Redefining the Tea Green Leafhopper: Empoasca onukii Matsuda (Hemiptera: Cicadellidae) as a Vital Asset in Premium Tea Production
Abstract
:1. Introduction
2. What Is E. onukii?
3. Taxonomic, Phylogenetic Groups, and Distribution
4. Biology of E. onukii
5. Environmental Influence to E. onukii
5.1. Rainfall and Heatwaves
5.2. Humid Conditions
5.3. Illuminance Conditions
5.4. Cultivation Management
6. Host Plants’ Preference of E. onukii
Management Considerations and Implications
7. Feeding Behavior of E. onukii
8. Economic Impact of E. onukii on the Tea Industry and Farmers
9. Beneficial Compounds Associated with E. onukii
9.1. Improvements in the Field
9.2. Enhancements During Post-Harvest Storage
9.3. Implications for Tea Production
10. Future Prospects of Mass Rearing E. onukii
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, D.; Zhang, L.; Xiao, Q.; Dietrich, C.; Matsumura, M.; Zhu, C.D. Clarification of the identity of the tea green leafhopper based on morphological comparison between Chinese and Japanese specimens. PLoS ONE 2015, 10, e0139202. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Shi, L.; He, W.; Li, J.; You, S.; Chen, S.; Lin, J.; Wang, Y.; Zhang, L.; Yang, G.; et al. Genomic Variations in the Tea Leafhopper Reveal the Basis of Its Adaptive Evolution. Genom. Proteom. Bioinform. 2022, 20, 1092–1105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dietrich, C.H.; Qin, D. Microsatellite markers from tea green leafhopper Empoasca (Matsumurasca) onukii: A powerful tool for studying genetic structure in tea plantations. BMC Genet. 2016, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Moreira, J.; Aryal, J.; Guidry, L.; Adhikari, A.; Chen, Y.; Sriwattana, S.; Prinyawiwatkul, W. Tea Quality: An Overview of the Analytical Methods and Sensory Analyses Used in the Most Recent Studies. Foods 2024, 13, 3580. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Liu, X.; Zhou, Y.; Wang, X.; Zeng, L.; Fu, X.; Li, J.; Tang, J.; Dong, F.; Yang, Z. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda). Food Chem. 2017, 5, 124. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, S.; Xiao, G.; Wang, Q. Formation of volatiles in response to tea green leafhopper (Empoasca onukii Matsuda) herbivory in tea plants: A multi-omics study. Plant Cell Rep. 2021, 40, 753–766. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Li, X.; Gao, H.; Wang, C.; Li, M.; Zhang, Y.; Li, X.; Liu, E.; Zhu, X. Field Evolved Resistance to Pyrethroids, Neonicotinoids, Organophosphates and Macrolides in Rhopalosiphum padi (Linnaeus) and Sitobion avenae (Fabricius) from China; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; ISBN 8610628159. [Google Scholar]
- Chen, F.; Huang, P.; Wang, J.; Wu, W.; Lin, Y.; Hu, J.; Liu, X. Specific volatiles of tea plants determine the host preference behavior of Empoasca onukii. Front. Plant Sci. 2023, 14, 1239237. [Google Scholar] [CrossRef] [PubMed]
- Yorozuya, H. Field evaluation of resistance to tea green leafhopper, Empoasca onukii, in tea plant. Entomol. Exp. Appl. 2022, 169, 1049–1056. [Google Scholar] [CrossRef]
- Wang, M.; Li, J.; Liu, X.; Liu, C.; Qian, J.; Yang, J.; Zhou, X.; Jia, Y.; Tang, J.; Zeng, L. Characterization of Key Odorants in Lingtou Dancong Oolong Tea and Their Differences Induced by Environmental Conditions from Different Altitudes. Metabolites 2022, 12, 1063. [Google Scholar] [CrossRef]
- Jin, J.; Zhao, M.; Jing, T.; Zhang, M.; Lu, M.; Yu, G.; Wang, J.; Guo, D.; Pan, Y.; Hoffmann, T.D.; et al. Volatile compound-mediated plant-plant interactions under stress with the tea plant as a model. Hortic. Res. 2023, 10, uhad143. [Google Scholar] [CrossRef] [PubMed]
- Parveen, A.; Qin, C.; Zhou, F.; Lai, G.; Long, P.; Zhu, M.; Ke, J. The Chemistry, Sensory Properties and Health Benefits of Aroma Compounds of Black Tea Produced by Camellia sinensis and Camellia assamica. Horticulturae 2023, 9, 1253. [Google Scholar] [CrossRef]
- Feenstra, R.C.; Antoniades, A. What Is the Price of Tea in China? Towards the Relative Cost. Natl. Bur. Econ. Res. 2017. Available online: http://www.nber.org/papers/w23161 (accessed on 1 July 2024).
- Wu, S.; Mao, K.; Chen, J.; Li, J.; Zeng, L.; Yang, Y. Study on the Influence of Tea Green Leafhopper Infestation on the Tenderness of Fresh Tea Leaves and the Extraction Rate of Metabolites Related to Oolong Tea Quality. J. Tea Sci. 2023, 43, 806–822. [Google Scholar]
- Li, H.L.; Liu, F.J.; Wang, D.F.; Zhang, W.J.; Wu, G.Y.; Lin, N.Q. Effects of Shading on Population Dynamics of Small Green Leafhopper. Fujian J. Agric. Sci. 2013, 28, 1281–1284. [Google Scholar] [CrossRef]
- Liao, Y.; Yu, Z.; Liu, X.; Zeng, L.; Cheng, S.; Li, J.; Tang, J.; Yang, Z. Effect of Major Tea Insect Attack on Formation of Quality-Related Nonvolatile Specialized Metabolites in Tea (Camellia sinensis) Leaves. J. Agric. Food Chem. 2019, 67, 6716–6724. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, M.; Aikeremu, F. Involvement of three chemosensory proteins in perception of host plant volatiles in the tea green leafhopper, Empoasca onukii. Front. Physiol. 2023, 13, 1068543. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Huang, W.; Liu, Q.; Ning, J. Variation in the Aroma Composition of Jasmine Tea with Storage Duration. Foods 2024, 13, 2524. [Google Scholar] [CrossRef]
- Santana, A.d.S.; Lima, A.P.S.; Santana, E.D.R.; Santos, A.C.C.; Cristaldo, P.F.; Araújo, A.P.A.; Bacci, L. Development of conventional sampling plans for egg masses and nymphs of citrus blackfly Aleurocanthus woglumi Ashby (Hemiptera: Aleyrodidae). Crop Prot. 2021, 149, 105777. [Google Scholar] [CrossRef]
- Aartsma, Y.; Bianchi, F.J.J.A.; van der Werf, W.; Poelman, E.H.; Dicke, M. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales. PLoS ONE 2017, 216, 1054–1063. [Google Scholar] [CrossRef] [PubMed]
- Bian, L.; Cai, X.M.; Luo, Z.X.; Li, Z.Q.; Chen, Z.M. Foliage Intensity is an Important Cue of Habitat Location for Empoasca onukii. Insects 2020, 11, 426. [Google Scholar] [CrossRef] [PubMed]
- Xu, J. Tea Tourism Development in China Entering Experience Economy Era Under the Strategic Background of Rural Revitalization: A Case Study of West Lake Longjing Tea Area and Damushan Tea Garden Area in Zhejiang Province. Doctoral Thesis, University of the Balearic Islands, Balearic Islands, Spain, 2021. [Google Scholar]
- Berrie, A.; Xu, X. Developing biopesticide-based programmes for managing powdery mildew in protected strawberries in the UK. Crop Prot. 2021, 149, 105766. [Google Scholar] [CrossRef]
- Kakoki, S. Effect of partial pesticide spraying on the number of major pests and damage to new shoots of tea plants. J. Asia Pac. Entomol. 2019, 22, 826–837. [Google Scholar] [CrossRef]
- Zhou, N.N.; Wang, M.X.; Cui, L.; Pan, C.; Zhang, X.T.; Han, B.Y. Genetic variation of Empoasca vitis (Göthe) (Hemiptera: Cicadellidae) among different geographical populations based on mtDNA CO I complete sequence. Acta Ecol. Sin. 2014, 34, 6879–6889. [Google Scholar]
- Liu, J.; Sun, C.; Long, J.; Guo, J. Complete mitogenome of tea green leafhopper, Empoasca onukii (Hemiptera: Cicadellidae) from Anshun, Guizhou Province in China. Mitochondrial DNA Part B Resour. 2017, 2, 808–809. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Q.; Li, L.; Wang, D.; Zeng, M.; Wu, G. Research Progress on the Dominant Species Identification of Tea Green Leafhopper. Environ. Ecol. 2022, 37, 123–130. [Google Scholar] [CrossRef]
- Agyenim-Boateng, K.G.; Lu, J.N.; Shi, Y.Z.; Yin, X.G. Review of Leafhopper (Empoasca flavescens): A Major Pest in Castor (Ricinus communis). Genet. Genom. Sci. 2018, 3, 1–7. [Google Scholar] [CrossRef]
- Shi, L.; Zeng, Z.; Huang, H.; Zhou, Y. Identification of Empoasca onukii (Hemiptera: Cicadellidae) and Monitoring of its Populations in the Tea Plantations of South China. J. Econ. Èntomol. 2015, 108, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Han, B.; Xiao, Q. Mitochondrial COI and 16sRNA Evidence for a Single Species Hypothesis of E. vitis, J. formosana and E. onukii in East Asia. PLoS ONE 2014, 9, e115259. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shi, L.; Chen, J.; You, M.; You, S. Development and characterization of novel microsatellite markers for a dominant parasitoid Stethynium empoasca (Hymenoptera: Mymaridae) in tea plantations using high-throughput sequencing. Appl. Entomol. Zool. 2021, 56, 41–50. [Google Scholar] [CrossRef]
- Meng, Z.N.; Bian, L.; Luo, Z.X.; Li, Z.Q.; Xin, Z.J.; Cai, X.M. Taxonomic revision and analysis of the green tea leafhopper species in China’s main tea production area. Chin. J. Appl. Entomol. 2018, 55, 514–526. [Google Scholar]
- Zhang, L.; Dietrich, C.H.; Xu, Y.; Yang, Z.; Chen, M.; Pham, T.H.; Le, C.C.V.; Qiao, L.; Matsumura, M.; Qin, D. Unraveling the hierarchical genetic structure of tea green leafhopper, Matsumurasca onukii, in East Asia based on SSRs and SNPs. Ecol. Evol. 2022, 12, e9377. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, F.; Qiao, L.; Dietrich, C.H.; Matsumura, M. Population structure and genetic differentiation of tea green leafhopper, Empoasca (Matsumurasca) onukii, in China based on microsatellite markers. Nat. Genet. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Li, P.; Dai, W.; Lu, M.; Xie, D.; Tan, J.; Zhu, Y.; Lv, H.; Peng, Q.; Zhang, Y.; Guo, L.; et al. Metabolomic analysis reveals the composition differences in 13 Chinese tea cultivars of different manufacturing suitabilities. J. Sci. Food Agric. 2018, 98, 1153–1161. [Google Scholar] [CrossRef]
- Yao, Q.; Wang, M.; Chen, Z. Ecology and Behavior The Relative Preference of Empoasca onukii (Hemiptera: Cicadellidae) for Oviposition on Twenty-Four Tea Cultivars. J. Econ. Entomol. 2022, 115, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Zhou, X.; Cai, X.; Luo, Z. Mating and post-copulation behavior in the tea leafhopper, Empoasca onukii (Hemiptera: Cicadellidae). Front. Plant Sci. 2023, 14, 1273718. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Pengsakul, T.; Tukayo, M.; Yu, L.; Fang, W.; Luo, D. Host-location behavior of the tea green leafhopper Empoasca vitis Göthe (Hemiptera: Cicadellidae): Olfactory and visual effects on their orientation. Bull. Entomol. Res. 2017, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Zhang, H.; Jiao, L.; Cai, X.; Wang, M.; Chen, Z. Identifying the Biological Characteristics Associated with Oviposition Behavior of Tea Leafhopper. Insects 2020, 11, 707. [Google Scholar] [CrossRef] [PubMed]
- Id, Y.C.; Xing, Y.; Dong, Y.; Li, X.; Lin, S.; Chen, Y.; Id, X.S. Biological evidences for successive oogenesis and egg-laying of Matsumurasca onukii. PLoS ONE 2022, 17, e0263933. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Zhang, L.; Yan, P.; Ahammed, G.J. Methyl Salicylate Enhances Flavonoid Biosynthesis in Tea Leaves by Stimulating the. Molecules 2019, 2, 362. [Google Scholar] [CrossRef]
- Nieri, R.; Mazzoni, V. Vibrational mating disruption of Empoasca vitis by natural or artificial disturbance noises. Pest Manag. Sci. 2019, 75, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wen, B.; Liu, X.; Yang, Y.; Li, M.; Wang, X. Molecular and Metabolic Changes under Environmental Stresses: The Biosynthesis of Quality Components in Preharvest Tea Shoots. Horticulturae 2022, 8, 173. [Google Scholar] [CrossRef]
- Zhao, C.; Tang, G.; Cao, S.; Xu, X.; Gan, R.; Liu, Q. Phenolic Profiles and Antioxidant Activities of 30 Tea Infusions from Green, Black, Oolong, White, Yellow and Dark Teas. Antioxidants 2019, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Stepp, J.R.; Orians, C.; Griffin, T.; Matyas, C.; Robbat, A.; Cash, S.; Xue, D.; Long, C.; Unachukwu, U.; et al. Effects of Extreme Climate Events on Tea (Camellia sinensis) Functional Quality Validate Indigenous Farmer Knowledge and Sensory Preferences in Tropical China. PLoS ONE 2014, 9, e109126. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Tang, H.; Li, J.; Meng, X. Susceptibility of Selected Tea Shoots to Oviposition by Empoasca onukii (Hemiptera: Cicadellidae) and feasibility of egg removal with harvesting. Insects 2020, 11, 338. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xu, Y.; Zhang, L.; Zhao, M.; Wang, C. Adapting Tea Production to Climate Change under Rapid Economic Development in China from 1987 to 2017. Agronomy 2022, 12, 3192. [Google Scholar] [CrossRef]
- Böll, S.; Herrmann, J.V. A long-term study on the population dynamics of the grape leafhopper (Empoasca vitis) and antagonistic mymarid species. J. Pest Sci. 2004, 77, 33–42. [Google Scholar] [CrossRef]
- Zeng, L.; Liu, Y.; Wang, F.; Jin, S.; Chen, L.; Fu, Y.; Feng, Z.; Yin, J.; Sun, W.; Yu, X.; et al. Effect of tea green leafhopper (Empoasca onukii Matsuda) sucking on the quality of Oriental Beauty. Food Front. 2024, 5, 1571–1582. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, L.; Li, Z.; Zou, Y.; Bi, S. Study on biological control model of Empoasca onukii Matsuda -take tea garden ecology as an example. Entomol. Res. 2021, 51, 595–601. [Google Scholar] [CrossRef]
- Cai, X.-M.; Sun, X.-L.; Dong, W.-X.; Wang, G.-C.; Chen, Z.-M. Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants. Chemoecology 2014, 24, 1–14. [Google Scholar] [CrossRef]
- Ge, J.; Li, N.; Yang, J.; Wei, J.; Kang, L. Female adult puncture-induced plant volatiles promote mating success of the pea leafminer via enhancing vibrational signals. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180318. [Google Scholar] [CrossRef]
- Chen, L.; Pozsgai, G.; Li, X.; Li, L.; Reddy, G.V.P. Effects of cover crops on beetle assemblages in tea plantations. Crop Prot. 2021, 149, 105783. [Google Scholar] [CrossRef]
- Xin, Z.; Ge, L.; Chen, S.; Sun, X. Enhanced transcriptome responses in herbivore-infested tea plants by the green leaf volatile (Z) -3-hexenol. J. Plant Res. 2019, 132, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Yorozuya, H. Analysis of tea plant resistance to tea green leafhopper, Empoasca onukii, by detecting stylet-probing behavior with DC electropenetrography. Entomol. Exp. Appl. 2017, 165, 62–69. [Google Scholar] [CrossRef]
- Cai, X.; Luo, Z.; Meng, Z.; Liu, Y.; Chu, B.; Bian, L.; Li, Z.; Xin, Z.; Chen, Z. Primary screening and application of repellent plant volatiles to control tea leafhopper, Empoasca onukii Matsuda. Pest Manag. Sci. 2019, 76, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Ren, Q.; Lian, L.; Cai, X.; Bian, L.; Luo, Z.; Li, Z.; Ye, N.; Enbiao, E.B.; Ontology, G.O.G. Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca onukii (Matsuda) damage. Planta 2020, 252, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.Q.; Zhuang, M.Z.; Cai, X.M.; Bian, L.; Luo, Z.X.; Li, Z.Q.; You, M.S.; Chen, Z.M.; Jin, S. The Release of Volatiles in Resistant and Susceptible Tea Cultivars under Empoasca Onukii Feeding. J. Tea Sci. 2020, 40, 795–806. [Google Scholar]
- Scott, E.R.; Li, X.; Wei, J.; Kfoury, N.; Morimoto, J.; Guo, M.; Agyei, A.; Robbat, A.; Ahmed, S.; Cash, S.B.; et al. Changes in tea plant secondary metabolite profiles as a function of leafhopper density and damage. Front. Plant Sci. 2020, 11, 636. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Qiu, C.; Ding, Y.; Wang, Y.; Sun, L.; Fan, K.; Gai, Z.; Dong, G.; Wang, J.; Li, X.; et al. Fulvic acid ameliorates drought stress- induced damage in tea plants by regulating the ascorbate metabolism and flavonoids biosynthesis. BMC Genom. 2020, 21, 1–13. [Google Scholar] [CrossRef]
- Shi, L.; He, H.; Yang, G.; Huang, H.; Vasseur, L.; You, M. Are yellow sticky cards and light traps effective on tea green leafhoppers and their predators in chinese tea plantations? Insects 2021, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.B.; Venugopal, P.D.; Lamp, W.O. Climate change and phenology: Empoasca fabae (Hemiptera: Cicadellidae) migration and severity of impact. PLoS ONE 2015, 10, e0124915. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Liu, L.; Lu, X.; Du, X.; Xiang, P.; Cheng, B.; Tan, M.; Huang, J.; Wu, L. The biosynthesis of EGCG, theanine and caffeine in response to temperature is mediated by hormone signal transduction factors in tea plant (Camellia sinensis L.). Front. Plant Sci. 2023, 14, 1149182. [Google Scholar] [CrossRef] [PubMed]
- Labarrere, B.; Prinzing, A.; Dorey, T.; Chesneau, E.; Hennion, F. Variations of Secondary Metabolites among Natural Suggest Functional Redundancy and Versatility. Plants 2019, 8, 234. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chen, S.; Wang, S.; Shan, W.; Wang, X.; Lin, Y.; Su, F.; Yang, Z.; Yu, X. Defensive Responses of Tea Plants (Camellia sinensis) Against Tea Green Leafhopper Attack: A Multi-Omics Study. Front. Plant Sci. 2020, 10, 1705. [Google Scholar] [CrossRef] [PubMed]
- Le, V.S.; Lesueur, D.; Herrmann, L.; Hudek, L.; Ngoc, L.; Lambert, Q. Sustainable tea production through agroecological management practices in Vietnam: A review Sustainable tea production through agroecological management practices in Vietnam: A review. Environ. Sustain. 2021, 4, 589–604. [Google Scholar] [CrossRef]
- Shi, M.; Tang, P.; Wang, Z.; Huang, J.; Chen, X. Review of research on parasitoids and their use in biological control in China. Chin. J. Appl. Entomol. 2020, 57, 491–548. [Google Scholar]
- Mu, D.; Pan, C.; Qi, Z.; Qin, H.; Li, Q.; Liang, K.; Rao, Y.; Sun, T. Multivariate analysis of volatile profiles in tea plant infested by tea green leafhopper Empoasca onukii Matsuda. Plant Growth Regul. 2021, 95, 111–120. [Google Scholar] [CrossRef]
- Agroecosystems, T.; Pokharel, S.S.; Yu, H.; Fang, W.; Parajulee, M.N.; Chen, F. Intercropping Cover Crops for a Vital Ecosystem Service: A Review of the Biocontrol of Insect Pests in Tea Agroecosystems. Plants 2023, 12, 2361. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yuan, P.; Pozsgai, G.; Chen, P.; You, M. The impact of cover crops on the predatory mite Anystis baccarum (Acari, Anystidae) and the leafhopper pest Empoasca onukii (Hemiptera, Cicadellidae) in a tea plantation. Pest Manag. Sci. 2019, 75, 3371–3380. [Google Scholar] [CrossRef]
- Ashihara, H. Occurrence, Biosynthesis and Metabolism of Theanine (γ-Glutamyl- L-ethylamide) in Plants: A Comprehensive Review. NPC Nat. Prod. Commun. 2015, 10, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, C.; Lin, Z.; Wei, K.; Wu, L.; Feng, S. Growth Characteristic of Different Cultivars of Tea Plant in Response to Nitrogen Contents. J. Tea Sci. 2015, 35, 423–428. [Google Scholar]
- Bian, L.; Sun, X.; Luo, Z.; Zhang, Z.; Chen, Z. Design and selection of trap color for capture of the tea leafhopper, Empoasca vitis, by orthogonal optimization. Èntomol. Exp. Appl. 2014, 151, 247–258. [Google Scholar] [CrossRef]
- Yang, C.; Meng, Z.; Li, S.; Liang, S.; Qiao, D. Resistane of 12 tea cultivars to Dendrothrips minow Priesner and Empoasca onukii Matsuda and a preliminary identification of resistance components. Acta Agric. Zhejiangensis 2022, 34, 1713–1724. [Google Scholar]
- Xin, Z.; Cai, X.; Chen, S.; Luo, Z.; Bian, L.; Li, Z. A Disease Resistance Elicitor Laminarin Enhances Tea Defense against a Piercing Herbivore Empoasca (Matsumurasca) onukii Matsuda. Sci. Rep. 2019, 9, 814. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.I.; Yu, H.; Niu, C.; Yao, R.; Wu, S.; Chen, Z. Comparison of Insecticide Susceptibilities of Empoasca vitis (Hemiptera: Cicadellidae) from Three Main Tea-Growing Regions in China Comparison of Insecticide Susceptibilities of Empoasca vitis (Hemiptera: Cicadellidae) from Three Main Tea-Growing Regions in China. J. Econ. Èntomol. 2015, 108, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Theaceae, O.K.; Tian, Y.; Chen, Z.; Huang, X.; Zhang, L.; Zhang, Z. Evaluation of Botanicals for Management of Piercing—Sucking Pests and the Effect on Beneficial Arthropod Populations in Tea Trees Camellia sinensis (L.) O. Kuntze (Theaceae). J. Insect Sci. 2020, 20, 27. [Google Scholar] [CrossRef]
- Régnière, J.; Powell, J.; Bentz, B.; Nealis, V. Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling. J. Insect Physiol. 2012, 58, 634–647. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Lin, N.Q. The Influence of Temperature and Humidity on the Population Dynamics of Small Green Leafhopper at Tea Garden. Fujian J. Agric. Sci. 2012, 27, 55–59. [Google Scholar]
- Liu, Y.; Qin, D.; Fletcher, M.J.; Zhang, Y. Review of Empoasca (Okubasca) Dworakowska (Hemiptera: Cicadellidae: Typhlocybinae: Empoascini), first record from China and descriptionof two new species. Zootaxa 2011, 3101, 59–64. [Google Scholar] [CrossRef]
- Zhou, J.; Xiang, J.; Zhang, S.; Duan, C. Structural and Functional Analysis of the Amphioxus IGFBP Gene Uncovers Ancient Origin of IGF-Independent Functions. Endocrinology 2013, 154, 3753–3763. [Google Scholar] [CrossRef] [PubMed]
- Brosset, A.; Blande, J.D. Volatile-mediated plant—Plant interactions: Volatile organic compounds as modulators of receiver plant defence, growth, and reproduction. J. Exp. Bot. 2022, 73, 511–528. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lin, S.; Li, J.; Chen, T.; Gu, Q.; Yang, T. Theanine Improves Salt Stress Tolerance via Modulating Redox Homeostasis in Tea Plants (Camellia sinensis L.). Front. Plant Sci. 2021, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, H.; Wu, D.; Kenaan, A.; Geng, F.; Gan, R. L-Theanine: A Unique Functional Amino Acid in Tea (Camellia sinensis L.) with Multiple Health Benefits and Food Applications. Front. Nutr. 2022, 9, 853846. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Wang, J. Effect of tea polyphenols on intestinal barrier and immune function in weaned lambs. Front. Vet. Sci. 2024, 11, 1361507. [Google Scholar] [CrossRef]
- Mao, P.; Wang, L.Y.; Bai, P.X.; Wei, K.; Ruan, L.; Zhnag, Y.Z.; Cheng, H. Identification and Analysis of Analogue Theanine Synthase Gene Family in Tomato. Sci. Agric. 2021, 41, 173–183. [Google Scholar]
- Ho, C.; Zheng, X.; Li, S. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef]
Temperature (°C) | Fecundity (Eggs/Female) | Adult Longevity (Days) | Intrinsic Rate of Increase (r) | Population Doubling Time (Days) | Reference |
---|---|---|---|---|---|
15 | 30–40 | 25–30 | 0.080 | 8.66 | [38] |
20 | 50–60 | 20–25 | 0.150 | 4.62 | [39] |
25 | 70–80 | 15–20 | 0.200 | 3.46 | [40] |
30 | 90–100 | 10–15 | 0.240 | 2.88 | [39] |
35 | 40–50 | 5–10 | 0.100 | 6.93 | [41] |
Beneficial Compound | Mechanism of Production | Role in Enhancing Tea Quality | Citations |
---|---|---|---|
Catechins | feeding by E. onukii stimulates the tea plant’s phenolic pathways. | adds bitterness and astringency, essential for the characteristic taste of green tea. | [12,75] |
Methyl Salicylate (MeSA) | Generated as part of the plant’s signaling response to herbivory. | Introduces minty and sweet notes to tea aroma while also preventing oxidation, enhancing storage quality. | [65,83,84] |
Volatile Organic Compounds (VOCs) | Produced as the plant defends itself from stress caused by herbivory. | Enriches tea’s fruity and floral aroma, elevating its sensory appeal. | [10,60] |
Theanine | Stress caused by leafhopper feeding boosts biosynthesis. | Amplifies umami flavors and adds sweetness, making tea more appetizing and premium. | [85,86] |
Polyphenols | Herbivory stimulates their accumulation in tea leaves. | Strengthens tea’s antioxidant properties, prolonging freshness during storage and boosting its health benefits. | [33,87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanu, U.C.; Wang, Z.; Qiu, C.; Wen, Q.; Li, X.; Qiu, D.; Gan, Y.; Mao, R. Redefining the Tea Green Leafhopper: Empoasca onukii Matsuda (Hemiptera: Cicadellidae) as a Vital Asset in Premium Tea Production. Life 2025, 15, 133. https://doi.org/10.3390/life15010133
Kanu UC, Wang Z, Qiu C, Wen Q, Li X, Qiu D, Gan Y, Mao R. Redefining the Tea Green Leafhopper: Empoasca onukii Matsuda (Hemiptera: Cicadellidae) as a Vital Asset in Premium Tea Production. Life. 2025; 15(1):133. https://doi.org/10.3390/life15010133
Chicago/Turabian StyleKanu, Unisa Conteh, Zhaohong Wang, Chenshi Qiu, Qiaojun Wen, Xueyan Li, Dongliang Qiu, Yinwei Gan, and Runqian Mao. 2025. "Redefining the Tea Green Leafhopper: Empoasca onukii Matsuda (Hemiptera: Cicadellidae) as a Vital Asset in Premium Tea Production" Life 15, no. 1: 133. https://doi.org/10.3390/life15010133
APA StyleKanu, U. C., Wang, Z., Qiu, C., Wen, Q., Li, X., Qiu, D., Gan, Y., & Mao, R. (2025). Redefining the Tea Green Leafhopper: Empoasca onukii Matsuda (Hemiptera: Cicadellidae) as a Vital Asset in Premium Tea Production. Life, 15(1), 133. https://doi.org/10.3390/life15010133