Are Trace Elements Provided for Children on Long-Term Parenteral Nutrition Adequate to Meet Their Needs?
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. The Dosage of Trace Elements in the Study Group and in the Control Group
2.3. Trace Element Determination
2.4. Quality Control
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
- The serum concentrations of Mn, Cu, and Se in the study group aligned with the established norms, even with lower-than-recommended doses for patients over 15 kg;
- An iodine intake below 1 μg/kg/day appears insufficient for patients weighing more than 15 kg;
- Patients on LPN were shown to require a higher Zn supply than current recommendations;
- The lower serum Mn levels in the study group compared to the controls suggest a reduced risk of Mn toxicity in these patients;
- Comprehensive population studies in Poland are needed to define reference ranges for Mn, Zn, Cu, Se, and I across age groups, improving the monitoring of patients on parenteral nutrition.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berger, M.M.; Shenkin, A.; Schweinlin, A.; Amrein, K.; Augsburger, M.; Biesalski, H.-K.; Bischoff, S.C.; Casaer, M.P.; Gundogan, K.; Lepp, H.-L.; et al. ESPEN micronutrient guideline. Clin. Nutr. 2022, 41, 1357–1424. [Google Scholar] [CrossRef]
- Hardy, G.; Wong, T.; Morrissey, H.; Anderson, C.; Moltu, S.J.; Poindexter, B.; Lapillonne, A.; Ball, P.A. Parenteral Provision of Micronutrients to Pediatric Patients: An International Expert Consensus Paper. JPEN J. Parenter. Enteral Nutr. 2020, 44 (Suppl. 2), S5–S23. [Google Scholar] [CrossRef] [PubMed]
- Domellöf, M.; Szitanyi, P.; Simchowitz, V.; Franz, A.; Mimouni, F.; ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Iron and trace minerals. Clin. Nutr. 2018, 37, 2354–2359. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, J.C.; Reese, S.A.; Mackay, M.; Anderson, C.R.; Jackson, D.; Paul, I.L. Assessing Selenium, Manganese, and Iodine Status in Pediatric Patients Receiving Parenteral Nutrition. Nutr. Clin. Pract. 2017, 32, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Perks, P.; Huynh, E.; Kaluza, K.; Boullata, J.I. Advances in Trace Element Supplementation for Parenteral Nutrition. Nutrients 2022, 14, 1770. [Google Scholar] [CrossRef] [PubMed]
- Zemrani, B.; McCallum, Z.; Bines, J.E. Trace Element Provision in Parenteral Nutrition in Children: One Size Does Not Fit All. Nutrients 2018, 10, 1819. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Jiang, W.; Wang, X.; Shahid, S.; Saba, N.; Ahmad, M.; Dar, A.; Masood, S.U.; Imran, M.; Mustafa, A. Mechanistic Impact of Zinc Deficiency in Human Development. Front. Nutr. 2022, 9, 717064. [Google Scholar] [CrossRef]
- Lossow, K.; Renko, K.; Schwarz, M.; Schomburg, L.; Schwerdtle, T.; Kipp, A.P. The Nutritional Supply of Iodine and Selenium Affects Thyroid Hormone Axis Related Endpoints in Mice. Nutrients 2021, 13, 3773. [Google Scholar] [CrossRef]
- Santos, D.; Batoreu, C.; Mateus, L.; Marreilha Dos Santos, A.P.; Aschner, M. Manganese in human parenteral nutrition: Considerations for toxicity and biomonitoring. Neurotoxicology 2014, 43, 36–45. [Google Scholar] [CrossRef]
- Beck, M.A.; Levander, O.A.; Handy, J. Selenium deficiency and viral infection. J. Nutr. 2003, 133, 1463S–1467S. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xiao, T.; Zheng, B. Medical geology of arsenic, selenium and thallium in China. Sci. Total Environ. 2012, 421–422, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Thomson, C.D. Assessment of requirements for selenium and adequacy of selenium status: A review. Eur. J. Clin. Nutr. 2004, 58, 391–402. [Google Scholar] [CrossRef]
- Altarelli, M.; Ben-Hamouda, N.; Schneider, A.; Berger, M.M. Copper Deficiency: Causes, Manifestations, and Treatment. Nutr. Clin. Pract. 2019, 34, 504–513. [Google Scholar] [CrossRef]
- Kumar, N. Copper deficiency myelopathy (human swayback). Mayo Clin. Proc. 2006, 81, 1371–1384. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.F.; Klevay, L.M. Copper. Adv. Nutr. 2011, 2, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Discovery of human zinc deficiency: Its impact on human health and disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, H.; Tsutsui, T. Infants and elderlies are susceptible to zinc deficiency. Sci. Rep. 2016, 6, 21850. [Google Scholar] [CrossRef]
- Wahab, A.; Mushtaq, K.; Khan, A.; Khakwani, M.S.K.; Masood, A.; Henderson, J.; Malik, F. Zinc-induced hypocupremia and pancytopenia, from zinc supplementation to its toxicity, a case report. J. Community Hosp. Intern. Med. Perspect. 2021, 11, 843–846. [Google Scholar] [CrossRef]
- Pearce, E.N.; Gerber, A.R.; Gootnick, D.B.; Khan, L.K.; Li, R.; Pino, S.; Braverman, L.E. Effects of chronic iodine excess in a cohort of long-term American workers in West Africa. J. Clin. Endocrinol. Metab. 2002, 87, 5499–5502. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Boelaert, K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 2015, 3, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Greene, E.; Shokur, R.; Brown, L.; Petros, A.; Raman, S. Incidence of Hypermanganesemia in Children Who Are Administered Parenteral Nutrition. JPEN J. Parenter. Enteral Nutr. 2016, 40, 766–767. [Google Scholar] [CrossRef]
- Hardy, I.J.; Gillanders, L.; Hardy, G. Is manganese an essential supplement for parenteral nutrition? Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Boullata, J.I. Trace elements in critically ill patients. J. Infus. Nurs. 2013, 36, 16–23. [Google Scholar] [CrossRef]
- Fell, J.M.; Reynolds, A.P.; Meadows, N.; Khan, K.; Long, S.G.; Quaghebeur, G.; Taylor, W.J.; Milla, P.J. Manganese toxicity in children receiving long-term parenteral nutrition. Lancet 1996, 347, 1218–1221. [Google Scholar] [CrossRef] [PubMed]
- Iinuma, Y.; Kubota, M.; Uchiyama, M.; Yagi, M.; Kanada, S.; Yamazaki, S.; Murata, H.; Okamoto, K.; Suzuki, M.; Nitta, K. Whole-blood manganese levels and brain manganese accumulation in children receiving long-term home parenteral nutrition. Pediatr. Surg. Int. 2003, 19, 268–272. [Google Scholar] [CrossRef]
- MacKay, M.; Mulroy, C.W.; Street, J.; Stewart, C.; Johnsen, J.; Jackson, D.; Paul, I. Assessing copper status in pediatric patients receiving parenteral nutrition. Nutr. Clin. Pract. 2015, 30, 117–121. [Google Scholar] [CrossRef]
- Namjoshi, S.S.; Muradian, S.; Bechtold, H.; Reyen, L.; Venick, R.S.; Marcus, E.A.; Vargas, J.H.; Wozniak, L.J. Nutrition Deficiencies in Children with Intestinal Failure Receiving Chronic Parenteral Nutrition. JPEN J. Parenter. Enteral Nutr. 2018, 42, 427–435. [Google Scholar] [CrossRef]
- Lee, J.Y.; Shin, H.J.; Bae, H.J.; Jo, Y.H.; Cho, Y.S.; Shin, S.H.; Kim, E.-K.; Kim, H.-S. Effect of selenium-free parenteral nutrition on serum selenium of neonates and infants maintained on long-term parenteral nutrition. JPEN J. Parenter. Enteral Nutr. 2022, 46, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Dahlstrom, K.A.; Ament, M.E.; Medhin, M.G.; Meurling, S. Serum trace elements in children receiving long-term parenteral nutrition. J. Pediatr. 1986, 109, 625–630. [Google Scholar] [CrossRef]
- Vanek, V.W.; Borum, P.; Buchman, A.; Fessler, T.A.; Howard, L.; Jeejeebhoy, K.; Kochevar, M.; Shenkin, A.; Valentine, C.J.; Novel Nutrient Task Force, Parenteral Multi-Vitamin and Multi–Trace Element Working Group; et al. A.S.P.E.N. position paper: Recommendations for changes in commercially available parenteral multivitamin and multi-trace element products. Nutr. Clin. Pract. 2012, 27, 440–491. [Google Scholar] [CrossRef] [PubMed]
- Romanowska, H.; Bartoszewicz, K.; Danko, M.; Wielopolska, J.; Popińska, K.; Żydak, J.; Sibilska, M.; Borkowska, A.; Szlagatys-Sidorkiewicz, A.; Książyk, J. Unexpected Serum and Urine Aluminum Concentrations in Pediatric Patients on Home Parenteral Nutrition. Nutrients 2023, 15, 3597. [Google Scholar] [CrossRef] [PubMed]
- Romanowska, H.; Wilk, A.; Danko, M.; Borkowska, A.; Popińska, K.; Sibilska, M.; Żydak, J.; Marciniak, W.; Szlagatys-Sidorkiewicz, A.; Książyk, J. Evaluation of Arsenic and Cobalt Levels in Pediatric Patients Receiving Long-Term Parenteral Nutrition. Nutrients 2024, 16, 1179. [Google Scholar] [CrossRef]
- Joosten, K.; Embleton, N.; Yan, W.; Senterre, T. ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Energy. Clin. Nutr. 2018, 37, 2309–2314. [Google Scholar] [CrossRef] [PubMed]
- Barceloux, D.G. Manganese. J. Toxicol. Clin. Toxicol. 1999, 37, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Gaman, L.; Delia, C.E.; Luzardo, O.P.; Zumbado, M.; Badea, M.; Stoian, I.; Gilca, M.; Boada, L.D.; Henríquez-Hernández, L.A. Serum concentration of toxic metals and rare earth elements in children and adolescent. Int. J. Environ. Health Res. 2020, 30, 696–712. [Google Scholar] [CrossRef] [PubMed]
- Siepler, J.K.; Nishikawa, R.A.; Diamantidis, T.; Okamoto, R. Asymptomatic hypermanganesemia in long-term home parenteral nutrition patients. Nutr. Clin. Pract. 2003, 18, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Aschner, J.L.; Anderson, A.; Slaughter, J.C.; Aschner, M.; Steele, S.; Beller, A.; Mouvery, A.; Furlong, H.M.; Maitre, N.L. Neuroimaging identifies increased manganese deposition in infants receiving parenteral nutrition. Am. J. Clin. Nutr. 2015, 102, 1482–1489. [Google Scholar] [CrossRef] [PubMed]
- Takagi, Y.; Okada, A.; Sando, K.; Wasa, M.; Yoshida, H.; Hirabuki, N. Evaluation of indexes of in vivo manganese status and the optimal intravenous dose for adult patients undergoing home parenteral nutrition. Am. J. Clin. Nutr. 2002, 75, 112–118. [Google Scholar] [CrossRef]
- Khan, A.; Hingre, J.; Dhamoon, A.S. Manganese Neurotoxicity as a Complication of Chronic Total Parenteral Nutrition. Case Rep. Neurol. Med. 2020, 2020, 9484028. [Google Scholar] [CrossRef] [PubMed]
- Jeejeebhoy, K. Zinc: An essential trace element for parenteral nutrition. Gastroenterology 2009, 137, S7–S12. [Google Scholar] [CrossRef]
- Lin, C.-N.; Wilson, A.; Church, B.B.; Ehman, S.; Roberts, W.L.; McMillin, G.A. Pediatric reference intervals for serum copper and zinc. Clin. Chim. Acta 2012, 413, 612–615. [Google Scholar] [CrossRef] [PubMed]
- Wolman, S.L.; Anderson, G.H.; Marliss, E.B.; Jeejeebhoy, K.N. Zinc in total parenteral nutrition: Requirements and metabolic effects. Gastroenterology 1979, 76, 458–467. [Google Scholar] [CrossRef]
- Btaiche, I.F.; Carver, P.L.; Welch, K.B. Dosing and monitoring of trace elements in long-term home parenteral nutrition patients. JPEN J. Parenter. Enteral Nutr. 2011, 35, 736–747. [Google Scholar] [CrossRef]
- Blaszyk, H.; Wild, P.J.; Oliveira, A.; Kelly, D.G.; Burgart, L.J. Hepatic copper in patients receiving long-term total parenteral nutrition. J. Clin. Gastroenterol. 2005, 39, 318–320. [Google Scholar] [CrossRef]
- Cicalese, M.P.; Bruzzese, E.; Guarino, A.; Spagnuolo, M.I. Requesting iodine supplementation in children on parenteral nutrition. Clin. Nutr. 2009, 28, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Reinert, J.P.; Forbes, L.D. Manganese Toxicity Associated with Total Parenteral Nutrition: A Review. J. Pharm. Technol. 2021, 37, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zheng, W.; Long, L.; Zhao, W.; Li, X.; Mo, X.; Lu, J.; Fu, X.; Li, W.; Liu, S.; et al. Brain magnetic resonance imaging and manganese concentrations in red blood cells of smelting workers: Search for biomarkers of manganese exposure. Neurotoxicology 2007, 28, 126–135. [Google Scholar] [CrossRef] [PubMed]
TE | ESPGHAN, ESPEN, ESPR, CSPEN Recommendations (2018) | A.S.P.E.N Recommendations (2012) | TE Supply in the Study Group | |||
---|---|---|---|---|---|---|
Infants Born on Time μg/kg/day | Children > 12 mo μg/kg/day | Infants Born on Time μg/kg/day | Children > 12 mo μg/kg/day | BW ≤ 15 kg μg/kg/day | BW > 15 kg μg/day | |
Mn (manganese) | 1 (max 50 μg/day) | 1 (max 50 μg/day) | 1 (max 50 μg/day) | 1 (max 50 μg/day) | 1 | 15 |
Zn (zinc) | >3 mo: 100 (no max stated) | 50 (max 5000 μg/day) | >3 mo: 50 (max 5000 μg/day) | 50 (max 5000 μg/day) | 250 | 3750 |
Cu (copper) | 20 (no max stated) | 20 (max 500 μg/day) | 20 (no max stated) | 20 (max 500 μg/day) | 20 | 300 |
Se (selenium) | 2–3 (no max stated) | 2–3 (max 100 μg/day) | 1–3 (no max stated) | 1–3 (max 100 μg/day) | 2 | 30 |
I (iodine) | At least 1 (no max stated) | At least 1 (no max stated) | 1 (no max stated) | 1 (no max stated) | 1 | 15 |
Trace Elements | Study Group | Control Group | p-Value | ||||
---|---|---|---|---|---|---|---|
Median (μg/L) | Range (Min–Max) (μg/L) | Interquartile Range (IQR) | Median (μg/L) | Range (Min–Max) (μg/L) | Interquartile Range (IQR) | ||
Mn (manganese) | 2.42 | 0.91–7.27 | 1.0 | 3.95 | 1.9–63.55 | 1.58 | p < 0.001 |
Zn (zinc) | 985.68 | 449.16–1781.95 | 354.3 | 774.51 | 480.0–1955.36 | 210.58 | p < 0.001 |
Cu (copper) | 915.99 | 283.58–1876.53 | 167.4 | 1071.0 | 327.09–2318.6 | 354.97 | p < 0.001 |
Se (selenium) | 75.53 | 41.08–118.52 | 21.36 | 61.18 | 25.49–397.79 | 13.58 | p < 0.001 |
I (iodine) | 61.75 | 32.1–348.07 | 16.55 | 65.8 | 44.89–129.56 | 17.02 | p < 0.05 |
Trace Elements | BW ≤ 15 kg | BW > 15 kg | p-Value | ||||
---|---|---|---|---|---|---|---|
Median (μg/L) | Range (Min–Max) (μg/L) | Interquartile Range (IQR) | Median (μg/L) | Range (Min–Max) (μg/L) | Interquartile Range (IQR) | ||
Mn (manganese) | 2.55 | 1.2–7.27 | 1.27 | 2.32 | 0.91–6.19 | 0.96 | NS |
Zn (zinc) | 1107.71 | 710.41–1781.95 | 211.8 | 896.75 | 449.16–1664.55 | 333.34 | p < 0.001 |
Cu (copper) | 949.23 | 651.08–1876.56 | 149.75 | 885.37 | 283.58–1392.28 | 226.5 | NS |
Se (selenium) | 84.68 | 52.33–118.52 | 13.17 | 71.15 | 41.08–105.89 | 18.62 | p < 0.001 |
I (iodine) | 65.84 | 44.35–384.07 | 19.76 | 59.33 | 32.1–102.72 | 14.6 | p < 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanowska, H.; Danko, M.; Borkowska, A.; Popińska, K.; Sibilska, M.; Żydak, J.; Wielopolska, J.; Bartoszewicz, K.; Szlagatys-Sidorkiewicz, A.; Książyk, J. Are Trace Elements Provided for Children on Long-Term Parenteral Nutrition Adequate to Meet Their Needs? Life 2025, 15, 29. https://doi.org/10.3390/life15010029
Romanowska H, Danko M, Borkowska A, Popińska K, Sibilska M, Żydak J, Wielopolska J, Bartoszewicz K, Szlagatys-Sidorkiewicz A, Książyk J. Are Trace Elements Provided for Children on Long-Term Parenteral Nutrition Adequate to Meet Their Needs? Life. 2025; 15(1):29. https://doi.org/10.3390/life15010029
Chicago/Turabian StyleRomanowska, Hanna, Mikołaj Danko, Anna Borkowska, Katarzyna Popińska, Marta Sibilska, Joanna Żydak, Joanna Wielopolska, Klaudia Bartoszewicz, Agnieszka Szlagatys-Sidorkiewicz, and Janusz Książyk. 2025. "Are Trace Elements Provided for Children on Long-Term Parenteral Nutrition Adequate to Meet Their Needs?" Life 15, no. 1: 29. https://doi.org/10.3390/life15010029
APA StyleRomanowska, H., Danko, M., Borkowska, A., Popińska, K., Sibilska, M., Żydak, J., Wielopolska, J., Bartoszewicz, K., Szlagatys-Sidorkiewicz, A., & Książyk, J. (2025). Are Trace Elements Provided for Children on Long-Term Parenteral Nutrition Adequate to Meet Their Needs? Life, 15(1), 29. https://doi.org/10.3390/life15010029