Barium Chloride-Induced Cardiac Arrhythmia Mouse Model Exerts an Experimental Arrhythmia for Pharmacological Investigations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Care
2.2. BaCl2-Induced Ventricular Arrhythmias in Mice and Rats
2.3. Post-Treatment (Rescue) of BaCl2 Induction in Mice
2.4. Statistical Analysis
3. Results
3.1. BaCl2 Induction Arrhythmia versus Adrenaline/CaCl2-Induced Arrhythmia
3.2. Mouse versus Rat of BaCl2-Induced Arrhythmia
3.3. Post-Treatment (Rescue) of BaCl2 Induction Arrhythmia in Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kovacs, B.; Mayinger, M.; Andratschke, N.; Saguner, A.M. Stereotactic arrhythmia radioablation: Competitor or adjunct to catheter ablation? Eur. Heart J. 2022, 43, 3279–3281. [Google Scholar] [CrossRef]
- Green, D.; Roberts, P.R.; New, D.I.; Kalra, P.A. Sudden cardiac death in hemodialysis patients: An in-depth review. Am. J. Kidney Dis. 2011, 57, 921–929. [Google Scholar] [CrossRef]
- Saljic, A.; Heijman, J.; Dobrev, D. Recent Advances in Antiarrhythmic Drug Therapy. Drugs 2023, 83, 1147–1160. [Google Scholar] [CrossRef]
- Markov, M.; Zheliazkov, D.; Iakimov, G. Vŭrkhu antiaritmichnata aktivnost na izoteolina (IZT) [The anti-arrhythmia activity of isoteolin (IST)]. Eksp. Med. Morfol. 1990, 29, 38–44. (In Bulgarian) [Google Scholar]
- Malawska, B.; Gorczyca, M.; Filipek, B. Synthesis, physicochemical and preliminary pharmacological properties of N-[beta-hydroxy-gamma-(N-phenylpiperazinepropyl)]-2-pyrrolidinone. Pol. J. Pharmacol. Pharm. 1992, 44, 561–574. [Google Scholar]
- Sui, Y.; Qiu, D.; Xie, C.; Chen, K. Observation of antiarrhythmic effects of Cinnamomum migao H. W. Li on experimental arrhythmia. Zhongguo Zhong Yao Za Zhi 1998, 23, 495–497. (In Chinese) [Google Scholar]
- Wang, H.; Cheng, X.; Kong, S.; Yang, Z.; Wang, H.; Huang, Q.; Li, J.; Chen, C.; Ma, Y. Synthesis and Structure-Activity Relationships of a Series of Aporphine Derivatives with Antiarrhythmic Activities and Acute Toxicity. Molecules 2016, 21, 1555. [Google Scholar] [CrossRef]
- Dylag, T.; Zygmunt, M.; Maciag, D.; Handzlik, J.; Bednarski, M.; Filipek, B.; Kieć-Kononowicz, K. Synthesis and evaluation of in vivo activity of diphenylhydantoin basic derivatives. Eur. J. Med. Chem. 2004, 39, 1013–1027. [Google Scholar] [CrossRef]
- Rapacz, A.; Sapa, J.; Bednarski, M.; Filipek, B.; Szkaradek, N.; Marona, H. Antiarrhythmic activity of some xanthone derivatives with β1-adrenoceptor affinities in rats. Eur. J. Pharmacol. 2014, 738, 14–21. [Google Scholar] [CrossRef]
- Pytka, K.; Lustyk, K.; Żmudzka, E.; Kotańska, M.; Siwek, A.; Zygmunt, M.; Dziedziczak, A.; Śniecikowska, J.; Olczyk, A.; Gałuszka, A.; et al. Chemically Homogenous Compounds with Antagonistic Properties at All α1-Adrenoceptor Subtypes but Not β1-Adrenoceptor Attenuate Adrenaline-Induced Arrhythmia in Rats. Front. Pharmacol. 2016, 7, 229. [Google Scholar] [CrossRef]
- GB/T 35892-2018; Laboratory Animal—Guideline for Ethical Review of Animal Welfare in China. National Technical Committee for Laboratory Animal Standardization: Beijing, China, 2018.
- Liu, B.; Li, S.; Su, Y.; Xiong, M.; Xu, Y. Comparative study of the protective effects of terfenadine and amiodarone on barium chloride/aconitine-induced ventricular arrhythmias in rats: A potential role of terfenadine. Mol. Med. Rep. 2014, 10, 3217–3226. [Google Scholar] [CrossRef]
- Khisatmutdinova RIu Baschenko NZh Zarudiĭ, F.S.; Gabdrakhmanova, S.F.; Makara, N.S.; Sapozhnikova, T.A. Some aspects of the antiarrhythmic effect of glialin. Eksp. Klin. Farmakol. 2006, 69, 26–28. [Google Scholar]
- Huang, W.; Wang, Y.; Cao, Y.G.; Qi, H.P.; Li, L.; Bai, B.; Liu, Y.; Sun, H.L. Antiarrhythmic effects and ionic mechanisms of allicin on myocardial injury of diabetic rats induced by streptozotocin. Naunyn Schmiedebergs Arch. Pharmacol. 2013, 386, 697–704. [Google Scholar] [CrossRef]
- Al-Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Field, M.E.; Fonarow, G.C.; et al. 2017 AHA/ACC/HRS Guideline for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm. 2018, 15, e73–e189. [Google Scholar] [CrossRef]
- Chen, X.; Wan, W.; Ran, Q.; Ye, T.; Sun, Y.; Liu, Z.; Liu, X.; Shi, S.; Qu, C.; Zhang, C.; et al. Pinocembrin mediates antiarrhythmic effects in rats with isoproterenol-induced cardiac remodeling. Eur. J. Pharmacol. 2022, 920, 174799. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Chen, C.; Shi, K.; Li, J.; Du, R. Protective Effects of 3,4-Seco-Lupane Triterpenes from Food Raw Materials of the Leaves of Eleutherococcus Senticosus and Eleutherococcus Sessiliflorus on Arrhythmia Induced by Barium Chloride. Chem. Biodivers. 2021, 18, e2001021. [Google Scholar] [CrossRef]
- Joukar, S.; Ghorbani-Shahrbabaki, S.; Hajali, V.; Sheibani, V.; Naghsh, N. Susceptibility to life-threatening ventricular arrhythmias in an animal model of paradoxical sleep deprivation. Sleep Med. 2013, 14, 1277–1282. [Google Scholar] [CrossRef]
- Runtao, G.; Guo, D.; Jiangbo, Y.; Xu, W.; Shusen, Y. Oxymatrine, the main alkaloid component of Sophora roots, protects heart against arrhythmias in rats. Planta Med. 2011, 77, 226–230. [Google Scholar] [CrossRef]
- Chen, X.; Guo, H.; Li, Q.; Zhang, Y.; Liu, H.; Zhang, X.; Xie, K.; Zhu, Z.; Miao, Q.; Su, S. Protective effect of berberine on aconite-induced myocardial injury and the associated mechanisms. Mol. Med. Rep. 2018, 18, 4468–4476. [Google Scholar] [CrossRef]
- Zou, D.; Geng, N.; Chen, Y.; Ren, L.; Liu, X.; Wan, J.; Guo, S.; Wang, S. Ranolazine improves oxidative stress and mitochondrial function in the atrium of acetylcholine-CaCl2 induced atrial fibrillation rats. Life Sci. 2016, 156, 7–14. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Q.; Zou, G.; Gao, G.; Yue, Q. Corrigendum to “Arenobufagin, isolated from toad venom, inhibited epithelial-to-mesenchymal transition and suppressed migration and invasion of lung cancer cells via targeting IKKβ/NFκB signal cascade”. J. Ethnopharmacol. 2020, 250, 112492. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Wan, J.; He, Y.; Gong, H.; Xu, Z.; Feng, J. Angiotensin-receptor blocker losartan alleviates atrial fibrillation in rats by downregulating frizzled 8 and inhibiting the activation of WNT-5A pathway. Clin. Exp. Pharmacol. Physiol. 2023, 50, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Sergeevichev, D.; Fomenko, V.; Strelnikov, A.; Dokuchaeva, A.; Vasilieva, M.; Chepeleva, E.; Rusakova, Y.; Artemenko, S.; Romanov, A.; Salakhutdinov, N.; et al. Botulinum Toxin-Chitosan Nanoparticles Prevent Arrhythmia in Experimental Rat Models. Mar. Drugs 2020, 18, 410. [Google Scholar] [CrossRef]
- Xue, Y.X.; Aye, N.N.; Hashimoto, K. Antiarrhythmic effects of HOE642, a novel Na+-H+ exchange inhibitor, on ventricular arrhythmias in animal hearts. Eur. J. Pharmacol. 1996, 317, 309–316. [Google Scholar] [CrossRef]
- Crawford, M.W.; Ho, D.S.; Shams, M.; Gow, R. Magnesium deficiency alters the threshold for epinephrine-induced arrhythmias during halothane or sevoflurane anesthesia in the rat. J. Cardiothorac. Vasc. Anesth. 2004, 18, 313–316. [Google Scholar] [CrossRef]
- Ghasi, S. Piperazine protects the rat heart against sudden cardiac death from barium chloride-induced ventricular fibrillation. Am. J. Ther. 2008, 15, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Rabkin, S.W. Dynorphin A (1–13) in the brain suppresses epinephrine-induced ventricular premature complexes and ventricular tachyarrhythmias. Regul. Pept. 1992, 41, 95–107. [Google Scholar] [CrossRef]
- Wascher, T.C.; Dittrich, P.; Kukovetz, W.R. Antiarrhythmic effects of two new propafenone related drugs. A study on four animal models of arrhythmia. Arzneimittel-Forschung 1991, 41, 119–124. [Google Scholar]
- Müller, B.; Wilsmann, K. Effects of the optical isomers of D 600 on cardiovascular parameters and on arrhythmias caused by aconitine and coronary artery ligation in anesthetized rats. J. Cardiovasc. Pharmacol. 1982, 4, 615–621. [Google Scholar] [CrossRef]
- Kozlovski, V.I.; Vdovichenko, V.P.; Chlopicki, S.; Malchik, S.S.; Praliyev, K.D.; Zcilkibayev, O.T. Antiarrhythmic profile and endothelial action of novel decahydroquinoline derivatives. Pol. J. Pharmacol. 2004, 56, 767–774. [Google Scholar]
- Hoffmann, P.; Müller, S.; Zbinden, G. Decrease of epinephrine-induced arrhythmia threshold in ethanol exposed rats. Arch. Toxicol. 1992, 66, 430–434. [Google Scholar] [CrossRef]
- Dai, S. Effects of ranitidine and cimetidine on experimentally induced ventricular arrhythmias in anaesthetized rats. Agents Actions 1986, 17, 460–465. [Google Scholar] [CrossRef]
- Yang, W.; Wang, W.; Cai, S.; Li, P.; Zhang, D.; Ning, J.; Ke, J.; Hou, A.; Chen, L.; Ma, Y.; et al. Synthesis and In Vivo Antiarrhythmic Activity Evaluation of Novel Scutellarein Analogues as Voltage-Gated Nav1.5 and Cav1.2 Channels Blockers. Molecules 2023, 28, 7417. [Google Scholar] [CrossRef]
- Brooks, R.R.; Carpenter, J.F.; Miller, K.E.; Maynard, A.E. Efficacy of the class III antiarrhythmic agent azimilide in rodent models of ventricular arrhythmia. Proc. Soc. Exp. Biol. Med. 1996, 212, 84–93. [Google Scholar] [CrossRef]
- Dai, S.; Chan, M.Y.; Lee, S.S.; Ogle, C.W. The antiarrhythmic effects of Sophora flavescens Ait. in rats and mice. Am. J. Chin. Med. 1986, 14, 119–123. [Google Scholar] [CrossRef]
- Wakimoto, H.; Maguire, C.T.; Kovoor, P.; Hammer, P.E.; Gehrmann, J.; Triedman, J.K.; Berul, C.I. Induction of atrial tachycardia and fibrillation in the mouse heart. Cardiovasc. Res. 2001, 50, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Wilhelms, M.; Rombach, C.; Scholz, E.P.; Dössel, O.; Seemann, G. Impact of amiodarone and cisapride on simulated human ventricular electrophysiology and electrocardiograms. Europace 2012, 14 (Suppl. S5), v90–v96. [Google Scholar] [CrossRef]
- Taniguchi, T.; Uesugi, M.; Arai, T.; Yoshinaga, T.; Miyamoto, N.; Sawada, K. Chronic probucol treatment decreases the slow component of the delayed-rectifier potassium current in CHO cells transfected with KCNQ1 and KCNE1: A novel mechanism of QT prolongation. J. Cardiovasc. Pharmacol. 2012, 59, 377–386. [Google Scholar] [CrossRef]
- Coast, G.M. Intracellular Na+, K+ and Cl− activities in Acheta domesticus Malpighian tubules and the response to a diuretic kinin neuropeptide. J. Exp. Biol. 2012, 215 Pt 16, 2774–2785. [Google Scholar] [CrossRef]
- Kehl, S.J.; Fedida, D.; Wang, Z. External Ba2+ block of Kv4.2 channels is enhanced in the closed-inactivated state. Am. J. Physiol. Cell Physiol. 2013, 304, C370–C381. [Google Scholar] [CrossRef]
- Rowley, C.N.; Roux, B. A computational study of barium blockades in the KcsA potassium channel based on multi-ion potential of mean force calculations and free energy perturbation. J. Gen. Physiol. 2013, 142, 451–463. [Google Scholar] [CrossRef]
- Ghasi, S.; Mbah, A.U.; Nze, P.U.; Nwobodo, E.; Ogbonna, A.O.; Onuaguluchi, G. Interventional Role of Piperazine Citrate in Barium Chloride Induced Ventricular Arrhythmias in Anaesthetized Rats. Biomed. Res. 2009, 20, 186–191. [Google Scholar] [CrossRef]
- Parasuraman, S.; Raveendran, R.; Selvaraj, R.J. Effects of cleistanthins A and B on blood pressure and electrocardiogram in Wistar rats. Z. Naturforschung C 2011, 66, 581–587. [Google Scholar] [CrossRef]
- Liu, Q.H.; Zhang, L.J.; Wang, J.; Wu, B.W.; Cao, J.M. Cardioprotection of an IK1 channel agonist on L-thyroxine induced rat ventricular remodeling. Am. J. Transl. Res. 2021, 13, 8683–8696. [Google Scholar]
- Liu, Q.H.; Qiao, X.; Zhang, L.J.; Wang, J.; Zhang, L.; Zhai, X.W.; Ren, X.Z.; Li, Y.; Cao, X.N.; Feng, Q.L.; et al. IK1 Channel Agonist Zacopride Alleviates Cardiac Hypertrophy and Failure via Alterations in Calcium Dyshomeostasis and Electrical Remodeling in Rats. Front. Pharmacol. 2019, 10, 929. [Google Scholar] [CrossRef]
- Omole, J.G.; Alabi, Q.K.; Aturamu, A.; Adefisayo, M.A.; Oluwayomi, O.; Dada, M.B.; Ige, M.S. Barium chloride dose-dependently induced heart and lung injury in Wistar rats. Environ. Toxicol. 2019, 34, 1303–1312. [Google Scholar] [CrossRef]
- Heijman, J.; Algalarrondo, V.; Voigt, N.; Melka, J.; Wehrens, X.H.; Dobrev, D.; Nattel, S. The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: A critical analysis. Cardiovasc. Res. 2016, 109, 467–479. [Google Scholar] [CrossRef]
- Árpádffy-Lovas, T.; Mohammed, A.S.A.; Naveed, M.; Koncz, I.; Baláti, B.; Bitay, M.; Jost, N.; Nagy, N.; Baczkó, I.; Virág, L.; et al. Species-dependent differences in the inhibition of various potassium currents and in their effects on repolarization in cardiac ventricular muscle. Can. J. Physiol. Pharmacol. 2022, 100, 880–889. [Google Scholar] [CrossRef]
- Mezentseva, L.V.; Kashtanov, S.I.; Vostrikov, V.A.; Zviagintseva, M.A.; Kosharskaia, I.L. Analiz EKG pri fibrilliatsii zheludochkov u cheloveka i zhivotnykh na osnove teorii khaosa [Analysis of ECG in ventricular fibrillation in man and animals based on chaos theory]. Biofizika 2002, 47, 369–375. (In Russian) [Google Scholar]
- Kaese, S.; Frommeyer, G.; Verheule, S.; van Loon, G.; Gehrmann, J.; Breithardt, G.; Eckardt, L. The ECG in cardiovascular-relevant animal models of electrophysiology. Herzschrittmachertherapie Elektrophysiologie 2013, 24, 84–91. [Google Scholar] [CrossRef]
- Sharma, A.K.; Singh, S.; Bhat, M.; Gill, K.; Zaid, M.; Kumar, S.; Shakya, A.; Tantray, J.; Jose, D.; Gupta, R.; et al. New drug discovery of cardiac anti-arrhythmic drugs: Insights in animal models. Sci. Rep. 2023, 13, 16420. [Google Scholar] [CrossRef] [PubMed]
- Dobrev, D.; Wehrens, X.H.T. Mouse Models of Cardiac Arrhythmias. Circ. Res. 2018, 123, 332–334. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, T.; Haufe, V.; Blechschmidt, S. Voltage-gated sodium channels in the mammalian heart. Cardiol. Cardiol. Sci. Pract. 2014, 2014, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Clauss, S.; Bleyer, C.; Schüttler, D.; Tomsits, P.; Renner, S.; Klymiuk, N.; Wakili, R.; Massberg, S.; Wolf, E.; Kääb, S. Animal models of arrhythmia: Classic electrophysiology to genetically modified large animals. Nat. Rev. Cardiol. 2019, 16, 457–475. [Google Scholar] [CrossRef]
Inducer | Ventricular Bigeminy | Ventricular Tachycardia | Ventricular Fibrillation |
---|---|---|---|
0.8% BaCl2 | 115 ± 20 s | 248 ± 18 s *** | 343 ± 41 s |
1% CaCl2 | 12.3 ± 3.5 min | 27.8 ± 4.2 min ## | - |
0.002% Adrenaline | - | 42.7 ± 3.1 min | - |
Animal | Inducer | Route | Manifestation | Reference |
---|---|---|---|---|
Rats | BaCl2 BaCl2 | iv iv | VF - | [6] [7] |
BaCl2 Adrenaline | iv or po | - | [9] | |
BaCl2 | Internal jugular vein | - | [15] | |
Iso | i.p. | AF | [16] | |
BaCl2, | Caudal vein | AF, | [17] | |
Aconitine | Caudal vein | VF, VT | [18] | |
Aconitine | iv | - | [19] | |
Aconitine | i.p. | - | [20] | |
Ach-CaCl2 | Caudal vein | AF | [21] | |
Ach-CaCl2 | Caudal vein | AF | [22] | |
Ach-CaCl2 | Caudal vein | AF | [23] | |
BaCl2, CaCl2 | iv | AF | [24] | |
Epinephrine | iv | VF, VT | [25] | |
Epinephrine | Infusion | - | [26] | |
BaCl2 | External jugular veins | VF | [27] | |
Epinephrine | iv | VT | [28] | |
Aconitine | iv | - | [29] | |
Aconitine | Femoral vein | - | [30] | |
Adrenaline, BaCl2, CaCl2, aconitine | iv | - | [31] | |
Epinephrine | Caudal vein | Bradyarrhythmia | [32] | |
Aconitine | Infusion | VT, VF | [33] | |
BaCl2 | Caudal vein | [17] | ||
CaCl2, BaCl2, electric | AF | [24] | ||
Aconitine, BaCl2 | VP, VT, VF, CA | [34] | ||
Mice | BaCl2 | Caudal vein | - | [7] |
Chloroform | Inhalation | VF | [7] | |
Chloroform | Inhalation | - | [33] | |
Chloroform | Inhalation | VES, VF, VT | [35] | |
Aconitine | Infusion caudal vein | VT | [36] | |
Carbamyl choline | Jugular vein | AF, AT | [37] | |
BaCl2 | i.p. | VB, VF, VT | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, M.; Huang, L.; Zheng, X.; Weng, L.; Weng, C.-F. Barium Chloride-Induced Cardiac Arrhythmia Mouse Model Exerts an Experimental Arrhythmia for Pharmacological Investigations. Life 2024, 14, 1047. https://doi.org/10.3390/life14081047
Zeng M, Huang L, Zheng X, Weng L, Weng C-F. Barium Chloride-Induced Cardiac Arrhythmia Mouse Model Exerts an Experimental Arrhythmia for Pharmacological Investigations. Life. 2024; 14(8):1047. https://doi.org/10.3390/life14081047
Chicago/Turabian StyleZeng, Mengting, Liyue Huang, Xiaohui Zheng, Lebin Weng, and Ching-Feng Weng. 2024. "Barium Chloride-Induced Cardiac Arrhythmia Mouse Model Exerts an Experimental Arrhythmia for Pharmacological Investigations" Life 14, no. 8: 1047. https://doi.org/10.3390/life14081047
APA StyleZeng, M., Huang, L., Zheng, X., Weng, L., & Weng, C.-F. (2024). Barium Chloride-Induced Cardiac Arrhythmia Mouse Model Exerts an Experimental Arrhythmia for Pharmacological Investigations. Life, 14(8), 1047. https://doi.org/10.3390/life14081047