Effect of FluoRoquinolones on Aortic Growth, aortic stIffness and wave refLEctionS (FRAGILES study)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Selection
2.2.1. Inclusion Criteria
- Provide written informed consent before enrollment;
- Be over 18 years of age, both sexes;
- Have been diagnosed with an uncomplicated infection (i.e., without signs of severe sepsis), or have been scheduled for a procedure/surgery and thus have an indication to receive a fluoroquinolone or an alternative antibiotic.
2.2.2. Exclusion Criteria
- Participation in the design and conduct of the study;
- Hypersensitivity to the active substance or any excipients of the antibiotics being administered;
- Long QT syndrome;
- Malignancy, severe autoimmune disease, or any other current illness (e.g., neurological or psychiatric) that could affect or prevent unimpeded participation in the study;
- Severe renal impairment (eGFR <30 mL/min/1.73 m2);
- Severe hepatic impairment, defined as liver cirrhosis, elevated transaminases or alkaline phosphatase more than three times their upper limit of the normal value, or hyperbilirubinemia;
- Severe obstructive sleep apnea;
- Pregnant or breastfeeding women or women of childbearing potential not taking contraceptives;
- Need for simultaneous use of more than one antibiotic;
- Life expectancy of less than one year;
- Inability to comply with the study protocol, e.g., due to planned movement away from the study site or due to alcohol or other substance use.
2.3. Recruitment and Study Measurements
2.3.1. Measurement of Peripheral Blood Pressure
2.3.2. Evaluation of Aortic Stiffness
2.3.3. Pulse Wave Analysis
2.3.4. Measurement of Aortic Diameters
2.3.5. Laboratory Determinations
2.3.6. Follow-Up
2.4. Study Outcomes
2.4.1. Primary Outcome
2.4.2. Secondary Outcomes
- The difference in the mean value of the aortic AIx@75 between the two treatment groups at 2 months after the initial administration of quinolone or of an alternative to quinolone antibiotic therapy;
- The difference in the sonographically evaluated aortic diameters at the ascending and abdominal aorta level between the two treatment groups at 2 months after the initial administration of quinolone or an alternative to quinolone antibiotic therapy.
2.5. Statistical Plan
2.5.1. Sample Size Calculation
2.5.2. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Arterial Biomarkers at 2-Month Follow Up
3.3. Aortic Diameters at 2-Month Follow Up
3.4. Safety
4. Discussion
4.1. Aortic Aneurysms and Arterial Biomarkers
4.2. Fluoroquinolones and the Risk of Aortic Aneurysm
4.3. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clouse, W.D.; Hallett, J.W., Jr.; Schaff, H.V.; Spittell, P.C.; Rowland, C.M.; Ilstrup, D.M.; Melton, L.J., 3rd. Acute aortic dissection: Population-based incidence compared with degenerative aortic aneurysm rupture. Mayo Clin. Proc. 2004, 79, 176–180. [Google Scholar] [CrossRef]
- Golledge, J. Abdominal aortic aneurysm: Update on pathogenesis and medical treatments. Nat. Rev. Cardiol. 2019, 16, 225–242. [Google Scholar] [CrossRef]
- Khan, I.A.; Nair, C.K. Clinical, diagnostic, and management perspectives of aortic dissection. Chest 2002, 122, 311–328. [Google Scholar] [CrossRef]
- Howard, D.P.; Banerjee, A.; Fairhead, J.F.; Perkins, J.; Silver, L.E.; Rothwell, P.M.; Oxford Vascular Study. Population-based study of incidence and outcome of acute aortic dissection and premorbid risk factor control: 10-year results from the Oxford Vascular Study. Circulation 2013, 127, 2031–2037. [Google Scholar] [CrossRef]
- Howard, D.P.; Banerjee, A.; Fairhead, J.F.; Handa, A.; Silver, L.E.; Rothwell, P.M.; Oxford Vascular Study. Population-Based Study of Incidence of Acute Abdominal Aortic Aneurysms with Projected Impact of Screening Strategy. J. Am. Heart Assoc. 2015, 4, e001926. [Google Scholar] [CrossRef]
- Raguideau, F.; Lemaitre, M.; Dray-Spira, R.; Zureik, M. Association between Oral Fluoroquinolone Use and Retinal Detachment. JAMA Ophthalmol. 2016, 134, 415–421. [Google Scholar] [CrossRef]
- Stephenson, A.L.; Wu, W.; Cortes, D.; Rochon, P.A. Tendon Injury and Fluoroquinolone Use: A Systematic Review. Drug Saf. 2013, 36, 709–721. [Google Scholar] [CrossRef]
- Lee, C.C.; Lee, M.T.; Chen, Y.S.; Lee, S.H.; Chen, Y.S.; Chen, S.C.; Chang, S.C. Risk of Aortic Dissection and Aortic Aneurysm in Patients Taking Oral Fluoroquinolone. JAMA Intern. Med. 2015, 175, 1839–1847. [Google Scholar] [CrossRef]
- Dai, X.C.; Yang, X.X.; Ma, L.; Tang, G.M.; Pan, Y.Y.; Hu, H.L. Relationship between fluoroquinolones and the risk of aortic diseases: A meta-analysis of observational studies. BMC Cardiovasc. Disord. 2020, 20, 49. [Google Scholar] [CrossRef]
- Lai, C.C.; Wang, Y.H.; Chen, K.H.; Chen, C.H.; Wang, C.Y. The Association between the Risk of Aortic Aneurysm/Aortic Dissection and the Use of Fluroquinolones: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10, 697. [Google Scholar] [CrossRef]
- Latif, A.; Ahsan, M.J.; Kapoor, V.; Lateef, N.; Malik, S.U.; Patel, A.D.; Khan, B.A.; Bittner, M.; Holmberg, M. Fluoroquinolones and the Risk of Aortopathy: A Systematic Review and Meta-Analysis. WMJ 2020, 119, 185–189. [Google Scholar]
- Rawla, P.; El Helou, M.L.; Vellipuram, A.R. Fluoroquinolones and the Risk of Aortic Aneurysm or Aortic Dissection: A Systematic Review and Meta-Analysis. Cardiovasc. Hematol. Agents Med. Chem. 2019, 17, 3–10. [Google Scholar] [CrossRef]
- Singh, S.; Nautiyal, A. Aortic Dissection and Aortic Aneurysms Associated with Fluoroquinolones: A Systematic Review and Meta-Analysis. Am. J. Med. 2017, 130, 1449–1457.e9. [Google Scholar] [CrossRef]
- Vouga Ribeiro, N.; Gouveia Melo, R.; Guerra, N.C.; Nobre, Â.; Fernandes, R.M.; Pedro, L.M.; Costa, J.; Pinto, F.J.; Caldeira, D. Fluoroquinolones Are Associated with Increased Risk of Aortic Aneurysm or Dissection: Systematic Review and Meta-analysis. Semin. Thorac. Cardiovasc. Surg. 2021, 33, 907–918. [Google Scholar] [CrossRef]
- Wee, I.; Chin, B.; Syn, N.; Lee, K.S.; Ng, J.J.; Choong, A.M.T.L. The association between fluoroquinolones and aortic dissection and aortic aneurysms: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 11073. [Google Scholar] [CrossRef]
- Yu, X.; Jiang, D.S.; Wang, J.; Wang, R.; Chen, T.; Wang, K.; Cao, S.; Wei, X. Fluoroquinolone Use and the Risk of Collagen-Associated Adverse Events: A Systematic Review and Meta-Analysis. Drug Saf. 2019, 42, 1025–1033. [Google Scholar] [CrossRef]
- Chen, S.W.; Chan, Y.H.; Chien-Chia Wu, V.; Cheng, Y.T.; Chen, D.Y.; Lin, C.P.; Hung, K.C.; Chang, S.H.; Chu, P.H.; Chou, A.H. Effects of Fluoroquinolones on Outcomes of Patients with Aortic Dissection or Aneurysm. J. Am. Coll. Cardiol. 2021, 77, 1875–1887. [Google Scholar] [CrossRef]
- Daneman, N.; Lu, H.; Redelmeier, D.A. Fluoroquinolones and collagen associated severe adverse events: A longitudinal cohort study. BMJ Open 2015, 5, e010077. [Google Scholar] [CrossRef]
- Lee, C.C.; Lee, M.G.; Hsieh, R.; Porta, L.; Lee, W.C.; Lee, S.H.; Chang, S.S. Oral Fluoroquinolone and the Risk of Aortic Dissection. J. Am. Coll. Cardiol. 2018, 72, 1369–1378. [Google Scholar] [CrossRef]
- Pasternak, B.; Inghammar, M.; Svanstrom, H. Fluoroquinolone use and risk of aortic aneurysm and dissection: Nationwide cohort study. BMJ 2018, 360, k678. [Google Scholar] [CrossRef] [PubMed]
- Maumus-Robert, S.; Bérard, X.; Mansiaux, Y.; Tubert-Bitter, P.; Debette, S.; Pariente, A. Short-Term Risk of Aortoiliac Aneurysm or Dissection Associated with Fluoroquinolone Use. J. Am. Coll. Cardiol. 2019, 73, 875–877. [Google Scholar] [CrossRef]
- Meng, L.; Huang, J.; Jia, Y.; Huang, H.; Qiu, F.; Sun, S. Assessing fluoroquinolone-associated aortic aneurysm and dissection: Data mining of the public version of the FDA adverse event reporting system. Int. J. Clin. Pract. 2019, 73, e13331. [Google Scholar] [CrossRef]
- Gopalakrishnan, C.; Bykov, K.; Fischer, M.A.; Connolly, J.G.; Gagne, J.J.; Fralick, M. Association of Fluoroquinolones with the Risk of Aortic Aneurysm or Aortic Dissection. JAMA Intern. Med. 2020, 180, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, C.; Xaplanteris, P.; Aboyans, V.; Brodmann, M.; Cífková, R.; Cosentino, F.; De Carlo, M.; Gallino, A.; Landmesser, U.; Laurent, S.; et al. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation: Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Atherosclerosis 2015, 241, 507–532. [Google Scholar]
- Vlachopoulos, C.; Aznaouridis, K.; O’Rourke, M.F.; Safar, M.E.; Baou, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: A systematic review and meta-analysis. Eur. Heart J. 2010, 31, 1865–1871. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Aznaouridis, K.; Terentes-Printzios, D.; Ioakeimidis, N.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with brachial-ankle elasticity index: A systematic review and meta-analysis. Hypertension 2012, 60, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shlomo, Y.; Spears, M.; Boustred, C.; May, M.; Anderson, S.G.; Benjamin, E.J.; Boutouyrie, P.; Cameron, J.; Chen, C.H.; Cruickshank, J.K.; et al. Aortic pulse wave velocity improves cardiovascular event prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects. J. Am. Coll. Cardiol. 2014, 63, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Van Bortel, L.M.; Laurent, S.; Boutouyrie, P.; Chowienczyk, P.; Cruickshank, J.K.; De Backer, T.; Filipovsky, J.; Huybrechts, S.; Mattace-Raso, F.U.; Protogerou, A.D.; et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 2012, 30, 445–448. [Google Scholar] [CrossRef]
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H.; et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef]
- Humphrey, J.D.; Tellides, G. Central artery stiffness and thoracic aortopathy. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H169–H182. [Google Scholar] [CrossRef] [PubMed]
- Kadoglou, N.P.; Papadakis, I.; Moulakakis, K.G.; Ikonomidis, I.; Alepaki, M.; Moustardas, P.; Lampropoulos, S.; Karakitsos, P.; Lekakis, J.; Liapis, C.D. Arterial stiffness and novel biomarkers in patients with abdominal aortic aneurysms. Regul. Pept. 2012, 179, 50–54. [Google Scholar] [CrossRef]
- Åström Malm, I.; De Basso, R.; Blomstrand, P.; Bjarnegård, N. Increased arterial stiffness in males with abdominal aortic aneurysm. Clin. Physiol. Funct. Imaging 2021, 41, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xie, W.; Li, Q.; Hong, H. The positive correlation between brachial-ankle pulse wave velocity and aortic diameter in Chinese patients with diabetes. J. Clin. Hypertens. 2022, 24, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, C.; O’Rourke, M.; Nichols, W.W. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Dijk, J.M.; van der Graaf, Y.; Grobbee, D.E.; Banga, J.D.; Bots, M.L.; SMART Study Group. Increased arterial stiffness is independently related to cerebrovascular disease and aneurysms of the abdominal aorta: The Second Manifestations of Arterial Disease (SMART) Study. Stroke 2004, 35, 1642–1646. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, G.; Mason, R.H.; Hardinge, M.; Perkins, J.; Husmann, M.; Russi, E.W.; Bloch, K.E.; Stradling, J.R.; Kohler, M. Augmentation index and central aortic blood pressure in patients with abdominal aortic aneurysms. J. Hypertens. 2010, 28, 2252–2257. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Sung, S.H.; Chen, C.K.; Chen, I.M.; Cheng, H.M.; Yu, W.C.; Shih, C.C.; Chen, C.H. Measures of carotid–femoral pulse wave velocity and augmentation index are not reliable in patients with abdominal aortic aneurysm. J. Hypertens. 2013, 31, 1853–1860. [Google Scholar] [CrossRef]
- Libby, P.; Loscalzo, J.; Ridker, P.M.; Farkouh, M.E.; Hsue, P.Y.; Fuster, V.; Hasan, A.A.; Amar, S. Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2018, 72, 2071–2081. [Google Scholar] [CrossRef]
- Giustino, G.; Croft, L.B.; Stefanini, G.G.; Bragato, R.; Silbiger, J.J.; Vicenzi, M.; Danilov, T.; Kukar, N.; Shaban, N.; Kini, A.; et al. Characterization of Myocardial Injury in Patients with COVID-19. J. Am. Coll. Cardiol. 2020, 76, 2043–2055. [Google Scholar] [CrossRef]
- Kotecha, T.; Knight, D.S.; Razvi, Y.; Kumar, K.; Vimalesvaran, K.; Thornton, G.; Patel, R.; Chacko, L.; Brown, J.T.; Coyle, C.; et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur. Heart J. 2021, 42, 1866–1878. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Dima, I.; Aznaouridis, K.; Vasiliadou, C.; Ioakeimidis, N.; Aggeli, C.; Toutouza, M.; Stefanadis, C. Acute systemic inflammation increases arterial stiffness and decreases wave reflections in healthy individuals. Circulation 2005, 112, 2193–2200. [Google Scholar] [CrossRef]
- Zanoli, L.; Briet, M.; Empana, J.P.; Cunha, P.G.; Mäki-Petäjä, K.M.; Protogerou, A.D.; Tedgui, A.; Touyz, R.M.; Schiffrin, E.L.; Spronck, B.; et al. Vascular consequences of inflammation: A position statement from the ESH Working Group on Vascular Structure and Function and the ARTERY Society. J. Hypertens. 2020, 38, 1682–1698. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P. Clinical and genetic features of vascular Ehlers-Danlos syndrome. Ann. Vasc. Surg. 2002, 16, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Badal, S.; Her, Y.F.; Maher, L.J., 3rd. Nonantibiotic Effects of Fluoroquinolones in Mammalian Cells. J. Biol. Chem. 2015, 290, 22287–22297. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, T.; Shimizu-Hirota, R.; Shimoda, M.; Adachi, T.; Shimizu, H.; Weiss, S.J.; Itoh, H.; Hori, S.; Aikawa, N.; Okada, Y. Neutrophil-derived matrix metalloproteinase 9 triggers acute aortic dissection. Circulation 2012, 126, 3070–3080. [Google Scholar] [CrossRef] [PubMed]
- Guzzardi, D.G.; Teng, G.; Kang, S.; Geeraert, P.J.; Pattar, S.S.; Svystonyuk, D.A.; Belke, D.D.; Fedak, P.W.M. Induction of human aortic myofibroblast-mediated extracellular matrix dysregulation: A potential mechanism of fluoroquinolone-associated aortopathy. J. Thorac. Cardiovasc. Surg. 2019, 157, 109–119.e2. [Google Scholar] [CrossRef] [PubMed]
- Sommet, A.; Bénévent, J.; Rousseau, V.; Chebane, L.; Douros, A.; Montastruc, J.L.; Montastruc, F. What Fluoroquinolones Have the Highest Risk of Aortic Aneurysm? A Case/Non-case Study in VigiBase(R). J. Gen. Intern. Med. 2019, 34, 502–503. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.H.; Chang, C.H.; Wang, J.L.; Wu, L.C.; Lin, J.W.; Toh, S. Association of Infections and Use of Fluoroquinolones with the Risk of Aortic Aneurysm or Aortic Dissection. JAMA Intern. Med. 2020, 180, 1587–1595. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.P.; Wing, K.; Leyrat, C.; Evans, S.J.; Mansfield, K.E.; Wong, A.Y.S.; Smeeth, L.; Galwey, N.W.; Douglas, I.J. Association between Fluoroquinolone Use and Hospitalization with Aortic Aneurysm or Aortic Dissection. JAMA Cardiol. 2023, 8, 865–870. [Google Scholar] [CrossRef]
- Huh, K.; Kang, M.; Jung, J. Lack of association between fluoroquinolone and aortic aneurysm or dissection. Eur. Heart J. 2023, 44, 4476–4484. [Google Scholar] [CrossRef]
Variables | FQ (EXP) [n = 28] | Antibiotics Alternative to FQ (CTR) [n = 27] | p-Value |
---|---|---|---|
Age (years) | 66.1 (10.6) | 65.0 (18.4) | 0.79 |
Male gender, n | 24 (86) | 24 (89) | 0.72 |
Weight (kg) | 84.8 (12.6) | 81.9 (15.7) | 0.45 |
Height (cm) | 174.0 (8.5) | 174.4 (10.5) | 0.87 |
Waist (cm) | 107.3 (10.7) | 104.2 (15.7) | 0.40 |
Hip (cm) | 107.0 (10.0) | 105.2 (16.2) | 0.55 |
BMI (kg/m2) | 28.0 (3.5) | 26.9 (12.5) | 0.38 |
DM, n | 6 (21) | 10 (37) | 0.20 |
HTN, n | 15 (54) | 17 (63) | 0.48 |
Hyperlipidemia, n | 10 (36) | 14 (52) | 0.23 |
Smoking, n | 11 (39) | 7 (26) | 0.29 |
History of CAD, n | 5 (18) | 12 (44) | 0.033 |
HF, n | 2 (7) | 11 (41) | 0.003 |
KD, n | 2 (7) | 3 (11) | 0.61 |
Variables | Visit V1 | Visit V2 | ||||
---|---|---|---|---|---|---|
FQ (EXP) [n = 28] | Antibiotics Alternative to FQ (CTR) [n = 27] | p-Value | FQ (EXP) [n = 28] | Antibiotics Alternative to FQ (CTR) [n = 27] | p-Value | |
Brachial SBP (mmHg) | 132.9 ± 21.1 | 128.3 ± 14.3 | 0.36 | 130.2 ± 20.6 | 128.9 ± 15.6 | 0.79 |
Brachial DBP (mmHg) | 80.9 ± 14.3 | 77.5 ± 9.3 | 0.30 | 79.0 ± 12.9 | 78.3 ± 11.0 | 0.85 |
HR (beats/min) | 70.8 ± 13.8 | 69.6 ± 11.6 | 0.72 | 70.8 ± 13.8 | 69.6 ± 11.6 | 0.72 |
AIx@75 bpm (%) | 25.6 ± 10.0 | 21.4 ± 9.9 | 0.13 | 26.6 ± 8.1 | 22.6 ± 9.0 | 0.09 |
cfPWV (m/s) | 8.1 ± 2.2 | 7.9 ± 2.1 | 0.78 | 8.1 ± 2.4 | 7.9 ± 2.6 | 0.79 |
hsCRP (mg/L) | 2.1 (0.9–7.2) | 3.1 (1.1–26.9) | 0.31 | 1.5 (0.8–4.0) | 2.3 (1.1–18.2) | 0.21 |
Aortic root diameter (sinuses of Valsalva) (mm) | 32.7 ± 3.5 | 33.5 ± 5.3 | 0.54 | 34.9 ± 4.7 | 34.1 ± 5.2 | 0.96 |
Proximal ascending aorta diameter (mm) | 35.0 ± 5.1 | 34.0 ± 5.2 | 0.51 | 35.4 ± 4.7 | 34.2 ± 5.2 | 0.39 |
Maximal abdominal aorta diameter (mm) | 17.2 ± 2.7 | 19.7 ± 6.6 | 0.13 | 18.2 ± 3.5 | 19.3 ± 6.1 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gardikioti, V.; Georgakopoulos, C.; Solomou, E.; Lazarou, E.; Fasoulakis, K.; Terentes-Printzios, D.; Tsioufis, K.; Iliopoulos, D.; Vlachopoulos, C. Effect of FluoRoquinolones on Aortic Growth, aortic stIffness and wave refLEctionS (FRAGILES study). Life 2024, 14, 992. https://doi.org/10.3390/life14080992
Gardikioti V, Georgakopoulos C, Solomou E, Lazarou E, Fasoulakis K, Terentes-Printzios D, Tsioufis K, Iliopoulos D, Vlachopoulos C. Effect of FluoRoquinolones on Aortic Growth, aortic stIffness and wave refLEctionS (FRAGILES study). Life. 2024; 14(8):992. https://doi.org/10.3390/life14080992
Chicago/Turabian StyleGardikioti, Vasiliki, Christos Georgakopoulos, Eirini Solomou, Emilia Lazarou, Konstantinos Fasoulakis, Dimitrios Terentes-Printzios, Konstantinos Tsioufis, Dimitrios Iliopoulos, and Charalambos Vlachopoulos. 2024. "Effect of FluoRoquinolones on Aortic Growth, aortic stIffness and wave refLEctionS (FRAGILES study)" Life 14, no. 8: 992. https://doi.org/10.3390/life14080992
APA StyleGardikioti, V., Georgakopoulos, C., Solomou, E., Lazarou, E., Fasoulakis, K., Terentes-Printzios, D., Tsioufis, K., Iliopoulos, D., & Vlachopoulos, C. (2024). Effect of FluoRoquinolones on Aortic Growth, aortic stIffness and wave refLEctionS (FRAGILES study). Life, 14(8), 992. https://doi.org/10.3390/life14080992