Gaburo, N.; Faria, N.R.; et al. Molecular Characterization and Sequecing Analysis of SARS-CoV-2 Genome in Minas Gerais, Brazil. Biologicals 2022, 80, 43–52. [Google Scholar] [CrossRef]
- de Brito, V.P.; Carrijo, A.M.M.; Martins, M.V.T.; de Oliveira, S.V. Epidemiological Monitoring of COVID-19 in a Brazilian City: The Interface between the Economic Policies, Commercial Behavior, and Pandemic Control. World 2022, 3, 344–356. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Bhuia, M.R.; Bari, M.Z.J.; Alam, Z.N.; Rahman, K.; Hossain, E.; Alam, M.M.J. Predictors of Mortality and ICU Requirement in Hospitalized COVID-19 Patients with Diabetes: A Multicentre Study. Nurs. Open 2023, 10, 3178. [Google Scholar] [CrossRef]
- Dermikol, M.E.; Kaya, M.; Kocadag, D.; Özdan, E. Prognostic Value of Complete Blood Count Parameters in COVID-19 Patients. Northwestern Med. J. 2022, 2, 94–102. [Google Scholar]
- López-Escobar, A.; Madurga, R.; Castellano, J.M.; Ruiz de Aguiar, S.; Velázquez, S.; Bucar, M.; Jimeno, S.; Ventura, P.S. Hemogram as Marker of In-Hospital Mortality in COVID-19. J. Investig. Med. 2021, 69, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Agresti, A. Frontmatter. In Categorical Data Analysis, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2002; 734p, Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1002/0471249688.fmatter (accessed on 2 June 2024).
- Armstrong, R.A.; Kane, A.D.; Cook, T.M. Outcomes from Intensive Care in Patients with COVID-19: A Systematic Review and Meta-Analysis of Observational Studies. Anaesthesia 2020, 75, 1340–1349. [Google Scholar] [CrossRef]
- Taxbro, K.; Hammarskjöld, F.; Nilsson, M.; Persson, M.; Chew, M.S.; Sunnergren, O. Factors Related to COVID-19 Mortality among Three Swedish Intensive Care Units—A Retrospective Study. Acta Anaesthesiol. Scand. 2023, 67, 788–796. [Google Scholar] [CrossRef]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and Efficacy of the ChAdOx1 NCoV-19 Vaccine (AZD1222) against SARS-CoV-2: An Interim Analysis of Four Randomised Controlled Trials in Brazil, South Africa, and the UK. Lancet 2021, 10269, 99–111. [Google Scholar] [CrossRef]
- Kurtz, P.; Bastos, L.S.L.; Salluh, J.I.F.; Bozza, F.A.; Soares, M. SAPS-3 Performance for Hospital Mortality Prediction in 30,571 Patients with COVID-19 Admitted to ICUs in Brazil. Intensive Care Med 2021, 47, 1047–1049. [Google Scholar] [CrossRef]
- Lázaro, A.P.P.; Albuquerque, P.L.M.M.; Meneses, G.C.; Zaranza, M.D.S.; Batista, A.B.; Aragão, N.L.P.; Beliero, A.M.; Guimarães, Á.R.; Aragão, N.L.; Leitão, A.M.M.; et al. Critically Ill COVID-19 Patients in Northeast Brazil: Mortality Predictors during the First and Second Waves Including SAPS 3. Trans. R. Soc. Trop. Med. Hyg. 2022, 116, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Aziz, F.; Reisinger, A.C.; Aberer, F.; Sourij, C.; Tripolt, N.; Siller-Matula, J.M.; von-Lewinski, D.; Eller, P.; Kaser, S.; Sourij, H.; et al. Simplified Acute Physiology Score 3 Performance in Austrian COVID-19 Patients Admitted to Intensive Care Units with and without Diabetes. Viruses 2022, 14, 777. [Google Scholar] [CrossRef]
- Bonanad, C.; García-Blas, S.; Tarazona-Santabalbina, F.; Sanchis, J.; Bertomeu-González, V.; Fácila, L.; Ariza, A.; Núñez, J.; Cordero, A. The Effect of Age on Mortality in Patients With COVID-19: A Meta-Analysis with 611,583 Subjects. J. Am. Med. Dir. Assoc. 2020, 21, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.A.; Jardim, B.C.; Lotufo, P.A. Mortalidade por COVID-19 padronizada por idade nas capitais das diferentes regiões do Brasil. Cad. Saúde Pública 2021, 37, e00039221. [Google Scholar] [CrossRef] [PubMed]
- Geldsetzer, P.; Mukama, T.; Jawad, N.K.; Riffe, T.; Rogers, A.; Sudharsanan, N. Sex Differences in the Mortality Rate for Coronavirus Disease 2019 Compared to Other Causes of Death: An Analysis of Population-Wide Data from 63 Countries. Eur. J. Epidemiol. 2022, 37, 797–806. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, W.; Tian, Y.; Xie, C.; Fu, X.; Zhou, H. The Effect of Diabetes on Mortality of COVID-19. Medicine 2020, 99, e20913. [Google Scholar] [CrossRef]
- Govender, N.; Khaliq, O.P.; Moodley, J.; Naicker, T. Insulin Resistance in COVID-19 and Diabetes. Prim. Care Diabetes 2021, 15, 629–634. [Google Scholar] [CrossRef]
- Lim, S.; Bae, J.H.; Kwon, H.-S.; Nauck, M.A. COVID-19 and Diabetes Mellitus: From Pathophysiology to Clinical Management. Nat. Rev. Endocrinol. 2021, 17, 11–30. [Google Scholar] [CrossRef]
- Steenblock, C.; Richter, S.; Berger, I.; Barovic, M.; Schmid, J.; Schubert, U.; Jarzebska, N.; von Mässenhausen, A.; Linkermann, A.; Schürmann, A.; et al. Viral Infiltration of Pancreatic Islets in Patients with COVID-19. Nat. Commun. 2021, 12, 3534. [Google Scholar] [CrossRef]
- Kastora, S.; Patel, M.; Carter, B.; Delibegovic, M.; Myint, P.K. Impact of Diabetes on COVID-19 Mortality and Hospital Outcomes from a Global Perspective: An Umbrella Systematic Review and Meta-Analysis. Endocrinol. Diabetes Metab. 2022, 5, e00338. [Google Scholar] [CrossRef]
- Russell, C.D.; Lone, N.I.; Baillie, J.K. Comorbidities, Multimorbidity and COVID-19. Nat. Med. 2023, 29, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Gosangi, B.; Rubinowitz, A.N.; Irugu, D.; Gange, C.; Bader, A.; Cortopassi, I. COVID-19 ARDS: A Review of Imaging Features and Overview of Mechanical Ventilation and Its Complications. Emerg. Radiol. 2022, 29, 23–34. [Google Scholar] [CrossRef]
- Green, A.; Rachoin, J.-S.; Schorr, C.; Dellinger, P.; Casey, J.D.; Park, I.; Gupta, S.; Baron, R.M.; Shaefi, S.; Hunter, K.; et al. Timing of Invasive Mechanical Ventilation and Death in Critically Ill Adults with COVID-19: A Multicenter Cohort Study. PLoS ONE 2023, 18, e0285748. [Google Scholar] [CrossRef] [PubMed]
- Cummings, M.J.; Baldwin, M.R.; Abrams, D.; Jacobson, S.D.; Meyer, B.J.; Balough, E.M.; Aaron, J.G.; Claassen, J.; Rabbani, L.E.; Hastie, J.; et al. Epidemiology, Clinical Course, and Outcomes of Critically Ill Adults with COVID-19 in New York City: A Prospective Cohort Study. Lancet 2020, 395, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.A.M.; Calil, S.R.; Freitas, S.A.; Oliveira, A.B.; Porto, E.F. Chest Physiotherapy Effectiveness to Reduce Hospitalization and Mechanical Ventilation Length of Stay, Pulmonary Infection Rate and Mortality in ICU Patients. Respir. Med. 2013, 107, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, M.J.; Bibas, L.; Bartlett, V.; Jones, H.; Khan, N. Outcomes of Patient- and Family-Centered Care Interventions in the ICU: A Systematic Review and Meta-Analysis. Crit. Care Med. 2017, 45, 1751. [Google Scholar] [CrossRef] [PubMed]
- Shryane, N.; Pampaka, M.; Aparicio-Castro, A.; Ahmad, S.; Elliot, M.J.; Kim, J.; Murphy, J.; Olsen, W.; Ruiz, D.P.; Wiśniowski, A. Length of Stay in ICU of Covid-19 Patients in England, March–May 2020. Int. J. Popul. Data Sci. 2021, 5, 1411. [Google Scholar] [CrossRef] [PubMed]
- García-Macías, M.; Verónica-Pérez, X.S.; Godínez-García, F. Mortalidad En Pacientes Con COVID-19 y Lesión Renal Aguda En Hemodiálisis. Rev. Med. Inst. Mex. Seguro Soc. 2023, 61 (Suppl. S2), S207–S212. [Google Scholar] [PubMed]
- Leisman, D.E.; Mehta, A.; Li, Y.; Kays, K.R.; Li, J.Z.; Filbin, M.R.; Goldberg, M.B. Vasopressin Infusion in COVID-19 Critical Illness Is Not Associated with Impaired Viral Clearance: A Pilot Study. Br. J. Anaesth. 2021, 127, e146–e148. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, Z.; Zeeshan, A.; Shahid, S. Hyponatremia Secondary to Vasopressin in an ECMO Dependent Patient with Severe ARDS due to COVID-19. Chest 2021, 160 (Suppl. S4), A669. [Google Scholar] [CrossRef]
- The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group. Association between Administration of Systemic Corticosteroids and Mortality among Critically Ill Patients with COVID-19: A Meta-Analysis. JAMA 2020, 324, 1330–1341. [Google Scholar] [CrossRef]
- Guillon, A.; Jouan, Y.; Kassa-Sombo, A.; Paget, C.; Dequin, P.-F. Hydrocortisone Rapidly and Significantly Reduces the IL-6 Level in Blood and Lungs of Patients with COVID-19-Related ARDS. Crit Care 2024, 28, 101. [Google Scholar] [CrossRef]
- Barbalho, I.M.P.; Fernandes, F.; Barros, D.M.S.; Paiva, J.C.; Henriques, J.; Morais, A.H.F.; Coutinho, K.D.; Coelho Neto, G.C.; Chioro, A.; Valentim, R.A.M. Electronic Health Records in Brazil: Prospects and Technological Challenges. Front. Public Health 2022, 10, 963841. [Google Scholar] [CrossRef] [PubMed]
- Jung, F.; Connes, P. Morphology and Function of Red Blood Cells in COVID-19 Patients: Current Overview 2023. Life 2024, 14, 460. [Google Scholar] [CrossRef] [PubMed]
- Umadevi, K.; Rajarikam, N.; Lavanya, M.; Ali, M.I.; Begum, F.; Vadana, S.P.S. Red Cell Distribution Width, Platelet Distribution Width, and Plateletcrit as Indicators of Prognosis in COVID-19 Patients—A Single-Center Study. Asian J. Med. Sci. 2023, 14, 13–17. [Google Scholar] [CrossRef]
- Ozdin, M.; Cokluk, E.; Yaylaci, S.; Koroglu, M.; Genc, A.C.; Cekic, D.; Aydemir, Y.; Karacan, A.; Erdem, A.F.; Karabay, O. Evaluation of Coagulation Parameters: Coronavirus Disease 2019 (COVID-19) between Survivors and Nonsurvivors. Rev. Assoc. Med. Bras. 2021, 67 (Suppl. S1), 74–79. [Google Scholar] [CrossRef] [PubMed]
- Teimury, A.; Khameneh, M.T.; Khaledi, E.M. Major Coagulation Disorders and Parameters in COVID-19 Patients. Eur. J. Med. Res. 2022, 27, 25. [Google Scholar] [CrossRef] [PubMed]
- Conway, E.M.; Mackman, N.; Warren, R.Q.; Wolberg, A.S.; Mosnier, L.O.; Campbell, R.A.; Gralinski, L.E.; Rondina, M.T.; van de Veerdonk, F.L.; Hoffmeister, K.M.; et al. Understanding COVID-19-Associated Coagulopathy. Nat. Rev. Immunol. 2022, 22, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Terra, P.O.C.; Donadel, C.D.; Oliveira, L.C.; Menegueti, M.G.; Auxiliadora-Martins, M.; Calado, R.T.; De Santis, G.C. Neutrophil-to-Lymphocyte Ratio and D-Dimer Are Biomarkers of Death Risk in Severe COVID-19: A Retrospective Observational Study. Health Sci. Rep. 2022, 5, e514. [Google Scholar] [CrossRef]
- Henry, B.M.; Aggarwal, G.; Wong, J.; Benoit, S.; Vikse, J.; Plebani, M.; Lippi, G. Lactate Dehydrogenase Levels Predict Coronavirus Disease 2019 (COVID-19) Severity and Mortality: A Pooled Analysis. Am. J. Emerg. Med. 2020, 38, 1722–1726. [Google Scholar] [CrossRef]
- Bartziokas, K.; Kostikas, K. Lactate Dehydrogenase, COVID-19 and Mortality. Med. Clin. 2021, 156, 37. [Google Scholar] [CrossRef]
- Aditianingsih, D.; Soenarto, R.F.; Puiantana, A.M.; Pranata, R.; Lim, M.A.; Raharja, P.A.R.; Birowo, P.; Meyer, M. Dose Response Relationship between D-Dimer Level and Mortality in Critically Ill COVID-19 Patients: A Retrospective Observational Study. F1000Research 2022, 11, 269. [Google Scholar] [CrossRef]
- Simadibrata, D.M.; Lubis, A.M. D-Dimer Levels on Admission and All-Cause Mortality Risk in COVID-19 Patients: A Meta-Analysis. Epidemiol. Infect. 2020, 148, e202. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Pisaturo, M.; Monari, C.; Ciminelli, F.; Maggi, P.; Allegorico, E.; Gentile, I.; Sangiovanni, V.; Esposito, V.; Gentile, V.; et al. Prognostic Value of Creatinine Levels at Admission on Disease Progression and Mortality in Patients with COVID-19—An Observational Retrospective Study. Pathogens 2023, 12, 973. [Google Scholar] [CrossRef] [PubMed]
- Todor, S.-B.; Bîrluțiu, V.; Topîrcean, D.; Mihăilă, R.-G. Role of Biological Markers and CT Severity Score in Predicting Mortality in Patients with COVID-19: An Observational Retrospective Study. Exp. Ther. Med. 2022, 24, 698. [Google Scholar] [CrossRef] [PubMed]
- de Paula Nunes, E.; Leite, E.S.; de Carvalho, W.R.G. Rastreamento Geográfico da COVID-19 Segundo Fatores Socioeconômicos e Demográficos no Município de Uberlândia, Minas Gerais. J. Health Biol. Sci. 2020, 8, 1–6. [Google Scholar] [CrossRef]
- Policarpo, D.A.; Lourenzatto, E.C.A.; Brito, T.C.e.S.; Rossi, D.A.; de Melo, R.T. Epidemiological Aspects of the Initial Evolution of COVID-19 in Microregion of Uberlândia, Minas Gerais (MG), Brazil. Int. J. Environ. Res. Public Health 2021, 18, 5245. [Google Scholar] [CrossRef]
% Yes (95% Confidence Interval) [n] | p-Value | Unadjusted Odds-Ratio (95% Confidence Interval) | ||
---|---|---|---|---|
Trait | Survivor (n = 263) | Non-Survivor (n = 325) | ||
Admitted from another service | 67.30 (61.63–72.97) [177] | 63.38 (58.15–68.62) [206] | 0.321 | 0.84 (0.60–1.19) |
Female sex | 45.25 (39.23–51.26) [119] | 33.85 (28.70–38.99) [110] | 0.005 | 0.62 (0.44–0.87) |
Obesity presence | 35.74 (29.95–41.53) [94] | 32.62 (27.52–37.71) [106] | 0.427 | 0.87 (0.62–1.23) |
Systemic arterial hypertension presence | 48.29 (42.25–54.33) [127] | 53.23 (47.81–58.66) [173] | 0.233 | 1.22 (0.88–1.69) |
Diabetes mellitus presence | 19.01 (14.27–23.75) [50] | 32.92 (27.81–38.03) [107] | <0.001 | 2.09 (1.42–3.07) |
Cardiovascular disease presence | 10.65 (6.92–14.37) [28] | 12.92 (9.28–16.57) [42] | 0.395 | 1.25 (0.75–2.07) |
Asthma presence | 1.90 (0.25–3.55) [5] | 1.54 (0.20–2.88) [5] | 0.736 | 0.81 (0.23–2.82) |
Chronic obstructive pulmonary disease presence | 7.60 (4.40–10.81) [20] | 11.38 (7.93–14.84) [37] | 0.120 | 1.56 (0.88–2.76) |
Chronic kidney disease presence | 7.22 (4.10–10.35) [19] | 10.15 (6.87–13.44) [33] | 0.210 | 1.45 (0.81–2.62) |
Etilism habit presence | 4.94 (2.32–7.56) [13] | 8.00 (5.05–10.95) [26] | 0.134 | 1.67 (0.84–3.32) |
Smoking habit presence | 18.63 (13.93–23.34) [49] | 23.08 (18.5–27.66) [75] | 0.187 | 1.31 (0.88–1.96) |
COVID-19 vaccine previous hospital admission | 17.11 (12.56–21.66) [45] | 20.31 (15.93–24.68) [66] | 0.323 | 1.23 (0.81–1.88) |
Invasive mechanical ventilation use | 39.54 (33.63–45.45) [104] | 98.46 (97.12–99.80) [320] | <0.001 | 97.85 (39.1–244.86) |
Median (Quartile 1–Quartile 2) [n] | p-value | Odds-Ratio (95% Confidence interval) | ||
Trait | Survivor (n = 263) | Non-survivor (n = 325) | ||
Age in years | 53 (40.5–65.5) [263] | 65 (52–73) [325] | <0.001 | 1.03 (1.02–1.04) |
Total number of comorbidities | 1 (0–2) [263] | 1 (1–2) [325] | 0.007 | 1.19 (1.03–1.36) |
Time in days from symptom to ICU admission | 11 (8–14) [245] | 11 (7–14) [285] | 0.229 | 0.99 (0.96–1.02) |
Simplified Acute Physiology Score 3 score | 49 (38–58) [263] | 61 (49–71) [325] | <0.001 | 1.05 (1.04–1.06) |
Simplified Acute Physiology Score in % | 15.9 (6–31.5) [263] | 39.8 (19–58.5) [325] | <0.001 | 1.04 (1.03–1.05) |
Length of stay at the ICU in days | 8 (4–17) [263] | 11 (6–22) [325] | <0.001 | 1.02 (1.00–1.03) |
Length of stay at the Hospital in days | 19 (11–31) [263] | 15 (7–27) [325] | <0.001 |
% Yes (95% Confidence Interval) [n] | p-Value | Unadjusted Odds-Ratio (95% Confidence Interval) | ||
---|---|---|---|---|
Trait | Survivor | Non-Survivor | ||
Admitted from another service | 74.04 (65.61–82.46) [77] | 62.81 (57.52–68.11) [201] | 0.033 | 0.59 (0.36–0.97) |
Female sex | 57.69 (48.2–67.19) [60] | 32.81 (27.67–37.96) [105] | <0.001 | 0.36 (0.23–0.56) |
Obesity presence | 38.46 (29.11–47.81) [40] | 33.13 (27.97–38.28) [106] | 0.322 | 0.79 (0.5–1.25) |
Systemic arterial hypertension presence | 45.19 (35.63–54.76) [47] | 53.13 (47.66–58.59) [170] | 0.160 | 1.37 (0.88–2.14) |
Diabetes mellitus presence | 20.19 (12.48–27.91) [21] | 33.13 (27.97–38.28) [106] | 0.010 | 1.96 (1.15–3.33) |
Cardiovascular disease presence | 7.69 (2.57–12.81) [8] | 12.81 (9.15–16.47) [41] | 0.140 | 1.76 (0.8–3.89) |
Asthma presence | 0 (0–0) [0] | 1.56 (0.2–2.92) [5] | 0.092 | |
Chronic obstructive pulmonary disease presence | 4.81 (0.70–8.92) [5] | 11.56 (8.06–15.07) [37] | 0.032 | 2.59 (0.99–6.77) |
Chronic kidney disease presence | 2.88 (0–6.1) [3] | 10.31 (6.98–13.64) [33] | 0.009 | 3.87 (1.16–12.9) |
Etilism habit presence | 5.77 (1.29–10.25) [6] | 8.13 (5.13–11.12) [26] | 0.417 | 1.44 (0.58–3.61) |
Smoking habit presence | 11.54 (5.40–17.68) [12] | 23.44 (18.8–28.08) [75] | 0.006 | 2.35 (1.22–4.52) |
COVID-19 vaccine previous admission | 13.46 (6.90–20.02) [14] | 20.31 (15.9–24.72) [65] | 0.109 | 1.64 (0.88–3.06) |
Blood transfusion | 26.92 (18.40–35.45) [28] | 31.56 (26.47–36.65) [101] | 0.368 | 1.25 (0.76–2.05) |
Use of noradrenaline | 90.38 (84.72–96.05) [94] | 99.38 (98.51–100.00) [318] | <0.001 | 16.92 (3.64–78.55) |
Use of vasopressin | 17.31 (10.04–24.58) [18] | 70.94 (65.96–75.91) [227] | <0.001 | 11.66 (6.65–20.47) |
Use of hydrocortisone | 29.81 (21.02–38.6) [31] | 71.56 (66.62–76.51) [229] | <0.001 | 5.93 (3.65–9.63) |
Use of neuroblocker | 71.15 (62.45–79.86) [74] | 68.13 (63.02–73.23) [218] | 0.560 | 0.87 (0.53–1.41) |
Use of midazolam | 94.23 (89.75–98.71) [98] | 91.25 (88.15–94.35) [292] | 0.315 | 0.64 (0.26–1.59) |
Use of fentanyl | 98.08 (95.44–100.72) [102] | 93.44 (90.72–96.15) [299] | 0.045 | 0.28 (0.06–1.21) |
Use of propofol | 59.62 (50.19–69.05) [62] | 51.25 (45.77–56.73) [164] | 0.136 | 0.71 (0.46–1.12) |
Use of ketamine | 37.5 (28.20–46.8) [39] | 44.06 (38.62–49.5) [141] | 0.238 | 1.31 (0.83–2.07) |
Use of non-invasive ventilation | 62.5 (53.20–71.8) [65] | 61.56 (56.23–66.89) [197] | 0.864 | 0.96 (0.61–1.52) |
Use of indwelling bladder catheter | 100 (100–100) [104] | 97.19 (95.38–99.00) [311] | 0.024 | |
Use of tracheostomy | 40.38 (30.95–49.81) [42] | 13.75 (9.98–17.52) [44] | <0.001 | 0.24 (0.14–0.39) |
Use of central venous catheter | 100 (100–100) [104] | 98.75 (97.53–99.97) [316] | 0.132 | |
Renal replacement therapy | 18.27 (10.84–25.7) [19] | 58.44 (53.04–63.84) [187] | <0.001 | 6.29 (3.65–10.85) |
Haematocrit abnormal | 33.65 (24.57–42.74) [35] | 48.28 (42.79–53.76) [154] | 0.009 | 1.84 (1.16–2.82) |
Red cell distribution width >15 | 13.46 (6.9–20.02] [14] | 27.59 (22.68–32.49] [88] | 0.002 | 2.45 (1.32–4.53) |
Neutrophil to platelet ratio abnormal | 17.48 (10.14–24.81] [18] | 33.54 (28.34–38.75] [106] | 0.001 | 2.38 (1.36–4.17) |
Prototombin activation time abnormal | 6.12 (1.38–10.87] [6] | 19.02 (14.61–23.42] [58] | 0.001 | 3.60 (1.50–8.63) |
International Normalized Ratio abnormal | 5.1 (0.75–9.46] [5] | 15.84 (11.73–19.95] [48] | 0.003 | 3.50 (1.35–9.06) |
Median (Quartile 1–Quartile 2) [n] | p-Value | Unadjusted Odds-Ratio (95% Confidence Interval) | ||
---|---|---|---|---|
Trait | Survivor | Non-Survivor | ||
Age in years | 49.50 (38–61) [104] | 64.00 (51–72) [320] | <0.001 | 1.05 (1.03–1.06) |
Total number of comorbidities | 1 (0–2) [104] | 1 (1–2) [320] | 0.003 | 1.31 (1.08–1.6) |
Time in days from symptom to ICU admission | 11 (8–13.75) [98] | 11 (7–14) [282] | 0.676 | 0.99 (0.95–1.03) |
Length of stay at the ICU in days | 21.5 (13–33.5) [104] | 12 (6–22) [320] | <0.001 | 0.97 (0.96–0.98) |
Simplified Acute Physiology Score 3 score | 51 (37.75–62) [104] | 61 (49–71) [320] | <0.001 | 1.04 (1.02–1.05) |
Simplified Acute Physiology Score in % | 20.25 (6–39.8) [104] | 39.8 (19–58.5) [320] | <0.001 | 1.03 (1.02–1.04) |
Days of mechanical ventilation use | 15.5 (9–27.25) [104] | 11.5 (5–19) [312] | <0.001 | 0.98 (0.97–1.00) |
Hemoglobin in g/dL | 12.6 (11.18–14.13) [104] | 12.4 (10.8–14.05) [319] | 0.641 | 0.97 (0.88; 1.06) |
Leukocytes in 1000/mm3 | 11.3 (7.58–13.7) [104] | 11.9 (8.4–17.05) [319] | 0.056 | 1.05 (1.01–1.09) |
Haematocrit in % | 37.65 (34.18–41.58) [104] | 37.3 (32.7–41.55) [319] | 0.631 | 0.99 (0.96–1.02) |
Mean Corpuscular Volume in fL | 88.9 (85.35–91.2) [104] | 88.9 (85.1–93.2) [319] | 0.275 | 1.02 (0.99–1.05) |
Mean Corpuscular Hemoglobin in pg | 29.65 (28.8–30.6) [104] | 29.9 (28.6–31.1) [319] | 0.219 | 1.06 (0.97–1.16) |
Mean Corpuscular Hemoglobin Concentration in g/dL | 33.5 (32.2–34.63) [104] | 33.6 (32.45–34.6) [319] | 0.873 | 0.98 (0.86–1.13) |
Red cell distribution width in % | 13.9 (13.2–14.6) [104] | 14.1 (13.2–15.2) [319] | 0.097 | 1.16 (1.00–1.34) |
Mean platelet volume in fL | 10.5 (10–11.1) [103] | 10.7 (10–11.4) [314] | 0.405 | 1.05 (0.84–1.32) |
Myelocytes in units by mm3 | 0 (0–0) [104] | 0 (0–0) [319] | 0.590 | 1.00 (1.00–1.00) |
Rods in units by mm3 | 601 (298–1349) [104] | 755 (377.5–1444.5) [319] | 0.177 | 1.00 (1.00–1.00) |
Segmented in units by mm3 | 8406 (5901.5–11,436.25) [104] | 9480 (6335.5–13,751) [319] | 0.044 | 1.00005 (1.00001–1.0001) |
Lymphocytes in units by mm3 | 810.5 (483.5–1120.5) [104] | 687 (385–1150) [319] | 0.256 | 1.00 (1.00–1.00) |
Monocytes in units by mm3 | 380 (271–633) [102] | 426 (282–750) [317] | 0.215 | 1.00 (1.00–1.00) |
Neutrophils in units by mm3 | 9400 (6499–12,578.25) [104] | 10250 (7138–15,178) [319] | 0.057 | 1.00 (1.00–1.00) |
Platelet in units/1000 by mm3 | 234 (190.5–299) [103] | 215 (167.25–292) [316] | 0.040 | 0.998 (0.996–1.00) |
Neutrophils Lymphocytes Ratio | 11.63 (7.86–17.65) [104] | 14.67 (8.96–23.5) [319] | 0.017 | 0.999 (0.996–1.002) |
Platelet Lymphocytes Ratio | 299.43 (209.61–477.12) [104] | 308.97 (191.26–483.73) [318] | 0.798 | 1.00 (1.00–1.00) |
Creatinine in mg/dL | 0.81 (0.61–1.09) [104] | 1.22 (0.85–2.24) [318] | <0.001 | 1.52 (1.21–1.91) |
Albumin in mg/dl | 3.23 (2.85–3.56) [84] | 3.13 (2.65–3.44) [265] | 0.060 | 1.01 (0.97–1.05) |
Glutamic-oxaloacetic transaminase in U/L | 50.1 (37.98–73.18) [100] | 52.9 (33.8–85.6) [283] | 0.845 | 1.00 (1.00–1.01) |
Glutamic-pyruvic transaminase in U/L | 45.05 (28.45–74.7) [100] | 37.15 (22.4–59.68) [282] | 0.061 | 1.00 (1.00–1.00) |
Lactic dehydrogenase in U/L | 562 (432.5–670) [87] | 615 (453–856) [233] | 0.016 | 1.00 (1.00–1.01) |
C-reactive protein in mg/dL | 12.64 (7.41–19.1) [102] | 13.4 (6.95–21.69) [300] | 0.499 | 1.01 (0.99–1.04) |
D-dimer in ng/mL | 1135 (628.5–4063) [91] | 2381 (826.2–6545) [263] | 0.009 | 1.0003 (0.999–1.0001) |
Interleukin 6 in pg/mL | 48.7 (26.57–142.68) [76] | 89.37 (40.86–178.4) [219] | 0.024 | 0.9999 (0.9995–1.0003) |
Prototombin activation time in % | 100.00 (96.5–100) [98] | 96.00 (75–100) [305] | <0.001 | 0.97 (0.96–0.99) |
International Normalized Ratio | 1.00 (1.00–1.02) [98] | 1.01 (1.00–1.12) [303] | <0.001 | 5.32 (1.07–26.51) |
Neutrophils Lymphocytes derivate Ratio | 7.33 (5.25–10.11) [104] | 7.33 (5.25–11.5) [319] | 0.180 | 1.04 (1.00–1.08) |
Monocytes Lymphocytes Ratio | 0.60 (0.33–0.8) [102] | 0.67 (0.33–1.18) [317] | 0.049 | 1.48 (1.07–2.06) |
Neutrophils Platelet Ratio | 38.80 (28.52–51.39) [103] | 47.35 (33.09–67.27) [316] | 0.001 | 1.02 (1.01–1.03) |
Systemic immune-inflammation index | 2.86 (1.63–4.54) [104] | 3.31 (1.70–5.39) [319] | 0.187 | 0.99 (0.98–1.01) |
Length of stay at the Hospital in days | 31.5 (22.75–48.50) [104] | 15.50 (7.00–27) [320] | <0.001 |
Model Applied to All Patients | ||||
---|---|---|---|---|
Full Multiple Model | Reduced Multiple Model | |||
Traits Included | p-Value | Adjusted Odds Ratio (95% Confidence Interval) | p-Value | Adjusted Odds Ratio (95% Confidence Interval) |
Invasive mechanical ventilation use | <0.001 | 351.70 (95.94–1289.22) | <0.001 | 306.74 (87.47–1075.71) |
Age in years | <0.001 | 1.05 (1.03–1.07) | <0.001 | 1.04 (1.03–1.06) |
Simplified Acute Physiology Score 3 score | 0.001 | 1.03 (1.01–1.05) | 0.001 | 1.03 (1.01–1.04) |
Length of stay at the ICU in days | <0.001 | 0.96 (0.95–0.98) | <0.001 | 0.96 (0.95–0.98) |
Asthma presence | 0.299 | 6.13 (0.20–187.18) | ||
Chronic kidney disease presence | 0.331 | 1.80 (0.55–5.93) | ||
Diabetes mellitus presence | 0.288 | 1.44 (0.74–2.80) | ||
COVID-19 vaccine previous hospital admission | 0.491 | 1.29 (0.62–2.68) | ||
Obesity presence | 0.415 | 1.26 (0.72–2.22) | ||
Smoking habit presence | 0.728 | 1.16 (0.51–2.61) | ||
Time in days from symptom to ICU admission | 0.701 | 1.01 (0.96–1.06) | ||
Etilism habit presence | 0.995 | 1.00 (0.27–3.61) | ||
Cardiovascular disease presence | 0.791 | 0.87 (0.32–2.36) | ||
Chronic obstructive pulmonary disease presence | 0.616 | 0.75 (0.24–2.33) | ||
Admitted from another service | 0.118 | 0.64 (0.36–1.12) | ||
Systemic arterial hypertension presence | 0.095 | 0.59 (0.32–1.10) | ||
Model applied to patients in invasive mechanical ventilation | ||||
Full Multiple model | Reduced multiple model | |||
Traits included | p-value | Adjusted Odds Ratio (95% Confidence Interval) | p-value | Ajusted Odds Ratio (95% Confidence Interval) |
Use of vasopressin | <0.001 | 7.49 (3.29–17.05) | <0.001 | 7.87 (3.54–17.46) |
Renal replacement therapy | <0.001 | 5.19 (2.23–12.09) | <0.001 | 5.42 (2.55–11.51) |
Red cell distribution width >15 | 0.011 | 3.52 (1.34–9.26) | 0.003 | 3.84 (1.60–9.21) |
Use of hydrocortisone | 0.030 | 2.57 (1.10–6.03) | 0.038 | 2.33 (1.05–5.16) |
Age in years | 0.041 | 1.03 (1.00–1.05) | 0.006 | 1.03 (1.01–1.05) |
Days of invasive mechanical ventilation use | <0.001 | 0.94 (0.92–0.96) | <0.001 | 0.95 (0.93–0.97) |
Admitted from another service | 0.026 | 0.43 (0.21–0.90) | 0.020 | 0.43 (0.21–0.87) |
Female sex | 0.035 | 0.47 (0.23–0.95) | 0.010 | 0.42 (0.22–0.82) |
Use of noradrenaline | 0.060 | 15.67 (0.90–274.17) | ||
Neutrophil to platelet ratio abnormal | 0.088 | 2.18 (0.89–5.32) | ||
Diabetes mellitus presence | 0.492 | 1.54 (0.45–5.22) | ||
Haematocrit abnormal | 0.478 | 1.30 (0.63–2.67) | ||
Smoking habit presence | 0.733 | 1.19 (0.44–3.18) | ||
Time from symptom to ICU admission | 0.510 | 1.02 (0.96–1.09) | ||
Simplified Acute Physiology Score 3 score | 0.527 | 1.01 (0.98–1.03) | ||
Total number of comorbidities | 0.712 | 0.91 (0.55–1.50) | ||
Chronic kidney disease presence | 0.862 | 0.84 (0.13–5.68) | ||
Chronic obstructive pulmonary disease presence | 0.675 | 0.72 (0.16–3.29) | ||
Use of Fentanyl | 0.050 | 0.13 (0.02–1.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa Neto, A.L.d.; Mendes-Rodrigues, C.; Pedroso, R.d.S.; Röder, D.V.D.d.B. Revisiting the COVID-19 Pandemic: Mortality and Predictors of Death in Adult Patients in the Intensive Care Unit. Life 2024, 14, 1027. https://doi.org/10.3390/life14081027
Sousa Neto ALd, Mendes-Rodrigues C, Pedroso RdS, Röder DVDdB. Revisiting the COVID-19 Pandemic: Mortality and Predictors of Death in Adult Patients in the Intensive Care Unit. Life. 2024; 14(8):1027. https://doi.org/10.3390/life14081027
Chicago/Turabian StyleSousa Neto, Adriana Lemos de, Clesnan Mendes-Rodrigues, Reginaldo dos Santos Pedroso, and Denise Von Dolinger de Brito Röder. 2024. "Revisiting the COVID-19 Pandemic: Mortality and Predictors of Death in Adult Patients in the Intensive Care Unit" Life 14, no. 8: 1027. https://doi.org/10.3390/life14081027
APA StyleSousa Neto, A. L. d., Mendes-Rodrigues, C., Pedroso, R. d. S., & Röder, D. V. D. d. B. (2024). Revisiting the COVID-19 Pandemic: Mortality and Predictors of Death in Adult Patients in the Intensive Care Unit. Life, 14(8), 1027. https://doi.org/10.3390/life14081027