Perspectives of Decision Support System TeleRehab in the Management of Post-Stroke Telerehabilitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Software Development
2.2. Simulation Tests
3. Results
3.1. The Architecture of the Decision Support System
3.2. The Software Interface and Functionality
3.3. Results of the Simulation
3.4. The Usability Study Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Getachew, E.; Adebeta, T.; Muzazu, S.G.Y.; Charlie, L.; Said, B.; Tesfahunei, H.A.; Wanjiru, C.L.; Acam, J.; Kajogoo, V.D.; Solomon, S.; et al. Digital health in the era of COVID-19: Reshaping the next generation of healthcare. Front. Public Health 2023, 11, 942703. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Eala, M.; Lee, G.; Lam, M.B.; Martin, N.; Nakfoor, B.; Dicker, A. Digital health. Translational Radiation Oncology. In Handbook for Designing and Conducting Clinical and Translational Research; Eltorai, A.E.M., Bakal, J.A., Kim, D.W., Wazer, D.E., Eds.; Academic Press: Cambridge, MA, USA, 2023. [Google Scholar]
- Rosenlund, M.; Kinnunen, U.M.; Saranto, K. The use of digital health services among patients and citizens living at home: Scoping review. J. Med. Internet Res. 2023, 25, e44711. [Google Scholar] [CrossRef] [PubMed]
- Holcapek, T.; Solc, M.; Sustek, P. Telemedicine and the standard of care: A call for a new approach? Front. Public Health 2023, 11, 1184971. [Google Scholar] [CrossRef]
- World Health Organization. Eastern Mediterranean Region. eHealth. Available online: https://www.emro.who.int/health-topics/ehealth (accessed on 28 July 2024).
- Herold, F.; Theobald, P.; Gronwald, T.; Rapp, M.A.; Muller, N.G. Going digital—A commentary on the terminology used at the intersection of physical activity and digital health. Eur. Rev. Aging Phys. Act. 2022, 19, 17. [Google Scholar] [CrossRef]
- World Health Organization. Rehabilitation. Available online: https://www.who.int/news-room/fact-sheets/detail/rehabilitation (accessed on 28 July 2024).
- Marzaleh, M.A.; Peyravi, M.; Azhdari, N.; Bahaadinbeigy, K.; Sarpourian, F. Application of telerehabilitation for older adults during the COVID-19 pandemic: A systematic review. Disaster Med. Public Health Prep. 2022, 17, e402. [Google Scholar] [CrossRef] [PubMed]
- Ferrel-Yui, D.; Candelaria, D.; Pettersen, T.R.; Gallagher, R.; Shi, W. Uptake and implementation of cardiac telerehabilitation: A systematic review of provider and system barriers and enablers. Int. J. Med. Inform. 2024, 184, 105346. [Google Scholar] [CrossRef]
- Ozden, F.; Sari, Z. The effect of mobile application-based rehabilitation in patients with total knee arthroplasty: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2023, 113, 105058. [Google Scholar] [CrossRef] [PubMed]
- Md Fadzil, N.H.; Shahar, S.; Rajikan, R.; Singh, D.K.A.; Mat Ludin, A.F.; Subramaniam, P.; Ibrahim, N.; Vanoh, D.; Mohamad Ali, N. A scoping review for usage of telerehabilitation among older adults with mild cognitive impairment or cognitive frailty. Int. J. Environ. Res. Public Health 2022, 19, 4000. [Google Scholar] [CrossRef]
- Ghaben, S.J.; Mat Ludin, A.F.; Mohamad Ali, N.; Beng Gan, K.; Singh, D.K.A. A framework for design and usability testing of telerehabilitation system for adults with chronic diseases: A panoramic scoping review. Digit. Health 2023, 9, 20552076231191014. [Google Scholar] [CrossRef]
- Cramer, S.C.; Young, B.M.; Schwarz, A.; Chang, T.Y.; Su, M. Telerehabilitation following stroke. Phys. Med. Rehabil. Clin. N. Am. 2024, 35, 305–318. [Google Scholar] [CrossRef]
- Campbell, B.C.V.; Khatri, P. Stroke. Lancet 2020, 396, 129–142. [Google Scholar] [CrossRef]
- Nikolaev, V.A.; Nikolaev, A.A. Recent trends in telerehabilitation of stroke patients: A narrative review. NeuroRehabilitation 2022, 51, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Xiao, J.; Zeng, B.; Wang, Q. ICTs and interventions in telerehabilitation and their effects on stroke recovery. Front. Neurol. 2023, 14, 1234003. [Google Scholar] [CrossRef]
- Gebreheat, G.; Goman, A.; Porter-Armstrong, A. The use of home-based digital technology to support post-stroke upper limb rehabilitation: A scoping review. Clin. Rehabil. 2024, 38, 60–71. [Google Scholar] [CrossRef]
- Hestetun-Mandrup, A.M.; Toh, Z.A.; Oh, H.X.; He, H.G.; Martinsen, A.C.T.; Pikkarainen, M. Effectiveness of digital home rehabilitation and supervision for stroke survivors: A systematic review and meta-analysis. Digit. Health 2024, 10, 20552076241256861. [Google Scholar] [CrossRef] [PubMed]
- Cacciante, L.; Kiper, P.; Garzon, M.; Baldan, F.; Federico, S.; Turolla, A.; Agostini, M. Telerehabilitation for people with aphasia: A systematic review and meta-analysis. J. Commun. Disord. 2021, 92, 106111. [Google Scholar] [CrossRef] [PubMed]
- Nikolaev, V.A.; Safonicheva, O.G.; Nikolaev, A.A. Telerehabilitation of post-stroke patients with motor function disorders: A review. Adv. Gerontol. 2022, 12, 339–346. [Google Scholar] [CrossRef]
- Everard, G.; Declerck, L.; Detrembleur, C.; Leonard, S.; Bower, G.; Dehem, S.; Lejeune, T. New technologies promoting active upper limb rehabilitation after stroke: An overview and network meta-analysis. Eur. J. Phys. Rehabil. Med. 2022, 58, 530–548. [Google Scholar] [CrossRef]
- Hao, J.; Pu, Y.; Chen, Z.; Siu, K.C. Effects of virtual reality-based telerehabilitation for stroke patients: A systematic review and meta-analysis of randomized controlled trials. J. Stroke Cerebrovasc. Dis. 2023, 32, 106960. [Google Scholar] [CrossRef] [PubMed]
- Saror, H. Effectiveness of telerehabilitation for stroke patients: A critical review. J. Health Inform. Dev. Ctries. 2023, 17, 1–10. [Google Scholar]
- Sharififar, S.; Ghasemi, H.; Geis, C.; Azari, H.; Adkins, L.; Speight, B.; Vincent, H.K. Telerehabilitation service impact on physical function and adherence compared to face-to-face rehabilitation in patients with stroke: A systematic review and meta-analysis. PM R 2023, 15, 1654–1672. [Google Scholar] [CrossRef] [PubMed]
- Stark, A.L.; Krayter, S.; Dockweiler, C. Competencies required by patients and health professionals regarding telerehabilitation: A scoping review. Digit. Health 2023, 9, 20552076231218841. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.M.; Kao, H.Y.; Wu, J.H.; Su, Y.F. Improving physicians’ performance with a stroke CDSS: A cognitive fit design approach. Comput. Hum. Behav. 2016, 54, 577–586. [Google Scholar] [CrossRef]
- Laxar, D.; Eitenberger, M.; Maleczek, M.; Kaider, A.; Hammerle, F.P.; Kimberger, O. The influence of explainable vs non-explainable clinical decision support systems on rapid triage decisions: A mixed methods study. BMC Med. 2023, 21, 359. [Google Scholar] [CrossRef]
- Nugraha, D.; Onuegbu, C. Healthcare professionals’ views on decision support systems for resource management. J. Resour. Manag. Decis. Eng. 2024, 3, 4–12. [Google Scholar] [CrossRef]
- Gholamzadeh, M.; Abtahi, H.; Safdari, R. The application of knowledge-based clinical decision support systems to enhance adherence to evidence-based medicine in chronic disease. J. Healthc. Eng. 2023, 2023, 8550905. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, E.H.; Kim, H.S. Physician knowledge base: Clinical decision support systems. Yonsei Med. J. 2022, 63, 8–15. [Google Scholar] [CrossRef]
- Flores, E.; Salinas, J.M.; Blasco, A.; Lopez-Garrigos, M.; Torreblanca, R.; Carbonell, R.; Martinez-Racaj, L.; Salinas, M. Clinical decision support systems: A step forward in establishing the clinical laboratory as a decision maker hubA CDS system protocol implementation in the clinical laboratory. Comput. Struct. Biotechnol. J. 2023, 22, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Vander Stichele, R.; Bates, D.W.; Bjorklund, J.; Alexander, S.; Andersson, M.L.; Auraaen, A.; Bennie, M.; Dahl, M.L.; Eiermann, B.; et al. Guiding principles for the use of knowledge bases and real-world data in clinical decision support systems: Report by an international expert workshop at Karolinska Institutet. Expert. Rev. Clin. Pharmacol. 2020, 13, 925–934. [Google Scholar] [CrossRef]
- Akay, E.M.Z.; Hilbert, A.; Carlisle, B.G.; Madai, V.I.; Mutke, M.A.; Frey, D. Artificial intelligence for clinical decision support in acute ischemic stroke: A systematic review. Stroke 2023, 54, 1505–1516. [Google Scholar] [CrossRef]
- Python Software Foundation. Python. Available online: https://www.python.org (accessed on 28 July 2024).
- Nikolaev, V.A.; Safonicheva, O.G.; Nikolaev, A.A. A review of international experience for telerehabilitation of post-stroke patients with aphasia and cognitive problems. Bull. Rehabil. Med. 2022, 21, 64–69. [Google Scholar] [CrossRef]
- World Health Organization. International Statistical Classification of Diseases and Related Health Problems (ICD). Available online: https://www.who.int/standards/classifications/classification-of-diseases (accessed on 28 July 2024).
- Haleem, A.; Javaid, M.; Singh, R.P. Exploring the competence of ChatGPT for customer and patient service management. Intell. Pharm. 2024, 2, 392–414. [Google Scholar] [CrossRef]
- Lewis, J.R. The system usability scale: Past, present, and future. Int. J. Hum. Comput. Interact. 2018, 34, 577–590. [Google Scholar] [CrossRef]
- Tullis, T.; Albert, B. Self-Reported Metrics. In Measuring the User Experience: Collecting, Analyzing, and Presenting Usability Metrics, 2nd ed.; Tullis, T., Albert, B., Kaufmann, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 121–161. [Google Scholar]
- Interaction Design Foundation; Soegaard, M. System Usability Scale for Data-Driven UX. Available online: https://www.interaction-design.org/literature/article/system-usability-scale (accessed on 19 August 2024).
- Brooke, J. SUS: A Retrospective. J. Usability Stud. 2013, 8, 29–40. [Google Scholar]
- Abell, B.; Naicker, S.; Rodwell, D.; Donovan, T.; Tariq, A.; Baysari, M.; Blythe, R.; Parsons, R.; McPhail, S.M. Identifying barriers and facilitators to successful implementation of computerized clinical decision support systems in hospitals: A NASSS framework-informed scoping review. Implement Sci. 2023, 18, 32. [Google Scholar] [CrossRef]
- Martinez, S.; Gomez-Portes, C.; Herrera, V.; Albusac, J.; Castro-Schez, J.J.; Vallejo, D. Decision support system for automatic adjustment of rehabilitation routines for stroke patients. In Proceedings of the 22nd International Conference of the Italian Association for Artificial Intelligence (AIxIA 2023), Rome, Italy, 6–9 November 2023; pp. 52–66. [Google Scholar]
- Camardella, C.; Germanotta, M.; Aprile, I.; Cappiello, G.; Curto, Z.; Scoglio, A.; Frisoli, A. A Decision Support System to Provide an Ongoing Prediction of Robot-Assisted Rehabilitation Outcome in Stroke Survivors. In Proceedings of the 2023 International Conference on Rehabilitation Robotics, Singapore, 24–28 September 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Lin, Y.N.; Van Sang, P.; Chiu, V.; Kang, J.H.; Liou, T.H.; Ni, P.; Chang, F.H. Prediction of changes in functional outcomes during the first year after inpatient stroke rehabilitation: A longitudinal study. Arch. Phys. Med. Rehabil. 2024, 105, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Alasiri, S.F.; Douiri, A.; Altukistani, S.; Porat, T.; Mousa, O. The role of clinical decision support systems in preventing stroke in primary care: A systematic review. Perspect. Health Inf. Manag. 2023, 20, 1d. [Google Scholar]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digit. Med. 2020, 3, 17. [Google Scholar] [CrossRef]
- Toh, Z.A.; Berg, B.; Han, Q.Y.C.; Hey, H.W.D.; Pikkarainen, M.; Grotle, M.; He, H.G. Clinical decision support system used in spinal disorders: Scoping review. J. Med. Internet Res. 2024, 26, e53951. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, N.; Zhang, H.; Li, H.; Yang, Y.; Zong, X.; Chen, Y.; Wang, Y.; Shi, N. Harnessing the power of clinical decision support systems: Challenges and opportunities. Open Heart 2023, 10, e002432. [Google Scholar] [CrossRef]
- Wasylewicz, A.T.M.; Scheepers-Hoeks, A.M.J.W. Clinical Decision Support Systems. Fundamentals of Clinical Data Science; Kubben, P., Dumontier, M., Dekker, A., Eds.; Springer: Cham, Switzerland, 2019; Chapter 11; pp. 153–169. [Google Scholar]
- Hak, F.; Guimaraes, T.; Santos, M. Towards effective clinical decision support systems: A systematic review. PLoS ONE. 2022, 17, e0272846. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.R. Lifestyle modification for secondary stroke prevention. Am. J. Lifestyle Med. 2016, 12, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Roosan, D.; Padua, P.; Khan, R.; Khan, H.; Verzosa, C.; Wu, Y. Effectiveness of ChatGPT in clinical pharmacy and the role of artificial intelligence in medication therapy management. J. Am. Pharm. Assoc. 2024, 64, 422–428. [Google Scholar] [CrossRef]
- Lee, M.H.; Siewiorek, D.P.; Smailagic, A.; Bernardino, A.; Bermudez i Badia, S. A human-AI collaborative approach for clinical decision making on rehabilitation assessment. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–14. [Google Scholar] [CrossRef]
- Epizitone, A.; Moyane, S.P.; Agbehadji, I.E. A systematic literature review of health information systems for healthcare. Healthcare 2023, 11, 959. [Google Scholar] [CrossRef] [PubMed]
- Hants, L.; Bail, K.; Paterson, C. Clinical decision-making and the nursing process in digital health systems: An integrated systematic review. J. Clin. Nurs. 2023, 32, 7010–7035. [Google Scholar] [CrossRef] [PubMed]
- Bajenaru, L.; Sorici, A.; Mocanu, I.G.; Florea, A.M.; Antochi, F.A.; Ribigan, A.C. Shared decision-making to improve health-related outcomes for adults with stroke disease. Healthcare 2023, 11, 1803. [Google Scholar] [CrossRef] [PubMed]
- Alojail, M.; Alturki, M.; Khan, S.B. An informed decision support framework from a strategic perspective in the health sector. Information 2023, 14, 363. [Google Scholar] [CrossRef]
Abbreviation | Test (Scale) |
---|---|
MMSE | Mini Mental State Examination |
FIM | Functional Independence Measure |
FSST | Four Step Square Test |
TUG | Timed Up and Go Test |
BH | Broken Hearts Test (Oxford) |
TMWT | Ten-Meter Walk Test |
ROM-open | Romberg Test Eyes Open |
ROM-closed | Romberg Test Eyes Closed |
FMA-UE | Fugl–Meyer Assessment for Upper Extremity |
FMA-LE | Fugl–Meyer Assessment for Lower Extremity |
FMA-UE PROX | Fugl–Meyer Assessment for Upper Extremity Proximity |
FMA-UE DIS | Fugl–Meyer Assessment for Upper Extremity Distal |
WMFT Time | Wolf Motor Function Test Time |
WMFT FAS | Wolf Motor Function Test Functional Ability Score |
MAS | Motor Assessment Scale |
MAL AOU | Motor Activity Log Amount of Use |
MAL QOM | Motor Activity Log Quality of Movement |
BBT MAH | Box and Blocks Test for the More Affected |
BBT LAH | Box and Blocks Test for the Less Affected Hand |
MRS | Modified Rankin Scale |
MoCA | Montreal Cognitive Assessment |
NFI | Neurobehavioral Functioning Inventory |
NEADL | Nottingham Extended Activities of Daily Living Scale |
BIT | Behavioral Inattention Test |
WAB | Western Aphasia Battery |
Variable | Value, Description |
---|---|
Age | 35–95 |
Gender | Male, Female |
Dysfunction | Upper extremities, Lower extremities, Balance, Aphasia, Cognitive deteriorations, Upper extremities and cognitive deteriorations, Spatial neglect |
Clinical stage of stroke | Subacute, Chronic |
Medical tests (scales) values | (See Table 1) |
Scenario | Age | Gender | Dysfunction | Time Since Stroke, Days | Medical Tests (Scales) Results |
---|---|---|---|---|---|
Patient 1 | 62 | Male | Balance | 103 | MMSE 26; FIM 5.6; FSST 18.22; TUG 8.7; TMWT 10; ROM-open 46.57; ROM-closed 43.1 |
Patient 2 | 58 | Male | Upper extremities | 657 | MMSE 25; FMA-UE 41; WMFT time 9.17; WMFT FAS 2.86; MAL AOU 1.7; MAL QOM 0.95 |
Patient 3 | 62 | Female | Upper extremities | 475 | MMSE 26; FMA-UE 34; WMFT time 11.21; WMFT FAS 2.75; MAL AOU 1.64; MAL QOM 1.32; FMA-UE PROX 25.4; FMAUE dis 12 |
Patient 4 | 68 | Male | Upper extremities and cognitive deterioration | 18 | BBT MAH 13; BBT LAH 55; MoCA 20; NFI 187 |
Patient 5 | 72 | Male | Upper extremities | 82 | FMA-UE 44; BBT MAH 27 |
Patient 6 | 53 | Male | Lower extremities | 1295 | FM-LE 22; FIM 109; MAS 0.8; MRS 3 |
Patient 7 | 75 | Male | Aphasia | 1979 | WAB 59.8 |
Patient 8 | 71 | Female | Cognitive deterioration | 3649 | MoCA 29; NEADL 16 |
Patient 9 | 69 | Female | Spatial neglect | 3108 | BIT 139; BH 45 |
No. | Questions | Rating Scale | Mean |
---|---|---|---|
1 | I think that I would like to use this system | 1 (Strongly disagree)–5 (strongly agree) | 4.5 |
2 | I found the system unnecessarily complex | 1 (Strongly disagree)–5 (strongly agree) | 1.4 |
3 | I thought the system was easy to use | 1 (Strongly disagree)–5 (strongly agree) | 4.2 |
4 | I think that I would need the support of a technical person to be able o use this system | 1 (Strongly disagree)–5 (strongly agree) | 1.4 |
5 | I found the various functions in the system were well integrated | 1 (Strongly disagree)–5 (strongly agree) | 4.8 |
6 | I thought there was too much inconsistency in this system | 1 (Strongly disagree)–5 (strongly agree) | 1.0 |
7 | I would imagine that most people would lean to use this system quickly | 1 (Strongly disagree)–5 (strongly agree) | 4.4 |
8 | I found the system very cumbersome to use | 1 (Strongly disagree)–5 (strongly agree) | 1.3 |
9 | I felt very confident using the system | 1 (Strongly disagree)–5 (strongly agree) | 4.4 |
10 | I needed to learn a lot of things before I could get going with this system | 1 (Strongly disagree)–5 (strongly agree) | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaev, V.A.; Nikolaev, A.A. Perspectives of Decision Support System TeleRehab in the Management of Post-Stroke Telerehabilitation. Life 2024, 14, 1059. https://doi.org/10.3390/life14091059
Nikolaev VA, Nikolaev AA. Perspectives of Decision Support System TeleRehab in the Management of Post-Stroke Telerehabilitation. Life. 2024; 14(9):1059. https://doi.org/10.3390/life14091059
Chicago/Turabian StyleNikolaev, Vitaly A., and Alexander A. Nikolaev. 2024. "Perspectives of Decision Support System TeleRehab in the Management of Post-Stroke Telerehabilitation" Life 14, no. 9: 1059. https://doi.org/10.3390/life14091059
APA StyleNikolaev, V. A., & Nikolaev, A. A. (2024). Perspectives of Decision Support System TeleRehab in the Management of Post-Stroke Telerehabilitation. Life, 14(9), 1059. https://doi.org/10.3390/life14091059