Prostate Cancer: Emerging Modifiable Risk Factors and Therapeutic Strategies in the Management of Advanced Cancer
Abstract
:1. Introduction
2. Materials and Methods
3. Prostate Cancer and an Unhealthy Lifestyle
3.1. Diet
3.2. Smoking
3.3. Alcohol
3.4. Sedentary Lifestyle
Unhealthy Lifestyle | Effects on PCa Onset and Progression | References | |
---|---|---|---|
Diet | ROS production, Inflammation, Hyperinsulinemia, Gut microbiome disrupted | [18,19,20,21,22,23,24,25,26] | |
Smoking | High resistance to treatment | [28,29,30,31] | |
Alcohol | No correlation with PCa | [32,33] | |
Sedentary life | Active lifestyle reduces the risk of mortality. Poor sleep quality induces aggressive forms of PCa | [34,35,36,37,38] | |
Environmental Factors | Effects on PCa onset and progression | Mechanisms of action | References |
Heavy metals | Tumor progression | Increased levels of MMP-9; DNA metylation; K-RAS activation; apoptosis inhibition SUMOylation of AR | [39,40,41,42,43,44] |
Persistent Organic Pollutants | Increase in aggressiveness and metastasis progression | Activation/inhibition of transcriptional activity of target genes by AHR-XRE activation; up-regulation of ACAT1 by AHR activation; Up-regulation of MMP-9 exerted by AHR | [45,46] |
Environmental carcinogens | Excessive production of ROS drives the onset of PCa | Cellular damage, changes DNA sequence, proteins alterations | [47,48] |
4. Prostate Cancer and Environmental Factors
4.1. Heavy Metals
4.2. Persistent Organic Pollutants (POPs)
5. Preclinical Models and Emerging Therapies in the Treatment of Advanced Prostate Cancer
5.1. Preclinical Models of PCa
5.2. Novel Putative Therapies in the Management of Advanced PCa
Preclinical Models | Aims of Tool | Advances | Limitations | References | |
---|---|---|---|---|---|
PDX (Patient-derived xenograft model) | Transplantation of human tumor tissue into an immunodeficiency animal model | More accurate reproduction of tumor’s biology and complexity of TME by human tumor grown in animal model | Useful tool to a personalized therapeutic strategy | Lack of functionality of the human immune system in the host animal; loss of human stromal component in the animal model | [61] |
PDOs (Patient-derived organoids model) | 3D cultures of patient tissues by a basement membrane (Matrigel) | Development of organoids that reproduce the molecular and clinical diversity of PCa, as various genetic mutations | Mimic of the complexity of TME; a useful tool to test new drugs in PCa-resistant therapeutic strategies | High cost and further protocol standardization | [60,63,64,65] |
New therapeutic strategies | Aims | Advances | Limitations | References | |
CAR-T cell therapy | Genetic modification of patient’s T-cells expressing chimeric antigen receptor (CAR) targeting for PCa cells | CAR-T cells target and kill cancer cells | Low levels of PSA and improvement in imaging results; activation of peripheral blood endogenous, TCR repertoire diversity; alteration of TME | Collateral effects such as cytokine release syndrome and cystitis | [68] |
Cancer-Associated-Fibroblast (CAF) therapy | Co-culturing of human tumor tissue with CAF | Disruption of tumor progression and enhancement of cancer therapy | Useful tool for new treatment option of PCa; inhibition of chemokines/cytokines and growth factors | Complex interaction within TME due to the heterogeneity and plasticity of CAF | [69,70,71,72] |
Targeted Radionuclide therapy (TRT) | Radioactive isotope linked to a vector molecule specifically targeting tumor cell receptors or the tumor microenvironment (PSMA/GRPR) | Improving both overall survival and progression-free survival of patients with mCRPC | A useful tool for personalized treatment of mCRPC; Integration of TRT with other treatment modalities to optimize mCRPC therapy | Radiopharmaceuticals exhibit high tissue absorption, low energy transfer, and a broad radiation spectrum | [73,74,75,76] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaiser, A.; Haskins, C.; Siddiqui, M.M.; Hussain, A.; D’Adamo, C. The Evolving Role of Diet in Prostate Cancer Risk and Progression. Curr. Opin. Oncol. 2019, 31, 222–229. [Google Scholar] [CrossRef]
- Posdzich, P.; Darr, C.; Hilser, T.; Wahl, M.; Herrmann, K.; Hadaschik, B.; Grünwald, V. Metastatic Prostate Cancer-A Review of Current Treatment Options and Promising New Approaches. Cancers 2023, 15, 461. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhang, W.; Zhang, L.; Qu, Y.; Xu, Z.; Tan, Z.; Yan, P.; Tang, M.; Yang, C.; Wang, Y.; et al. Risk Factors for Prostate Cancer: An Umbrella Review of Prospective Observational Studies and Mendelian Randomization Analyses. PLoS Med. 2024, 21, e1004362. [Google Scholar] [CrossRef] [PubMed]
- Bostwick, D.G.; Burke, H.B.; Djakiew, D.; Euling, S.; Ho, S.; Landolph, J.; Morrison, H.; Sonawane, B.; Shifflett, T.; Waters, D.J.; et al. Human Prostate Cancer Risk Factors. Cancer 2004, 101, 2371–2490. [Google Scholar] [CrossRef] [PubMed]
- Clements, M.B.; Vertosick, E.A.; Guerrios-Rivera, L.; De Hoedt, A.M.; Hernandez, J.; Liss, M.A.; Leach, R.J.; Freedland, S.J.; Haese, A.; Montorsi, F.; et al. Defining the Impact of Family History on Detection of High-Grade Prostate Cancer in a Large Multi-Institutional Cohort. Eur. Urol. 2022, 82, 163–169. [Google Scholar] [CrossRef]
- Brook, M.N.; Ní Raghallaigh, H.; Govindasami, K.; Dadaev, T.; Rageevakumar, R.; Keating, D.; Hussain, N.; Osborne, A.; Lophatananon, A.; UKGPCS Collaborators; et al. Family History of Prostate Cancer and Survival Outcomes in the UK Genetic Prostate Cancer Study. Eur. Urol. 2023, 83, 257–266. [Google Scholar] [CrossRef]
- Rysanek, D.; Vasicova, P.; Kolla, J.N.; Sedlak, D.; Andera, L.; Bartek, J.; Hodny, Z. Synergism of BCL-2 Family Inhibitors Facilitates Selective Elimination of Senescent Cells. Aging 2022, 14, 6381–6414. [Google Scholar] [CrossRef]
- Guerra, L.H.A.; Campos, S.G.P.; Taboga, S.R.; Vilamaior, P.S.L. Prostatic Morphological Changes throughout Life: Cytochemistry as a Tool to Reveal Tissue Aging Markers. Microsc. Res. Tech. 2024, 87, 1020–1030. [Google Scholar] [CrossRef]
- Krušlin, B.; Tomas, D.; Džombeta, T.; Milković-Periša, M.; Ulamec, M. Inflammation in Prostatic Hyperplasia and Carcinoma-Basic Scientific Approach. Front. Oncol. 2017, 7, 77. [Google Scholar] [CrossRef]
- Marino, P.; Mininni, M.; Deiana, G.; Marino, G.; Divella, R.; Bochicchio, I.; Giuliano, A.; Lapadula, S.; Lettini, A.R.; Sanseverino, F. Healthy Lifestyle and Cancer Risk: Modifiable Risk Factors to Prevent Cancer. Nutrients 2024, 16, 800. [Google Scholar] [CrossRef]
- Macedo, S.; Teixeira, E.; Gaspar, T.B.; Boaventura, P.; Soares, M.A.; Miranda-Alves, L.; Soares, P. Endocrine-Disrupting Chemicals and Endocrine Neoplasia: A Forty-Year Systematic Review. Environ. Res. 2023, 218, 114869. [Google Scholar] [CrossRef] [PubMed]
- Nuhn, P.; De Bono, J.S.; Fizazi, K.; Freedland, S.J.; Grilli, M.; Kantoff, P.W.; Sonpavde, G.; Sternberg, C.N.; Yegnasubramanian, S.; Antonarakis, E.S. Update on Systemic Prostate Cancer Therapies: Management of Metastatic Castration-Resistant Prostate Cancer in the Era of Precision Oncology. Eur. Urol. 2019, 75, 88–99. [Google Scholar] [CrossRef]
- Zhang, Y.-B.; Pan, X.-F.; Chen, J.; Cao, A.; Zhang, Y.-G.; Xia, L.; Wang, J.; Li, H.; Liu, G.; Pan, A. Combined Lifestyle Factors, Incident Cancer, and Cancer Mortality: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Br. J. Cancer 2020, 122, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Plym, A.; Zhang, Y.; Stopsack, K.H.; Ugalde-Morales, E.; Seibert, T.M.; Conti, D.V.; Haiman, C.A.; Baras, A.; Stocks, T.; Drake, I.; et al. Early Prostate Cancer Deaths Among Men With Higher vs Lower Genetic Risk. JAMA Netw. Open 2024, 7, e2420034. [Google Scholar] [CrossRef]
- Rago, V.; Di Agostino, S. Novel Insights into the Role of the Antioxidants in Prostate Pathology. Antioxidants 2023, 12, 289. [Google Scholar] [CrossRef]
- Li, J.; Deng, Z.; Soerensen, S.J.C.; Kachuri, L.; Cardenas, A.; Graff, R.E.; Leppert, J.T.; Langston, M.E.; Chung, B.I. Ambient Air Pollution and Urological Cancer Risk: A Systematic Review and Meta-Analysis of Epidemiological Evidence. Nat. Commun. 2024, 15, 5116. [Google Scholar] [CrossRef] [PubMed]
- Ubago-Guisado, E.; Rodríguez-Barranco, M.; Ching-López, A.; Petrova, D.; Molina-Montes, E.; Amiano, P.; Barricarte-Gurrea, A.; Chirlaque, M.-D.; Agudo, A.; Sánchez, M.-J. Evidence Update on the Relationship between Diet and the Most Common Cancers from the European Prospective Investigation into Cancer and Nutrition (EPIC) Study: A Systematic Review. Nutrients 2021, 13, 3582. [Google Scholar] [CrossRef]
- Matsushita, M.; Fujita, K.; Nonomura, N. Influence of Diet and Nutrition on Prostate Cancer. Int. J. Mol. Sci. 2020, 21, 1447. [Google Scholar] [CrossRef]
- Sultan, M.I.; Ibrahim, S.A.; Youssef, R.F. Impact of a Mediterranean Diet on Prevention and Management of Urologic Diseases. BMC Urol. 2024, 24, 48. [Google Scholar] [CrossRef]
- Bagheri, A.; Nachvak, S.M.; Rezaei, M.; Moravridzade, M.; Moradi, M.; Nelson, M. Dietary Patterns and Risk of Prostate Cancer: A Factor Analysis Study in a Sample of Iranian Men. Health Promot. Perspect. 2018, 8, 133–138. [Google Scholar] [CrossRef]
- Kenfield, S.A.; DuPre, N.; Richman, E.L.; Stampfer, M.J.; Chan, J.M.; Giovannucci, E.L. Mediterranean Diet and Prostate Cancer Risk and Mortality in the Health Professionals Follow-up Study. Eur. Urol. 2014, 65, 887–894. [Google Scholar] [CrossRef]
- Lozano-Lorca, M.; Rodríguez-González, M.; Salcedo-Bellido, I.; Vázquez-Alonso, F.; Arrabal, M.; Martín-Castaño, B.; Sánchez, M.-J.; Jiménez-Moleón, J.-J.; Olmedo-Requena, R. Dietary Patterns and Prostate Cancer: CAPLIFE Study. Cancers 2022, 14, 3475. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.C.; Tabung, F.K.; Pernar, C.H.; Wang, W.; Gonzalez-Feliciano, A.G.; Chowdhury-Paulino, I.M.; Clinton, S.K.; Folefac, E.; Song, M.; Kibel, A.S.; et al. Insulinemic and Inflammatory Dietary Patterns and Risk of Prostate Cancer. Eur. Urol. 2021, 79, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Langlais, C.S.; Graff, R.E.; Van Blarigan, E.L.; Kenfield, S.A.; Neuhaus, J.; Tabung, F.K.; Cowan, J.E.; Broering, J.M.; Carroll, P.; Chan, J.M. Postdiagnostic Inflammatory, Hyperinsulinemic, and Insulin-Resistant Diets and Lifestyles and the Risk of Prostate Cancer Progression and Mortality. Cancer Epidemiol. Biomark. Prev. 2022, 31, 1760–1768. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, M.; Fujita, K.; Hatano, K.; De Velasco, M.A.; Uemura, H.; Nonomura, N. Connecting the Dots Between the Gut-IGF-1-Prostate Axis: A Role of IGF-1 in Prostate Carcinogenesis. Front. Endocrinol. 2022, 13, 852382. [Google Scholar] [CrossRef]
- Liss, M.A.; White, J.R.; Goros, M.; Gelfond, J.; Leach, R.; Johnson-Pais, T.; Lai, Z.; Rourke, E.; Basler, J.; Ankerst, D.; et al. Metabolic Biosynthesis Pathways Identified from Fecal Microbiome Associated with Prostate Cancer. Eur. Urol. 2018, 74, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Gupta, R.; Sinha, D.N.; Mehrotra, R. Relationship between Type of Smokeless Tobacco & Risk of Cancer: A Systematic Review. Indian J. Med. Res. 2018, 148, 56–76. [Google Scholar] [CrossRef] [PubMed]
- Al-Fayez, S.; El-Metwally, A. Cigarette Smoking and Prostate Cancer: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Tob. Induc. Dis. 2023, 21, 19. [Google Scholar] [CrossRef]
- Darcey, E.; Boyle, T. Tobacco Smoking and Survival after a Prostate Cancer Diagnosis: A Systematic Review and Meta-Analysis. Cancer Treat. Rev. 2018, 70, 30–40. [Google Scholar] [CrossRef]
- Viner, B.; Barberio, A.M.; Haig, T.R.; Friedenreich, C.M.; Brenner, D.R. The Individual and Combined Effects of Alcohol Consumption and Cigarette Smoking on Site-Specific Cancer Risk in a Prospective Cohort of 26,607 Adults: Results from Alberta’s Tomorrow Project. Cancer Causes Control 2019, 30, 1313–1326. [Google Scholar] [CrossRef]
- Riviere, P.; Kumar, A.; Luterstein, E.; Vitzthum, L.K.; Nalawade, V.; Sarkar, R.R.; Bryant, A.K.; Einck, J.P.; Mundt, A.J.; Murphy, J.D.; et al. Tobacco Smoking and Death from Prostate Cancer in US Veterans. Prostate Cancer Prostatic Dis. 2020, 23, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Khil, H.; Lee, D.H.; Keum, N.; Giovannucci, E.L. Alcohol Consumption and the Risk of Prostate Cancer: A Dose-Response Meta-Analysis. Nutrients 2020, 12, 2188. [Google Scholar] [CrossRef] [PubMed]
- D’Ecclesiis, O.; Pastore, E.; Gandini, S.; Caini, S.; Marvaso, G.; Jereczek-Fossa, B.A.; Corrao, G.; Raimondi, S.; Bellerba, F.; Ciceri, S.; et al. Association between Alcohol Intake and Prostate Cancer Mortality and Survival. Nutrients 2023, 15, 925. [Google Scholar] [CrossRef]
- Friedenreich, C.M.; Neilson, H.K.; Farris, M.S.; Courneya, K.S. Physical Activity and Cancer Outcomes: A Precision Medicine Approach. Clin. Cancer Res. 2016, 22, 4766–4775. [Google Scholar] [CrossRef] [PubMed]
- Kenfield, S.A.; Chan, J.M. More Evidence That Physical Activity Is Beneficial for Prostate Cancer. Prostate Cancer Prostatic Dis. 2022, 25, 383–384. [Google Scholar] [CrossRef]
- Bergengren, O.; Pekala, K.R.; Matsoukas, K.; Fainberg, J.; Mungovan, S.F.; Bratt, O.; Bray, F.; Brawley, O.; Luckenbaugh, A.N.; Mucci, L.; et al. 2022 Update on Prostate Cancer Epidemiology and Risk Factors-A Systematic Review. Eur. Urol. 2023, 84, 191–206. [Google Scholar] [CrossRef]
- Liu, R.; Wu, S.; Zhang, B.; Guo, M.; Zhang, Y. The Association between Sleep Duration and Prostate Cancer: A Systematic Review and Meta-Analysis. Medicine 2020, 99, e21180. [Google Scholar] [CrossRef]
- García-Perdomo, H.A.; Gómez-Ospina, J.C.; Chaves-Medina, M.J.; Sierra, J.M.; Gómez, A.M.A.; Rivas, J.G. Impact of Lifestyle in Prostate Cancer Patients. What Should We Do? Int. Braz. J. Urol. 2022, 48, 244–262. [Google Scholar] [CrossRef]
- El-Atta, H.M.A.; El-Bakary, A.A.; Attia, A.M.; Lotfy, A.; Khater, S.S.; Elsamanoudy, A.Z.; Abdalla, H.A. DNA Fragmentation, Caspase 3 and Prostate-Specific Antigen Genes Expression Induced by Arsenic, Cadmium, and Chromium on Nontumorigenic Human Prostate Cells. Biol. Trace Elem. Res. 2014, 162, 95–105. [Google Scholar] [CrossRef]
- Ngalame, N.N.O.; Tokar, E.J.; Person, R.J.; Waalkes, M.P. Silencing KRAS Overexpression in Arsenic-Transformed Prostate Epithelial and Stem Cells Partially Mitigates Malignant Phenotype. Toxicol. Sci. 2014, 142, 489–496. [Google Scholar] [CrossRef]
- Xu, Y.; Tokar, E.J.; Sun, Y.; Waalkes, M.P. Arsenic-Transformed Malignant Prostate Epithelia Can Convert Noncontiguous Normal Stem Cells into an Oncogenic Phenotype. Environ. Health Perspect. 2012, 120, 865–871. [Google Scholar] [CrossRef]
- Ngalame, N.N.O.; Makia, N.L.; Waalkes, M.P.; Tokar, E.J. Mitigation of Arsenic-Induced Acquired Cancer Phenotype in Prostate Cancer Stem Cells by miR-143 Restoration. Toxicol. Appl. Pharmacol. 2016, 312, 11–18. [Google Scholar] [CrossRef]
- Benbrahim-Tallaa, L.; Waterland, R.A.; Dill, A.L.; Webber, M.M.; Waalkes, M.P. Tumor Suppressor Gene Inactivation during Cadmium-Induced Malignant Transformation of Human Prostate Cells Correlates with Overexpression of de Novo DNA Methyltransferase. Environ. Health Perspect. 2007, 115, 1454–1459. [Google Scholar] [CrossRef]
- Wu, R.; Cui, Y.; Yuan, X.; Yuan, H.; Wang, Y.; He, J.; Zhao, J.; Peng, S. SUMO-Specific Protease 1 Modulates Cadmium-Augmented Transcriptional Activity of Androgen Receptor (AR) by Reversing AR SUMOylation. Toxicol. Lett. 2014, 229, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Buñay, J.; Kossai, M.; Damon-Soubeyrant, C.; De Haze, A.; Saru, J.-P.; Trousson, A.; de Joussineau, C.; Bouchareb, E.; Kocer, A.; Vialat, M.; et al. Persistent Organic Pollutants Promote Aggressiveness in Prostate Cancer. Oncogene 2023, 42, 2854–2867. [Google Scholar] [CrossRef]
- Haque, M.; Francis, J.; Sehgal, I. Aryl Hydrocarbon Exposure Induces Expression of MMP-9 in Human Prostate Cancer Cell Lines. Cancer Lett. 2005, 225, 159–166. [Google Scholar] [CrossRef]
- Lavender, N.; Hein, D.W.; Brock, G.; Kidd, L.C.R. Evaluation of Oxidative Stress Response Related Genetic Variants, Pro-Oxidants, Antioxidants and Prostate Cancer. AIMS Med. Sci. 2015, 2, 271–294. [Google Scholar] [CrossRef] [PubMed]
- Drozdz-Afelt, J.M.; Koim-Puchowska, B.B.; Kaminski, P. Analysis of Oxidative Stress Indicators in Polish Patients with Prostate Cancer. Environ. Sci. Pollut. Res. Int. 2022, 29, 4632–4640. [Google Scholar] [CrossRef]
- Bulka, C.M.; Jones, R.M.; Turyk, M.E.; Stayner, L.T.; Argos, M. Arsenic in Drinking Water and Prostate Cancer in Illinois Counties: An Ecologic Study. Environ. Res. 2016, 148, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Roh, T.; Lynch, C.F.; Weyer, P.; Wang, K.; Kelly, K.M.; Ludewig, G. Low-Level Arsenic Exposure from Drinking Water Is Associated with Prostate Cancer in Iowa. Environ. Res. 2017, 159, 338–343. [Google Scholar] [CrossRef]
- Benbrahim-Tallaa, L.; Webber, M.M.; Waalkes, M.P. Mechanisms of Acquired Androgen Independence during Arsenic-Induced Malignant Transformation of Human Prostate Epithelial Cells. Environ. Health Perspect. 2007, 115, 243–247. [Google Scholar] [CrossRef]
- Severson, P.L.; Tokar, E.J.; Vrba, L.; Waalkes, M.P.; Futscher, B.W. Agglomerates of Aberrant DNA Methylation Are Associated with Toxicant-Induced Malignant Transformation. Epigenetics 2012, 7, 1238–1248. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.B.; Voeller, H.J.; Gelmann, E.P.; Lu, J.; Stoica, E.-G.; Hebert, E.J.; Reiter, R.; Singh, B.; Danielsen, M.; Pentecost, E.; et al. Role of Cadmium in the Regulation of AR Gene Expression and Activity. Endocrinology 2002, 143, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Julin, B.; Wolk, A.; Johansson, J.-E.; Andersson, S.-O.; Andrén, O.; Akesson, A. Dietary Cadmium Exposure and Prostate Cancer Incidence: A Population-Based Prospective Cohort Study. Br. J. Cancer 2012, 107, 895–900. [Google Scholar] [CrossRef]
- Murray, I.A.; Patterson, A.D.; Perdew, G.H. Aryl Hydrocarbon Receptor Ligands in Cancer: Friend and Foe. Nat. Rev. Cancer 2014, 14, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.W.; Fritz, W.A.; Schneider, A.J.; Lin, T.-M.; Branam, A.M.; Safe, S.; Peterson, R.E. 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Has Both pro-Carcinogenic and Anti-Carcinogenic Effects on Neuroendocrine Prostate Carcinoma Formation in TRAMP Mice. Toxicol. Appl. Pharmacol. 2016, 305, 242–249. [Google Scholar] [CrossRef]
- Fan, J.; Lin, R.; Xia, S.; Chen, D.; Elf, S.E.; Liu, S.; Pan, Y.; Xu, H.; Qian, Z.; Wang, M.; et al. Tetrameric Acetyl-CoA Acetyltransferase 1 Is Important for Tumor Growth. Mol. Cell 2016, 64, 859–874. [Google Scholar] [CrossRef]
- Alwadi, D.; Felty, Q.; Roy, D.; Yoo, C.; Deoraj, A. Environmental Phenol and Paraben Exposure Risks and Their Potential Influence on the Gene Expression Involved in the Prognosis of Prostate Cancer. Int. J. Mol. Sci. 2022, 23, 3679. [Google Scholar] [CrossRef]
- Davies, A.; Conteduca, V.; Zoubeidi, A.; Beltran, H. Biological Evolution of Castration-Resistant Prostate Cancer. Eur. Urol. Focus. 2019, 5, 147–154. [Google Scholar] [CrossRef]
- Rago, V.; Perri, A.; Di Agostino, S. New Therapeutic Perspectives in Prostate Cancer: Patient-Derived Organoids and Patient-Derived Xenograft Models in Precision Medicine. Biomedicines 2023, 11, 2743. [Google Scholar] [CrossRef]
- Zhao, Y.; Shuen, T.W.H.; Toh, T.B.; Chan, X.Y.; Liu, M.; Tan, S.Y.; Fan, Y.; Yang, H.; Lyer, S.G.; Bonney, G.K.; et al. Development of a New Patient-Derived Xenograft Humanised Mouse Model to Study Human-Specific Tumour Microenvironment and Immunotherapy. Gut 2018, 67, 1845–1854. [Google Scholar] [CrossRef]
- Béraud, C.; Bidan, N.; Lassalle, M.; Lang, H.; Lindner, V.; Krucker, C.; Masliah-Planchon, J.; Potiron, E.; Lluel, P.; Massfelder, T.; et al. A New Tumorgraft Panel to Accelerate Precision Medicine in Prostate Cancer. Front. Oncol. 2023, 13, 1130048. [Google Scholar] [CrossRef]
- Pamarthy, S.; Sabaawy, H.E. Patient Derived Organoids in Prostate Cancer: Improving Therapeutic Efficacy in Precision Medicine. Mol. Cancer 2021, 20, 125. [Google Scholar] [CrossRef]
- Liu, L.; Yu, L.; Li, Z.; Li, W.; Huang, W. Patient-Derived Organoid (PDO) Platforms to Facilitate Clinical Decision Making. J. Transl. Med. 2021, 19, 40. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhang, C.; Zhang, Y.; Shi, C. Application of Organoid Models in Prostate Cancer Research. Front. Oncol. 2021, 11, 736431. [Google Scholar] [CrossRef] [PubMed]
- Gulley, J.L.; Borre, M.; Vogelzang, N.J.; Ng, S.; Agarwal, N.; Parker, C.C.; Pook, D.W.; Rathenborg, P.; Flaig, T.W.; Carles, J.; et al. Phase III Trial of PROSTVAC in Asymptomatic or Minimally Symptomatic Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2019, 37, 1051–1061. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Piulats, J.M.; Gross-Goupil, M.; Goh, J.; Ojamaa, K.; Hoimes, C.J.; Vaishampayan, U.; Berger, R.; Sezer, A.; Alanko, T.; et al. Pembrolizumab for Treatment-Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort, Open-Label Phase II KEYNOTE-199 Study. J. Clin. Oncol. 2020, 38, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Dorff, T.B.; Blanchard, M.S.; Adkins, L.N.; Luebbert, L.; Leggett, N.; Shishido, S.N.; Macias, A.; Del Real, M.M.; Dhapola, G.; Egelston, C.; et al. PSCA-CAR T Cell Therapy in Metastatic Castration-Resistant Prostate Cancer: A Phase 1 Trial. Nat. Med. 2024, 30, 1636–1644. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Lu, Y.; Li, X.; Wei, Y.; Ye, D.; Wei, G.; Zhu, Y. Targeting the Tumor Microenvironment, a New Therapeutic Approach for Prostate Cancer. Prostate Cancer Prostatic Dis. 2024. [Google Scholar] [CrossRef]
- Lang, J.; Zhao, X.; Qi, Y.; Zhang, Y.; Han, X.; Ding, Y.; Guan, J.; Ji, T.; Zhao, Y.; Nie, G. Reshaping Prostate Tumor Microenvironment To Suppress Metastasis via Cancer-Associated Fibroblast Inactivation with Peptide-Assembly-Based Nanosystem. ACS Nano 2019, 13, 12357–12371. [Google Scholar] [CrossRef]
- Wu, T.; Wang, W.; Shi, G.; Hao, M.; Wang, Y.; Yao, M.; Huang, Y.; Du, L.; Zhang, X.; Ye, D.; et al. Targeting HIC1/TGF-β Axis-Shaped Prostate Cancer Microenvironment Restrains Its Progression. Cell Death Dis. 2022, 13, 624. [Google Scholar] [CrossRef] [PubMed]
- Eigentler, A.; Handle, F.; Schanung, S.; Degen, A.; Hackl, H.; Erb, H.H.H.; Fotakis, G.; Hoefer, J.; Ploner, C.; Jöhrer, K.; et al. Glucocorticoid Treatment Influences Prostate Cancer Cell Growth and the Tumor Microenvironment via Altered Glucocorticoid Receptor Signaling in Prostate Fibroblasts. Oncogene 2024, 43, 235–247. [Google Scholar] [CrossRef]
- Stamatakos, P.V.; Fragkoulis, C.; Leventi, A.; Gklinos, K.; Kontolatis, N.; Papatsoris, A.; Dellis, A. PSMA-Based Therapeutics for Prostate Cancer. Expert. Opin. Pharmacother. 2024, 25, 1410–1419. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, M.; Ruigrok, E.A.M.; van Leenders, G.J.L.H.; van den Brink, L.; Balcioglu, H.E.; van Weerden, W.M.; Dalm, S.U. GRPR versus PSMA: Expression Profiles during Prostate Cancer Progression Demonstrate the Added Value of GRPR-Targeting Theranostic Approaches. Front. Oncol. 2023, 13, 1199432. [Google Scholar] [CrossRef]
- Hébert, K.; Bodin-Cufi, P.; Fersing, C.; Deshayes, E. New Drugs for Targeted Radionuclide Therapy in Metastatic Prostate Cancer. Eur. Urol. Focus. 2024, 13, S2405-4569(24)00154-8. [Google Scholar] [CrossRef]
- Sallam, M.; Nguyen, N.-T.; Sainsbury, F.; Kimizuka, N.; Muyldermans, S.; Benešová-Schäfer, M. PSMA-Targeted Radiotheranostics in Modern Nuclear Medicine: Then, Now, and What of the Future? Theranostics 2024, 14, 3043–3079. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bossio, S.; Urlandini, L.; Perri, A.; Conforti, F.; Aversa, A.; Di Agostino, S.; Rago, V. Prostate Cancer: Emerging Modifiable Risk Factors and Therapeutic Strategies in the Management of Advanced Cancer. Life 2024, 14, 1094. https://doi.org/10.3390/life14091094
Bossio S, Urlandini L, Perri A, Conforti F, Aversa A, Di Agostino S, Rago V. Prostate Cancer: Emerging Modifiable Risk Factors and Therapeutic Strategies in the Management of Advanced Cancer. Life. 2024; 14(9):1094. https://doi.org/10.3390/life14091094
Chicago/Turabian StyleBossio, Sabrina, Lidia Urlandini, Anna Perri, Francesco Conforti, Antonio Aversa, Silvia Di Agostino, and Vittoria Rago. 2024. "Prostate Cancer: Emerging Modifiable Risk Factors and Therapeutic Strategies in the Management of Advanced Cancer" Life 14, no. 9: 1094. https://doi.org/10.3390/life14091094
APA StyleBossio, S., Urlandini, L., Perri, A., Conforti, F., Aversa, A., Di Agostino, S., & Rago, V. (2024). Prostate Cancer: Emerging Modifiable Risk Factors and Therapeutic Strategies in the Management of Advanced Cancer. Life, 14(9), 1094. https://doi.org/10.3390/life14091094