In Vitro Evaluation of Anti-Hemolytic and Cytotoxic Effects of Traditional Mexican Medicinal Plant Extracts on Human Erythrocytes and Cell Cultures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells
2.2. Plant Material
2.3. Extraction
2.4. Preliminary Phytochemical Screen
2.5. Hemolytic Activity
2.6. Anti-Hemolytic Activity
2.7. Selectivity Index
2.8. Antioxidant Activity
2.9. Cell Viability
2.10. Statistical Analysis
3. Results and Discussion
3.1. Taxonomic Identification and Phytochemical Screening
3.2. Hemolytic Activity and Anti-Hemolytic Activity
3.3. Antioxidant Activity Assay
3.4. Cytotoxic Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Declaration of Generative AI and AI-Assisted Technologies in the Writing Process
Acknowledgments
Conflicts of Interest
References
- Hernández-Marín, D.A.; Castro-Rios, R.; Chávez-Montes, A.; Castillo-Hernández, S.L.; Elizondo-Luevano, J.H.; Muñoz-Ortega, M.H.; Sánchez-García, E. Antiparasitic Activity of Isolated Fractions from Parthenium incanum Kunth against the Hemoflagellate Protozoan Trypanosoma cruzi. Antibiotics 2024, 13, 622. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xu, J.; Fang, H.; Li, Z.; Li, M. Advances and Challenges in Medicinal Plant Breeding. Plant Sci. 2020, 298, 110573. [Google Scholar] [CrossRef] [PubMed]
- Organización Mundial de la Salud. Estrategia de La OMS Sobre Medicina Tradicional 2014–2023; Organización Mundial de la Salud: Geneva, Switzerland, 2013; ISBN 9789243506098. [Google Scholar]
- Dutt, R.; Garg, V.; Khatri, N.; Madan, A.K. Phytochemicals in Anticancer Drug Development. Anticancer Agents Med. Chem. 2019, 19, 172–183. [Google Scholar] [CrossRef]
- Larque, H.; Montes, A.C.; Zamora Chimal, J.; Looh Hernandez, M.; Elizondo Luevano, J.H.; del Olmo, E. Bioguided Assay of Polyphenols Isolated from Medicinal Mayan Species and Its Activity against Leishmania Mexicana. Pharmacogn. J. 2024, 16, 174–180. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, A.A.; Flores-Soria, F.G.; Patiño-Rodríguez, O.; Escobedo-Moratilla, A. Sanitary Registries and Popular Medicinal Plants Used in Medicines and Herbal Remedies in Mexico (2001–2020): A Review and Potential Perspectives. Horticulturae 2022, 8, 377. [Google Scholar] [CrossRef]
- Lucía, C.-P.A.; Jacqueline, B.-R.; Alberto, B.-R.L.; David, B.-A.; Beatriz, R.-A. Actualized Inventory of Medicinal Plants Used in Traditional Medicine in Oaxaca, Mexico. J. Ethnobiol. Ethnomed. 2021, 17, 7. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Reyes, T.; de la Garza, M.; Arias-Castro, C.; Rodríguez-Mendiola, M.; Fattel-Fazenda, S.; Arce-Popoca, E.; Hernández-García, S.; Villa-Treviño, S. Aqueous Crude Extract of Rhoeo Discolor, a Mexican Medicinal Plant, Decreases the Formation of Liver Preneoplastic Foci in Rats. J. Ethnopharmacol. 2007, 115, 381–386. [Google Scholar] [CrossRef]
- Fridlender, M.; Kapulnik, Y.; Koltai, H. Plant Derived Substances with Anti-Cancer Activity: From Folklore to Practice. Front. Plant Sci. 2015, 6, 799. [Google Scholar] [CrossRef]
- Bejček, J.; Jurášek, M.; Spiwok, V.; Rimpelová, S. Quo vadis Cardiac Glycoside Research? Toxins 2021, 13, 344. [Google Scholar] [CrossRef]
- Gil Campos, M.; Pérez Navero, J.L.; Ibarra de la Rosa, I. Crisis Convulsiva Secundaria a Intoxicación Por Anís Estrellado En Un Lactante. An. Pediatr. 2002, 57, 366–368. [Google Scholar] [CrossRef]
- Aouni, R.; Ben Attia, M.; Jaafoura, M.H.; Bibi-Derbel, A.; Haouari, M. Effects of the Hydro-Ethanolic Extract of Marrubium vulgare in Female Rats. Asian Pac. J. Trop. Med. 2017, 10, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Castro, A.J.; Villarreal, M.L.; Salazar-Olivo, L.A.; Gomez-Sanchez, M.; Dominguez, F.; Garcia-Carranca, A. Mexican Medicinal Plants Used for Cancer Treatment: Pharmacological, Phytochemical and Ethnobotanical Studies. J. Ethnopharmacol. 2011, 133, 945–972. [Google Scholar] [CrossRef]
- Elizondo-Luévano, J.H.; Hernández-García, M.E.; Pérez-Narváez, O.A.; Castro-Ríos, R.; Chávez-Montes, A. Berberina, Curcumina y Quercetina Como Potenciales Agentes Con Capacidad Antiparasitaria. Rev. Biol. Trop. 2020, 68, 1241–1249. [Google Scholar] [CrossRef]
- Elizondo-Luevano, J.H.; Castro-Ríos, R.; Parra-Saldívar, R.; Larqué-García, H.; Garza-Tapia, M.; Melchor-Martínez, E.M.; Chávez-Montes, A. Influence of the Polymer and Solvent Variables on the Nanoencapsulation of the Flavonoid Quercetin: Preliminary Study Based on Eudragit® Polymers. Appl. Sci. 2023, 13, 7816. [Google Scholar] [CrossRef]
- Greco, I.; Molchanova, N.; Holmedal, E.; Jenssen, H.; Hummel, B.D.; Watts, J.L.; Håkansson, J.; Hansen, P.R.; Svenson, J. Correlation between Hemolytic Activity, Cytotoxicity and Systemic In Vivo Toxicity of Synthetic Antimicrobial Peptides. Sci. Rep. 2020, 10, 13206. [Google Scholar] [CrossRef]
- Bushmeleva, K.; Vyshtakalyuk, A.; Terenzhev, D.; Belov, T.; Nikitin, E.; Zobov, V. Antioxidative and Immunomodulating Properties of Aronia melanocarpa Extract Rich in Anthocyanins. Plants 2022, 11, 3333. [Google Scholar] [CrossRef] [PubMed]
- Vega-Avila, E.; Espejo-Serna, A.; Alarcón-Aguilar, F.; Velasco-Lezama, R. Cytotoxic Activity of Four Mexican Medicinal Plants. Proc. West. Pharmacol. Soc. 2009, 52, 78–82. [Google Scholar]
- Rodríguez-Garza, N.E.; Quintanilla-Licea, R.; Romo-Sáenz, C.I.; Elizondo-Luevano, J.H.; Tamez-Guerra, P.; Rodríguez-Padilla, C.; Gomez-Flores, R. In Vitro Biological Activity and Lymphoma Cell Growth Inhibition by Selected Mexican Medicinal Plants. Life 2023, 13, 958. [Google Scholar] [CrossRef] [PubMed]
- Elizondo-Luévano, J.H.; Gomez-Flores, R.; Verde-Star, M.J.; Tamez-Guerra, P.; Romo-Sáenz, C.I.; Chávez-Montes, A.; Rodríguez-Garza, N.E.; Quintanilla-Licea, R. In Vitro Cytotoxic Activity of Methanol Extracts of Selected Medicinal Plants Traditionally Used in Mexico against Human Hepatocellular Carcinoma. Plants 2022, 11, 2862. [Google Scholar] [CrossRef]
- Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More. Oxid. Med. Cell. Longev. 2016, 2016, 2986796. [Google Scholar] [CrossRef]
- Elizondo-Luevano, J.H.; Quintanilla-Licea, R.; Monroy-García, I.N.; Kačániová, M.; Castillo-Velázquez, U.; Bazaldúa-Rodríguez, A.F.; Garza-Vega, L.M.; Torres-Hernández, Á.D.; Chávez-Montes, A. Assessment of Anticancer Properties of Argemone mexicana L. and Berberine: A Comparative Study. Plants 2024, 13, 1374. [Google Scholar] [CrossRef]
- Silva-Béltran, N.P.; Portela Marquez, M.-L.A.; Ruíz-Cruz, S.; Morán-Palacio, E.F.; Chaidez-Quiróz, C. Composición Fenólica, Actividad Antihemolítica, Antiinflamatoria y Antibacteriana de Propóleos Del Sur de Sonora. Biotecnia 2022, 24, 77–86. [Google Scholar] [CrossRef]
- De La Cruz-Jiménez, L.; Hernández-Torres, M.A.; Monroy-García, I.N.; Rivas-Morales, C.; Verde-Star, M.J.; Gonzalez-Villasana, V.; Viveros-Valdez, E. Biological Activities of Seven Medicinal Plants Used in Chiapas, Mexico. Plants 2022, 11, 1790. [Google Scholar] [CrossRef] [PubMed]
- Guillén-Meléndez, G.A.; Soto-Domínguez, A.; Loera-Arias, M.d.J.; Castillo-Velázquez, U.; Villa-Cedillo, S.A.; Piña-Mendoza, E.I.; Estrada-Castillón, E.; Chávez-Montes, A.; González-Alcocer, A.; Becerra-Verdín, E.M.; et al. Effect of Methanolic Extract of Mimosa malacophylla A. Gray In Vero and HEK-293 Cell Lines, and in the Morphology of Kidney and Bladder of Rats with Induced Urolithiasis. J. Ethnopharmacol. 2022, 297, 115552. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Castro, A.J.; Ortiz-Sánchez, E.; Domínguez, F.; Arana-Argáez, V.; Juárez-Vázquez, M.D.C.; Chávez, M.; Carranza-Álvarez, C.; Gaspar-Ramírez, O.; Espinosa-Reyes, G.; López-Toledo, G.; et al. Antitumor and Immunomodulatory Effects of Justicia spicigera Schltdl (Acanthaceae). J. Ethnopharmacol. 2012, 141, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Guillén-Meléndez, G.A.; Villa-Cedillo, S.A.; Pérez-Hernández, R.A.; Castillo-Velázquez, U.; Salas-Treviño, D.; Saucedo-Cárdenas, O.; Montes-de-Oca-Luna, R.; Gómez-Tristán, C.A.; Garza-Arredondo, A.J.; Zamora-Ávila, D.E.; et al. Cytotoxic Effect In Vitro of Acalypha monostachya Extracts over Human Tumor Cell Lines. Plants 2021, 10, 2326. [Google Scholar] [CrossRef]
- Wang, X.; Wei, Z.; Hu, P.; Xia, W.; Liao, Z.; Assani, I.; Yang, G.; Pan, Y. Optimization of Neferine Purification Based on Response Surface Methodology and Its Anti-Metastasis Mechanism on HepG2 Cells. Molecules 2023, 28, 5086. [Google Scholar] [CrossRef]
- Bautista-Villarreal, M.; Hernández, S.L.C.; López Uriarte, S.; González, M.P.B. Encapsulation of Lactiplantibacillus plantarum and Beetroot Extract with Alginate and Effect of Capsules on Rheological Properties and Stability of an Oil-in-Water Emulsion Model Food. Pol. J. Food Nutr. Sci. 2023, 73, 242–252. [Google Scholar] [CrossRef]
- Busari, I.O.; Soetan, K.O.; Aiyelaagbe, O.O.; Babayemi, O.J. Phytochemical Screening and in Vitro Anthelmintic Activity of Methanolic Extract of Terminalia glaucescens Leaf on Haemonchus Contortus Eggs. Acta Trop. 2021, 223, 106091. [Google Scholar] [CrossRef]
- Cázares-Jaramillo, G.E.; Molina-Garza, Z.J.; Luna-Cruz, I.E.; Solís-Soto, L.Y.; Rosales-Encina, J.L.; Galaviz-Silva, L. In Vitro Anti-Trypanosoma cruzi Activity of Methanolic Extract of Bidens pilosa and Identification of Active Compounds by Gas Chromatography-Mass Spectrometry Analysis. Parasites Hosts Dis. 2023, 61, 405–417. [Google Scholar] [CrossRef]
- Elizondo-Luévano, J.H.; Castro-Ríos, R.; Vicente, B.; Fernández-Soto, P.; López-Aban, J.; Muro, A.; Chávez-Montes, A. In Vitro Antischistosomal Activity of the Argemone mexicana Methanolic Extract and Its Main Component Berberine. Iran. J. Parasitol. 2021, 16, 91–100. [Google Scholar] [CrossRef]
- Oliveira, P.F.d.; Alves, J.M.; Damasceno, J.L.; Oliveira, R.A.M.; Dias, H.J.; Crotti, A.E.M.; Tavares, D.C. Cytotoxicity Screening of Essential Oils in Cancer Cell Lines. Rev. Bras. Farmacogn. 2015, 25, 183–188. [Google Scholar] [CrossRef]
- Borotová, P.; Galovičová, L.; Vukovic, N.L.; Vukic, M.; Kunová, S.; Hanus, P.; Kowalczewski, P.Ł.; Bakay, L.; Kačániová, M. Role of Litsea cubeba Essential Oil in Agricultural Products Safety: Antioxidant and Antimicrobial Applications. Plants 2022, 11, 1504. [Google Scholar] [CrossRef] [PubMed]
- Suhaimi, S.A.; Hong, S.L.; Abdul Malek, S.N. Rutamarin, an Active Constituent from Ruta angustifolia Pers., Induced Apoptotic Cell Death in the HT29 Colon Adenocarcinoma Cell Line. Pharmacogn. Mag. 2017, 13, S179–S188. [Google Scholar] [CrossRef] [PubMed]
- Vukić, M.D.; Čmiková, N.; Hsouna, A.B.; Saad, R.B.; Garzoli, S.; Schwarzová, M.; Vuković, N.L.; Obradović, A.D.; Matić, M.M.; Waszkiewicz-Robak, B.; et al. Thymus zygis, Valuable Antimicrobial (In Vitro and In Situ) and Antibiofilm Agent with Potential Antiproliferative Effects. Plants 2023, 12, 3920. [Google Scholar] [CrossRef]
- Abubakar, A.; Haque, M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J. Pharm. Bioallied Sci. 2020, 12, 1. [Google Scholar] [CrossRef]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga Latha, L. Extraction, Isolation and Characterization of Bioactive Compounds from Plants’ Extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef]
- Nuruki, Y.; Matsumoto, H.; Tsukada, M.; Tsukahara, H.; Takajo, T.; Tsuchida, K.; Anzai, K. Method to Improve Azo-Compound (AAPH)-Induced Hemolysis of Erythrocytes for Assessing Antioxidant Activity of Lipophilic Compounds. Chem. Pharm. Bull. 2021, 69, 67–71. [Google Scholar] [CrossRef]
- Shiva Shankar Reddy, C.S.; Subramanyam, M.V.V.; Vani, R.; Asha Devi, S. In Vitro Models of Oxidative Stress in Rat Erythrocytes: Effect of Antioxidant Supplements. Toxicol. Vitr. 2007, 21, 1355–1364. [Google Scholar] [CrossRef]
- Sivilotti, M.L.A. Oxidant Stress and Haemolysis of the Human Erythrocyte. Toxicol. Rev. 2004, 23, 169–188. [Google Scholar] [CrossRef]
- Peña-Medina, R.L.; Fimbres-Olivarría, D.; Enríquez-Ocaña, L.F.; Martínez-Córdova, L.R.; Del-Toro-Sánchez, C.L.; López-Elías, J.A.; González-Vega, R.I. Erythroprotective Potential of Phycobiliproteins Extracted from Porphyridium cruentum. Metabolites 2023, 13, 366. [Google Scholar] [CrossRef] [PubMed]
- Busari, I.O.; Elizondo-Luévano, J.H.; Aiyelaagbe, O.O.; Soetan, K.O.; Babayemi, O.J.; Gorgojo-Galindo, O.; Muro, A.; Vicente, B.; López-Abán, J. Anthelmintic Activity of Three Selected Ethnobotanical Plant Extracts against Strongyloides venezuelensis. Exp. Parasitol. 2024, 263–264, 108801. [Google Scholar] [CrossRef] [PubMed]
- Pieroni, L.G.; De Rezende, F.M.; Ximenes, V.F.; Dokkedal, A.L. Antioxidant Activity and Total Phenols from the Methanolic Extract of Miconia albicans (Sw.) Triana Leaves. Molecules 2011, 16, 9439–9450. [Google Scholar] [CrossRef] [PubMed]
- Quintanilla-Licea, R.; Rodríguez-Garza, N.E.; Torres-Hernández, Á.D.; Verde-Star, M.J.; Elizondo-Luévano, J.H. Actividad Citotóxica, Antioxidante y Antihemolítica Del Extracto Metanólico de Cymbopogon Citratus (DC.) Stapf. Investig. Desarro. Cienc. Tecnol. Aliment. 2023, 8, 957–964. [Google Scholar] [CrossRef]
- Chávez-Montes, A.; Bazaldúa Rodríguez, A.F.; Larqué-García, H.; Gutiérrez-Soto, G.; Elizondo-Luévano, J.H. Actividad Antiparasitaria In-Vitro Del Extracto Metanólico de Kalanchoe Daigremontiana (Crassulaceae) En Contra de Entamoeba Histolytica (Amoebida: Entamoebidae) y Trichomonas Vaginalis (Trichomonadida: Trichomonadidae). Sci. Agric. Vita 2024, 1, 1–9. [Google Scholar] [CrossRef]
- Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Comparative Antioxidant Capacities of Phenolic Compounds Measured by Various Tests. Food Chem. 2009, 113, 1226–1233. [Google Scholar] [CrossRef]
- Calderón-Medina, C.L.; Bautista-Mantilla, G.P.; Rojas-González, S. Propiedades Químicas, Físicas y Biológicas Del Suelo, Indicadores Del Estado de Diferentes Ecosistemas En Una Terraza Alta Del Departamento Del Meta. Orinoquia 2018, 22, 141–157. [Google Scholar] [CrossRef]
- Bogucka-Kocka, A.; Zidorn, C.; Kasprzycka, M.; Szymczak, G.; Szewczyk, K. Phenolic Acid Content, Antioxidant and Cytotoxic Activities of Four Kalanchoë Species. Saudi J. Biol. Sci. 2018, 25, 622–630. [Google Scholar] [CrossRef]
- Harlalka, G.; Patil, C.; Patil, M. Protective Effect of Kalanchoe pinnata Pers. (Crassulaceae) on Gentamicin-Induced Nephrotoxicity in Rats. Indian. J. Pharmacol. 2007, 39, 201. [Google Scholar] [CrossRef]
- Asiedu-Gyekye, I.J.; Antwi, D.A.; Bugyei, K.A.; Awortwe, C. Comparative Study of Two Kalanchoe Species: Total Flavonoid and Phenolic Contents and Antioxidant Properties. Afr. J. Pure Appl. Chem. 2012, 6, 65–73. [Google Scholar] [CrossRef]
- Kamboj, A.; Saluja, A.; Jain, U.; Bhatti, M. In Vitro Evaluation and Comparison of Antioxidant Activities of Various Extracts of Leaves and Stems of Kalanchoe Pinnatum. Int. J. Green Pharm. 2012, 6, 340. [Google Scholar] [CrossRef]
- Bordean, M.-E.; Ungur, R.A.; Toc, D.A.; Borda, I.M.; Marțiș, G.S.; Pop, C.R.; Filip, M.; Vlassa, M.; Nasui, B.A.; Pop, A.; et al. Antibacterial and Phytochemical Screening of Artemisia Species. Antioxidants 2023, 12, 596. [Google Scholar] [CrossRef] [PubMed]
- Gomes de Melo, J.; De Sousa Araújo, T.A.; Thijan Nobre de Almeida e Castro, V.; Lyra de Vasconcelos Cabral, D.; Do Desterro Rodrigues, M.; Carneiro do Nascimento, S.; Cavalcanti de Amorim, E.L.; De Albuquerque, U.P. Antiproliferative Activity, Antioxidant Capacity and Tannin Content in Plants of Semi-Arid Northeastern Brazil. Molecules 2010, 15, 8534–8542. [Google Scholar] [CrossRef]
- Moura, A.C.d.S.; Vilega, W.; Santos, L.C. dos Identificação de Alguns Constituintes Químicos de Indigofera Hirsuta Linn. (Fabaceae) Por CLAE-IES-EM (TOF) e Avaliação Da Atividade Antirradicalar. Quim. Nova 2011, 34, 1136–1140. [Google Scholar] [CrossRef]
- Vaher, M.; Matso, K.; Levandi, T.; Helmja, K.; Kaljurand, M. Phenolic Compounds and the Antioxidant Activity of the Bran, Flour and Whole Grain of Different Wheat Varieties. Procedia Chem. 2010, 2, 76–82. [Google Scholar] [CrossRef]
- Alatorre-Cruz, J.M.; Carreño-López, R.; Alatorre-Cruz, G.C.; Paredes-Esquivel, L.J.; Santiago-Saenz, Y.O.; Nieva-Vázquez, A. Traditional Mexican Food: Phenolic Content and Public Health Relationship. Foods 2023, 12, 1233. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Juárez, I.; Rivero-Cruz, F.; Celis, H.; Romero, I. Anti-Helicobacter pylori Activity of Anacardic Acids from Amphipterygium adstringens. J. Ethnopharmacol. 2007, 114, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Hua, X.; Liu, N.; Li, X.; Liu, S.; Chen, X.; Zhao, C.; Lan, X.; Yang, C.; Dou, Q.P.; et al. Anacardic Acid Induces Cell Apoptosis Associated with Induction of ATF4-Dependent Endoplasmic Reticulum Stress. Toxicol. Lett. 2014, 228, 170–178. [Google Scholar] [CrossRef]
- Seong, Y.-A.; Shin, P.-G.; Kim, G.-D. Anacardic Acid Induces Mitochondrial-Mediated Apoptosis in the A549 Human Lung Adenocarcinoma Cells. Int. J. Oncol. 2013, 42, 1045–1051. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, A.; Peixoto, I.T.A.; Verde-Star, M.J.; De la Torre-Zavala, S.; Aviles-Arnaut, H.; Ruiz, A.L.T.G. In Vitro Antimicrobial and Antiproliferative Activity of Amphipterygium Adstringens. Evid. Based Complement. Altern. Med. 2015, 2015, 175497. [Google Scholar] [CrossRef]
- Xiu, Y.-L.; Zhao, Y.; Gou, W.-F.; Chen, S.; Takano, Y.; Zheng, H.-C. Anacardic Acid Enhances the Proliferation of Human Ovarian Cancer Cells. PLoS ONE 2014, 9, e99361. [Google Scholar] [CrossRef] [PubMed]
- Knauth, P.; Acevedo-Hernández, G.J.; Cano, M.E.; Gutiérrez-Lomelí, M.; López, Z. In Vitro Bioactivity of Methanolic Extracts from Amphipterygium adstringens (Schltdl.) Schiede Ex Standl., Chenopodium ambrosioides L., Cirsium mexicanum DC., Eryngium carlinae F. Delaroche, and Pithecellobium dulce (Roxb.) Benth. Used in Traditional Medi. Evid. Based Complement. Altern. Med. 2018, 2018, 3610364. [Google Scholar] [CrossRef] [PubMed]
- Oviedo-Chávez, I.; Ramírez-Apan, T.; Soto-Hernández, M.; Martínez-Vázquez, M. Principles of the Bark of Amphipterygium adstringens (Julianaceae) with Anti-Inflammatory Activity. Phytomedicine 2004, 11, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Acevedo, H.; Terrazas, T.; González-Trujano, M.E.; Guzmán, Y.; Soto-Hernández, M. Anti-Ulcer Activity of Cyrtocarpa procera Analogous to That of Amphipterygium adstringens, Both Assayed on the Experimental Gastric Injury in Rats. J. Ethnopharmacol. 2011, 134, 67–73. [Google Scholar] [CrossRef]
- Cargnin, S.T.; Staudt, A.F.; Medeiros, P.; de Medeiros Sol Sol, D.; de Azevedo dos Santos, A.P.; Zanchi, F.B.; Gosmann, G.; Puyet, A.; Garcia Teles, C.B.; Gnoatto, S.B. Semisynthesis, Cytotoxicity, Antimalarial Evaluation and Structure-Activity Relationship of Two Series of Triterpene Derivatives. Bioorg Med. Chem. Lett. 2018, 28, 265–272. [Google Scholar] [CrossRef]
- Elizondo-Luévano, J.H.; Rodríguez-Garza, N.E.; Bazaldúa-Rodríguez, A.F.; Romo-Sáenz, C.I.; Tamez-Guerra, P.; Verde-Star, M.J.; Gomez-Flores, R.; Quintanilla-Licea, R. Cytotoxic, Anti-Hemolytic, and Antioxidant Activities of Ruta Chalepensis L. (Rutaceae) Extract, Fractions, and Isolated Compounds. Plants 2023, 12, 2203. [Google Scholar] [CrossRef]
- Barrett, P.N.; Terpening, S.J.; Snow, D.; Cobb, R.R.; Kistner, O. Vero Cell Technology for Rapid Development of Inactivated Whole Virus Vaccines for Emerging Viral Diseases. Expert. Rev. Vaccines 2017, 16, 883–894. [Google Scholar] [CrossRef]
- Barrett, P.N.; Mundt, W.; Kistner, O.; Howard, M.K. Vero Cell Platform in Vaccine Production: Moving towards Cell Culture-Based Viral Vaccines. Expert. Rev. Vaccines 2009, 8, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Kiesslich, S.; Kamen, A.A. Vero Cell Upstream Bioprocess Development for the Production of Viral Vectors and Vaccines. Biotechnol. Adv. 2020, 44, 107608. [Google Scholar] [CrossRef]
- Weerapreeyakul, N.; Junhom, C.; Barusrux, S.; Thitimetharoch, T. Induction of Apoptosis in Human Hepatocellular Carcinoma Cells by Extracts of Lannea coromandelica (Houtt.) Merr. and Diospyros castanea (Craib) Fletcher. Chin. Med. 2016, 11, 19. [Google Scholar] [CrossRef]
- Lozano-Ojalvo, D.; López-Fandiño, R.; López-Expósito, I. PBMC-Derived T Cells. In The Impact of Food Bioactives on Health; Springer International Publishing: Cham, Switzerland, 2015; pp. 169–180. [Google Scholar]
- Kleiveland, C.R. Peripheral Blood Mononuclear Cells. In The Impact of Food Bioactives on Health; Springer International Publishing: Cham, Switzerland, 2015; pp. 161–167. [Google Scholar]
- van Hemert, S.; Meijerink, M.; Molenaar, D.; Bron, P.A.; de Vos, P.; Kleerebezem, M.; Wells, J.M.; Marco, M.L. Identification of Lactobacillus plantarum Genes Modulating the Cytokine Response of Human Peripheral Blood Mononuclear Cells. BMC Microbiol. 2010, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Yeap, S.K.; Alitheen, N.B.; Ali, A.M.; Omar, A.R.; Raha, A.R.; Suraini, A.A.; Muhajir, A.H. Effect of Rhaphidophora Korthalsii Methanol Extract on Human Peripheral Blood Mononuclear Cell (PBMC) Proliferation and Cytolytic Activity toward HepG2. J. Ethnopharmacol. 2007, 114, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Li, J.; Cui, J.; Dong, Y.; Xin, X.; Aisa, H.A. Anti-Inflammatory Activity of Anchusa Italica Retz. in LPS-Stimulated RAW264.7 Cells Mediated by the Nrf2/HO-1, MAPK and NF-ΚB Signaling Pathways. J. Ethnopharmacol. 2022, 286, 114899. [Google Scholar] [CrossRef]
- Topashka-Ancheva, M.N.; Taskova, R.M.; Handjieva, N.V. Mitogenic Effect of Carthamus Lanatus Extracts, Fractions and Constituents. Fitoterapia 2006, 77, 608–610. [Google Scholar] [CrossRef]
- Gomez-Flores, R.; Calderon, C.L.; Scheibel, L.W.; Tamez-Guerra, P.; Rodriguez-Padilla, C.; Tamez-Guerra, R.; Weber, R.J. Immunoenhancing Properties of Plantago Major Leaf Extract. Phytother. Res. 2000, 14, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. The Bioactivities of Phycocyanobilin from Spirulina. J. Immunol. Res. 2022, 2022, 4008991. [Google Scholar] [CrossRef]
- Ramírez-Villalobos, J.M.; Romo-Sáenz, C.I.; Morán-Santibañez, K.S.; Tamez-Guerra, P.; Quintanilla-Licea, R.; Orozco-Flores, A.A.; Romero-Arguelles, R.; Tamez-Guerra, R.; Rodríguez-Padilla, C.; Gomez-Flores, R. In Vitro Tumor Cell Growth Inhibition Induced by Lophocereus marginatus (DC.) S. Arias and Terrazas Endophytic Fungi Extracts. Int. J. Environ. Res. Public Health 2021, 18, 9917. [Google Scholar] [CrossRef]
- Issa, K.; Bakhatan, A.; Khaled, M.A.; Jaradat, N.; Hawash, M.; Al-Maharik, N.; Ghanim, M.; Qadi, M. Exploring the Phytoconstituents, Antimicrobial Potency, and Cytotoxic Effects of Essential Oil from Origanum Punonense from Palestine. BMC Complement. Med. Ther. 2024, 24, 106. [Google Scholar] [CrossRef]
- Ramírez-Villalobos, J.M.; Gomez-Flores, R.; Velázquez-Flores, P.V.; Morán-Santibáñez, K.S.; Tamez-Guerra, P.; Pérez-González, O.; de la Garza-Ramos, M.A.; Rodríguez-Padilla, C.; Romo-Sáenz, C.I. Effect of Culture Conditions of Lophocereus Marginatus Endophytic Fungi on Yield and Anticancer and Antioxidant Activities. Int. J. Environ. Res. Public Health 2023, 20, 3948. [Google Scholar] [CrossRef]
Voucher | Family | Taxonomical Identification | Traditional Name | Part | Yields (%) |
---|---|---|---|---|---|
11002 | Crassulaceae | Kalanchoe daigremontiana Raym.-Hamet & H.Perrier | Aranto | L | 9.96 |
29127 | Papaveraceae | Argemone mexicana L. | Chicalote | L | 11.3 |
30642 | Anacardiaceae | Amphipterygium adstringens (Schltdl.) Standl. | Cuachalalate | B | 38.4 |
30643 | Compositae | Artemisia ludoviciana Nutt. | Estafiate | L | 19.0 |
30644 | Poaceae | Cymbopogon citratus (DC.) Stapf. | Zacate limón | L | 23.0 |
30646 | Compositae | Heterotheca inuloides Cass. | Arnica | F | 21.0 |
30647 | Celastraceae | Semialarium mexicanum (Miers) Mennega | Cancerina | B | 11.0 |
30648 | Euphorbiaceae | Jatropha dioica Sessé | Dragon’s Blood | R | 16.0 |
30649 | Acanthaceae | Justicia spicigera Schltdl. | Muicle | L | 13.2 |
30650 | Zygophyllaceae | Larrea tridentata (Sessé & Moc. ex DC.) Coville | Gobernadora | L | 13.2 |
30651 | Leguminosae | Mimosa tenuiflora (Willd.) Poir. | Tepezcohuite | B | 10.8 |
30652 | Compositae | Psacalium peltatum (Kunth) Cass. | Matarique | L | 10.9 |
30653 | Compositae | Pseudognaphalium obtusifolium (L.) Hilliard & B.L.Burtt. | Gordolobo | L | 17.0 |
30654 | Rutaceae | Ruta chalepensis L. | Rude | R | 19.4 |
30655 | Smilacaceae | Smilax aspera L. | Zarzaparrilla | L | 13.1 |
30656 | Compositae | Tagetes lucida Cav. | Yerbaniz | B | 20.6 |
Chemical Group | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Plant Extract | Alk | Carb | Cm | Db | Flv | Qn | Sp | Sl | St | Tn |
K. daigremontiana | + | + | − | + | + | − | + | − | + | − |
A. mexicana | + | − | + | + | + | − | − | + | + | − |
A. adstringens | − | + | + | + | + | + | − | + | + | + |
A. ludoviciana | − | + | + | + | + | + | − | + | + | + |
C. citratus | − | + | + | + | + | − | − | − | + | − |
H. inuloides | − | + | + | + | + | − | − | − | + | + |
S. mexicanum | − | + | + | + | − | + | − | + | − | − |
J. dioica | − | + | + | + | − | + | − | − | + | − |
J. spicigera | − | + | + | + | − | + | − | − | − | + |
L. tridentata | − | − | + | + | + | + | − | + | + | + |
M. tenuiflora | − | − | + | + | + | + | − | + | + | + |
P. peltatum | − | + | + | + | + | − | − | − | + | + |
P. obtusifolium | − | + | + | + | + | + | + | + | + | + |
R. chalepensis | + | + | + | + | + | − | − | + | + | + |
S. aspera | − | + | + | + | − | + | − | + | − | − |
T. lucida | − | + | + | + | + | − | − | + | − | + |
Plant Extract | Hemolysis | Anti-Hemolytic | SI |
---|---|---|---|
IC50 in µg/mL | |||
K. daigremontiana | 671.81 d | 12.33 ab | 54.48 |
A. mexicana | 973.88 g | 21.06 b | 46.24 |
A. adstringens | 182.87 a | 5.35 a | 34.18 |
A. ludoviciana | 825.67 f | 15.93 ab | 51.83 |
C. citratus | 558.62 c | 13.17 ab | 42.42 |
H. inuloides | 723.80 e | 8.09 a | 89.47 |
S. mexicanum | >1500 † | 15.29 ab | >98.10 |
J. dioica | 613.54 cd | 67.67 | 9.07 |
J. spicigera | >1500 † | 32.05 c | >46.80 |
L. tridentata | 550.77 c | 150.45 d | 3.66 |
M. tenuiflora | >1500 † | 15.34 ab | >97.78 |
P. peltatum | >1500 † | 10.54 a | >142.31 |
P. obtusifolium | >1500 † | 20.68 b | >72.53 |
R. chalepensis | 870.75 f | 15.45 ab | 56.36 |
S. aspera | 387.94 b | 11.25 ab | 34.48 |
T. lucida | 891.79 f | 9.03 a | 98.76 |
Plant Extract | DPPH Assay |
---|---|
IC50 in µg/mL | |
K. daigremontiana | 699.05 d |
A. mexicana | 655.39 c |
A. adstringens | 700.50 d |
A. ludoviciana | 949.73 f |
C. citratus | 1011.64 fg |
H. inuloides | 897.79 e |
S. mexicanum | >1500 † |
J. dioica | >1500 † |
J. spicigera | >1500 † |
L. tridentata | 665.41 c |
M. tenuiflora | 547.66 b |
P. peltatum | 520.52 b |
P. obtusifolium | 528.67 b |
R. chalepensis | 859.85 e |
S. aspera | 936.50 f |
T. lucida | 578.62 b |
Vit. C | 9.57 a |
Plant Extract | IC50 in µg/mL | |
---|---|---|
Vero Cells | PBMC Cells | |
K. daigremontiana | 107.13 b | ND |
A. mexicana | 200.17 c | 398.45 c |
A. adstringens | 146.55 bc | ND |
A. ludoviciana | 188.75 bc | 744.56 e |
C. citratus | 664.03 f | 287.07 a |
H. inuloides | ND | 1076.18 g |
S. mexicanum | 569.34 e | ND |
J. dioica | ND | 1317.13 h |
J. spicigera | ND | ND |
L. tridentata | 197.93 b | ND |
M. tenuiflora | 467.59 d | ND |
P. peltatum | 54.91 a | 670.30 d |
P. obtusifolium | 61.98 a | 745.40 e |
R. chalepensis | 802.83 h | 346.84 b |
S. aspera | 589.46 e | 391.60 c |
T. lucida | 780.62 g | 848.82 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elizondo-Luevano, J.H.; Quintanilla-Licea, R.; Castillo-Hernández, S.L.; Sánchez-García, E.; Bautista-Villarreal, M.; González-Meza, G.M.; Gloria-Garza, M.A.; Rodríguez-Luis, O.E.; Kluz, M.I.; Kačániová, M. In Vitro Evaluation of Anti-Hemolytic and Cytotoxic Effects of Traditional Mexican Medicinal Plant Extracts on Human Erythrocytes and Cell Cultures. Life 2024, 14, 1176. https://doi.org/10.3390/life14091176
Elizondo-Luevano JH, Quintanilla-Licea R, Castillo-Hernández SL, Sánchez-García E, Bautista-Villarreal M, González-Meza GM, Gloria-Garza MA, Rodríguez-Luis OE, Kluz MI, Kačániová M. In Vitro Evaluation of Anti-Hemolytic and Cytotoxic Effects of Traditional Mexican Medicinal Plant Extracts on Human Erythrocytes and Cell Cultures. Life. 2024; 14(9):1176. https://doi.org/10.3390/life14091176
Chicago/Turabian StyleElizondo-Luevano, Joel H., Ramiro Quintanilla-Licea, Sandra L. Castillo-Hernández, Eduardo Sánchez-García, Minerva Bautista-Villarreal, Georgia M. González-Meza, Marcela A. Gloria-Garza, Osvelia E. Rodríguez-Luis, Maciej Ireneusz Kluz, and Miroslava Kačániová. 2024. "In Vitro Evaluation of Anti-Hemolytic and Cytotoxic Effects of Traditional Mexican Medicinal Plant Extracts on Human Erythrocytes and Cell Cultures" Life 14, no. 9: 1176. https://doi.org/10.3390/life14091176
APA StyleElizondo-Luevano, J. H., Quintanilla-Licea, R., Castillo-Hernández, S. L., Sánchez-García, E., Bautista-Villarreal, M., González-Meza, G. M., Gloria-Garza, M. A., Rodríguez-Luis, O. E., Kluz, M. I., & Kačániová, M. (2024). In Vitro Evaluation of Anti-Hemolytic and Cytotoxic Effects of Traditional Mexican Medicinal Plant Extracts on Human Erythrocytes and Cell Cultures. Life, 14(9), 1176. https://doi.org/10.3390/life14091176