High and Low Adherence to Mediterranean and DASH Diet Patterns and the Risk of Heart Failure: A Meta-Analysis of Observational Studies †
Abstract
:1. Introduction
2. Methods
2.1. Information Sources, Search Strategy, and Study Selection Process
2.2. Eligibility Criteria
2.3. Data Collection Process
2.4. Quality Assessment in Individual Studies
2.5. Statistical Analysis
3. Results
3.1. Literature Search
3.2. Baseline Characteristics of Included Studies
3.3. Results of the Meta-Analysis
3.4. Outcomes of the Meta-Analysis on Incident Heart Failure Risk
3.5. Outcomes of the Meta-Analysis on Mortality in Patients with Heart Failure
3.6. Subgroup Analysis
3.7. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Groenewegen, A.; Rutten, F.H.; Mosterd, A.; Hoes, A.W. Epidemiology of Heart Failure. Eur. J. Heart Fail. 2020, 22, 1342–1356. [Google Scholar] [CrossRef] [PubMed]
- Celik, A.; Ural, D.; Sahin, A.; Colluoglu, I.T.; Kanik, E.A.; Ata, N.; Arugaslan, E.; Demir, E.; Ayvali, M.O.; Ulgu, M.M.; et al. Trends in Heart Failure between 2016 and 2022 in Türkiye (TRends-HF): A Nationwide Retrospective Cohort Study of 85 Million Individuals across Entire Population of All Ages. Lancet Reg. Health Eur. 2023, 33, 100723. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Albert, N.M.; Allen, L.A.; Bluemke, D.A.; Butler, J.; Fonarow, G.C.; Ikonomidis, J.S.; Khavjou, O.; Konstam, M.A.; Maddox, T.M.; et al. Forecasting the Impact of Heart Failure in the United States: A Policy Statement from the American Heart Association. Circ. Heart Fail. 2013, 6, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Huffman, M.D.; Berry, J.D.; Ning, H.; Dyer, A.R.; Garside, D.B.; Cai, X.; Daviglus, M.L.; Lloyd-Jones, D.M. Lifetime Risk for Heart Failure among White and Black Americans: Cardiovascular Lifetime Risk Pooling Project. J. Am. Coll. Cardiol. 2013, 61, 1510–1517. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Sattler, E.L.P. Nutrition as Treatment Modality in Heart Failure. Curr. Atheroscler. Rep. 2021, 23, 13. [Google Scholar] [CrossRef] [PubMed]
- Perk, J.; De Backer, G.; Gohlke, H.; Graham, I.; Reiner, Z.; Verschuren, M.; Albus, C.; Benlian, P.; Boysen, G.; Cifkova, R.; et al. European Guidelines on Cardiovascular Disease Prevention in Clinical Practice (Version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by Representatives of Nine Societies and by Invited Experts). Eur. Heart J. 2012, 33, 1635–1701. [Google Scholar] [CrossRef] [PubMed]
- Sanches Machado d’Almeida, K.; Ronchi Spillere, S.; Zuchinali, P.; Corrêa Souza, G. Mediterranean Diet and Other Dietary Patterns in Primary Prevention of Heart Failure and Changes in Cardiac Function Markers: A Systematic Review. Nutrients 2018, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.S.; Hawkes, C.; de Souza, R.J.; Mente, A.; Dehghan, M.; Nugent, R.; Zulyniak, M.A.; Weis, T.; Bernstein, A.M.; Krauss, R.M.; et al. Food Consumption and Its Impact on Cardiovascular Disease: Importance of Solutions Focused on the Globalized Food System: A Report From the Workshop Convened by the World Heart Federation. J. Am. Coll. Cardiol. 2015, 66, 1590–1614. [Google Scholar] [CrossRef]
- Arayici, M.E.; Basbinar, Y.; Ellidokuz, H. High and Low Dietary Fiber Consumption and Cancer Risk: A Comprehensive Umbrella Review with Meta-Meta-Analysis Involving Meta-Analyses of Observational Epidemiological Studies. Crit. Rev. Food Sci. Nutr. 2023, 63, 1–14. [Google Scholar] [CrossRef]
- Filippou, C.D.; Tsioufis, C.P.; Thomopoulos, C.G.; Mihas, C.C.; Dimitriadis, K.S.; Sotiropoulou, L.I.; Chrysochoou, C.A.; Nihoyannopoulos, P.I.; Tousoulis, D.M. Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Arayici, M.E.; Yucel, U.; Ocek, Z.A. Knowledge and Attitudes of Ege University Midwifery, Nutrition-Dietetic, and Nursing Students About Natural Functional Foods. J. Basic Clin. Health Sci. 2020, 4, 364–370. [Google Scholar] [CrossRef]
- Arayici, M.E.; Mert-Ozupek, N.; Yalcin, F.; Basbinar, Y.; Ellidokuz, H. Soluble and Insoluble Dietary Fiber Consumption and Colorectal Cancer Risk: A Systematic Review and Meta-Analysis. Nutr. Cancer 2022, 74, 2412–2425. [Google Scholar] [CrossRef]
- Kerley, C.P. Dietary Patterns and Components to Prevent and Treat Heart Failure: A Comprehensive Review of Human Studies. Nutr. Res. Rev. 2019, 32, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Levitan, E.B.; Lewis, C.E.; Tinker, L.F.; Eaton, C.B.; Ahmed, A.; Manson, J.E.; Snetselaar, L.G.; Martin, L.W.; Trevisan, M.; Howard, B.V.; et al. Mediterranean and DASH Diet Scores and Mortality in Women with Heart Failure: The Women’s Health Initiative. Circ. Heart Fail. 2013, 6, 1116–1123. [Google Scholar] [CrossRef]
- Wirth, J.; di Giuseppe, R.; Boeing, H.; Weikert, C. A Mediterranean-Style Diet, Its Components and the Risk of Heart Failure: A Prospective Population-Based Study in a Non-Mediterranean Country. Eur. J. Clin. Nutr. 2016, 70, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Tektonidis, T.G.; Åkesson, A.; Gigante, B.; Wolk, A.; Larsson, S.C. A Mediterranean Diet and Risk of Myocardial Infarction, Heart Failure and Stroke: A Population-Based Cohort Study. Atherosclerosis 2015, 243, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Miró, Ò.; Estruch, R.; Martín-Sánchez, F.J.; Gil, V.; Jacob, J.; Herrero-Puente, P.; Herrera Mateo, S.; Aguirre, A.; Andueza, J.A.; Llorens, P.; et al. Adherence to Mediterranean Diet and All-Cause Mortality After an Episode of Acute Heart Failure: Results of the MEDIT-AHF Study. JACC Heart Fail. 2018, 6, 52–62. [Google Scholar] [CrossRef]
- Levitan, E.B.; Wolk, A.; Mittleman, M.A. Consistency with the DASH Diet and Incidence of Heart Failure. Arch. Intern. Med. 2009, 169, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Goyal, P.; Balkan, L.; Ringel, J.B.; Hummel, S.L.; Sterling, M.R.; Kim, S.; Arora, P.; Jackson, E.A.; Brown, T.M.; Shikany, J.M.; et al. The Dietary Approaches to Stop Hypertension (DASH) Diet Pattern and Incident Heart Failure. J. Card. Fail. 2021, 27, 512–521. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating Guidance for Reporting Systematic Reviews: Development of the PRISMA 2020 Statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- Deeks, J.J.; Dinnes, J.; D’Amico, R.; Sowden, A.J.; Sakarovitch, C.; Song, F.; Petticrew, M.; Altman, D.G.; International Stroke Trial Collaborative Group; European Carotid Surgery Trial Collaborative Group. Evaluating Non-Randomised Intervention Studies. Health Technol. Assess. 2003, 7, iii–x, 1–173. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting Meta-Analyses in R with the Metafor Package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Review Manager (RevMan) [Computer Program]. Version 5.4 (2020). The Cochrane Collaboration. Available online: https://revman.cochrane.org (accessed on 6 January 2025).
- ProMeta-3 Professional Statistical Software for Conducting Meta-Analysis (2015). It Is Based on ProMeta 2.1 Deployed by Internovi in 2015. Available online: https://Idostatistics.Com/Prometa3/ (accessed on 6 January 2025).
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Del Gobbo, L.C.; Kalantarian, S.; Imamura, F.; Lemaitre, R.; Siscovick, D.S.; Psaty, B.M.; Mozaffarian, D. Contribution of Major Lifestyle Risk Factors for Incident Heart Failure in Older Adults: The Cardiovascular Health Study. JACC Heart Fail. 2015, 3, 520–528. [Google Scholar] [CrossRef]
- Chou, T.-Y.; Liu, W.-J.; Lee, C.-L.; Wang, J.-S. Adherence to the Dietary Approaches to Stop Hypertension Diet and All-Cause Mortality in Patients with a History of Heart Failure. Front. Nutr. 2022, 9, 1015290. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-Y.; Lee, C.-L.; Liu, W.-J.; Wang, J.-S. Association of Adherence to the Mediterranean Diet with All-Cause Mortality in Subjects with Heart Failure. Nutrients 2022, 14, 842. [Google Scholar] [CrossRef]
- Campos, C.L.; Wood, A.; Burke, G.L.; Bahrami, H.; Bertoni, A.G. Dietary Approaches to Stop Hypertension Diet Concordance and Incident Heart Failure: The Multi-Ethnic Study of Atherosclerosis. Am. J. Prev. Med. 2019, 56, 819–826. [Google Scholar] [CrossRef]
- Chang, R.S.; Xu, M.; Brown, S.H.; Cohen, S.S.; Yu, D.; Akwo, E.A.; Dixon, D.; Lipworth, L.; Gupta, D.K. Relation of the Dietary Approaches to Stop Hypertension Dietary Pattern to Heart Failure Risk and Socioeconomic Status (from the Southern Community Cohort Study). Am. J. Cardiol. 2022, 169, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Strengers, J.G.; den Ruijter, H.M.; Boer, J.M.A.; Asselbergs, F.W.; Verschuren, W.M.M.; van der Schouw, Y.T.; Sluijs, I. The Association of the Mediterranean Diet with Heart Failure Risk in a Dutch Population. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Tektonidis, T.G.; Åkesson, A.; Gigante, B.; Wolk, A.; Larsson, S.C. Adherence to a Mediterranean Diet Is Associated with Reduced Risk of Heart Failure in Men. Eur. J. Heart Fail. 2016, 18, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Levitan, E.B.; Wolk, A.; Mittleman, M.A. Relation of Consistency with the Dietary Approaches to Stop Hypertension Diet and Incidence of Heart Failure in Men Aged 45 to 79 Years. Am. J. Cardiol. 2009, 104, 1416–1420. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, A.; Martínez-González, M.Á.; Alonso-Gómez, A.; Rekondo, J.; Salas-Salvadó, J.; Corella, D.; Ros, E.; Fitó, M.; Estruch, R.; Lapetra, J.; et al. Mediterranean Diet and Risk of Heart Failure: Results from the PREDIMED Randomized Controlled Trial. Eur. J. Heart Fail. 2017, 19, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Kontogiorgis, C.A.; Bompou, E.-M.; Ntella, M.; Berghe, W.V. Natural Products from Mediterranean Diet: From Anti-Inflammatory Agents to Dietary Epigenetic Modulators. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2010, 9, 101–124. [Google Scholar] [CrossRef]
- Scoditti, E.; Nestola, A.; Massaro, M.; Calabriso, N.; Storelli, C.; De Caterina, R.; Carluccio, M.A. Hydroxytyrosol Suppresses MMP-9 and COX-2 Activity and Expression in Activated Human Monocytes via PKCα and PKCβ1 Inhibition. Atherosclerosis 2014, 232, 17–24. [Google Scholar] [CrossRef]
- Asemi, Z.; Samimi, M.; Tabassi, Z.; Sabihi, S.; Esmaillzadeh, A. A Randomized Controlled Clinical Trial Investigating the Effect of DASH Diet on Insulin Resistance, Inflammation, and Oxidative Stress in Gestational Diabetes. Nutrition 2013, 29, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Bonaccio, M.; Cerletti, C.; Iacoviello, L.; de Gaetano, G. Mediterranean Diet and Low-Grade Subclinical Inflammation: The Moli-Sani Study. Endocr. Metab. Immune Disord. Drug Targets 2015, 15, 18–24. [Google Scholar] [CrossRef]
- Tuttolomondo, A.; Di Raimondo, D.; Casuccio, A.; Velardo, M.; Salamone, G.; Cataldi, M.; Corpora, F.; Restivo, V.; Pecoraro, R.; Della Corte, V.; et al. Mediterranean Diet Adherence and Congestive Heart Failure: Relationship with Clinical Severity and Ischemic Pathogenesis. Nutrition 2020, 70, 110584. [Google Scholar] [CrossRef] [PubMed]
- Huedo-Medina, T.B.; Garcia, M.; Bihuniak, J.D.; Kenny, A.; Kerstetter, J. Methodologic Quality of Meta-Analyses and Systematic Reviews on the Mediterranean Diet and Cardiovascular Disease Outcomes: A Review. Am. J. Clin. Nutr. 2016, 103, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Papandreou, C.; Schiza, S.E.; Bouloukaki, I.; Hatzis, C.M.; Kafatos, A.G.; Siafakas, N.M.; Tzanakis, N.E. Effect of Mediterranean Diet versus Prudent Diet Combined with Physical Activity on OSAS: A Randomised Trial. Eur. Respir. J. 2012, 39, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Hegner, P.; Wester, M.; Tafelmeier, M.; Provaznik, Z.; Klatt, S.; Schmid, C.; Maier, L.S.; Arzt, M.; Wagner, S.; Lebek, S. Systemic Inflammation Predicts Diastolic Dysfunction in Patients with Sleep Disordered Breathing. Eur. Respir. J. 2024, 63, 2400579. [Google Scholar] [CrossRef] [PubMed]
- Georgoulis, M.; Yiannakouris, N.; Tenta, R.; Fragopoulou, E.; Kechribari, I.; Lamprou, K.; Perraki, E.; Vagiakis, E.; Kontogianni, M.D. A Weight-Loss Mediterranean Diet/Lifestyle Intervention Ameliorates Inflammation and Oxidative Stress in Patients with Obstructive Sleep Apnea: Results of the “MIMOSA” Randomized Clinical Trial. Eur. J. Nutr. 2021, 60, 3799–3810. [Google Scholar] [CrossRef] [PubMed]
- Rallidis, L.S.; Lekakis, J.; Kolomvotsou, A.; Zampelas, A.; Vamvakou, G.; Efstathiou, S.; Dimitriadis, G.; Raptis, S.A.; Kremastinos, D.T. Close Adherence to a Mediterranean Diet Improves Endothelial Function in Subjects with Abdominal Obesity. Am. J. Clin. Nutr. 2009, 90, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Franquesa, M.; Pujol-Busquets, G.; García-Fernández, E.; Rico, L.; Shamirian-Pulido, L.; Aguilar-Martínez, A.; Medina, F.X.; Serra-Majem, L.; Bach-Faig, A. Mediterranean Diet and Cardiodiabesity: A Systematic Review through Evidence-Based Answers to Key Clinical Questions. Nutrients 2019, 11, 655. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Palmiero, P.; Manfrini, O.; Puddu, P.E.; Nodari, S.; Dei Cas, A.; Mercuro, G.; Scrutinio, D.; Palermo, P.; Sciomer, S.; et al. Mediterranean Diet Impact on Cardiovascular Diseases: A Narrative Review. J. Cardiovasc. Med. 2017, 18, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Ciotola, M.; Giugliano, D. Mediterranean Diet, Endothelial Function and Vascular Inflammatory Markers. Public Health Nutr. 2006, 9, 1073–1076. [Google Scholar] [CrossRef]
- Burgeiro, A.; Fuhrmann, A.; Cherian, S.; Espinoza, D.; Jarak, I.; Carvalho, R.A.; Loureiro, M.; Patrício, M.; Antunes, M.; Carvalho, E. Glucose Uptake and Lipid Metabolism Are Impaired in Epicardial Adipose Tissue from Heart Failure Patients with or without Diabetes. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E550–E564. [Google Scholar] [CrossRef] [PubMed]
- Ansaldo, A.M.; Montecucco, F.; Sahebkar, A.; Dallegri, F.; Carbone, F. Epicardial Adipose Tissue and Cardiovascular Diseases. Int. J. Cardiol. 2019, 278, 254–260. [Google Scholar] [CrossRef]
- Patel, V.B.; Basu, R.; Oudit, G.Y. ACE2/Ang 1-7 Axis: A Critical Regulator of Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Obesity. Adipocyte 2016, 5, 306–311. [Google Scholar] [CrossRef]
- Das, S.; Alagappan, V.K.T.; Bagchi, D.; Sharma, H.S.; Maulik, N.; Das, D.K. Coordinated Induction of iNOS-VEGF-KDR-eNOS after Resveratrol Consumption: A Potential Mechanism for Resveratrol Preconditioning of the Heart. Vascul Pharmacol. 2005, 42, 281–289. [Google Scholar] [CrossRef]
- Petrovski, G.; Gurusamy, N.; Das, D.K. Resveratrol in Cardiovascular Health and Disease. Ann. N. Y. Acad. Sci. 2011, 1215, 22–33. [Google Scholar] [CrossRef]
- Riba, A.; Deres, L.; Sumegi, B.; Toth, K.; Szabados, E.; Halmosi, R. Cardioprotective Effect of Resveratrol in a Postinfarction Heart Failure Model. Oxid. Med. Cell. Longev. 2017, 2017, 6819281. [Google Scholar] [CrossRef]
- Chong, E.; Chang, S.-L.; Hsiao, Y.-W.; Singhal, R.; Liu, S.-H.; Leha, T.; Lin, W.-Y.; Hsu, C.-P.; Chen, Y.-C.; Chen, Y.-J.; et al. Resveratrol, a Red Wine Antioxidant, Reduces Atrial Fibrillation Susceptibility in the Failing Heart by PI3K/AKT/eNOS Signaling Pathway Activation. Heart Rhythm. 2015, 12, 1046–1056. [Google Scholar] [CrossRef]
- Barak, F.; Falahi, E.; Keshteli, A.H.; Yazdannik, A.; Esmaillzadeh, A. Adherence to the Dietary Approaches to Stop Hypertension (DASH) Diet in Relation to Obesity among Iranian Female Nurses. Public Health Nutr. 2015, 18, 705–712. [Google Scholar] [CrossRef]
- Fung, T.T.; Chiuve, S.E.; McCullough, M.L.; Rexrode, K.M.; Logroscino, G.; Hu, F.B. Adherence to a DASH-Style Diet and Risk of Coronary Heart Disease and Stroke in Women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Arablou, T.; Jayedi, A.; Salehi-Abargouei, A. Adherence to the Dietary Approaches to Stop Hypertension (DASH) Diet in Relation to All-Cause and Cause-Specific Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutr. J. 2020, 19, 37. [Google Scholar] [CrossRef] [PubMed]
First Author/Year | Study Type | Study Name | Sample Size (n) | Age Range (Years) | Events (n) | Event of Death (n) | Questionnaire | Type of Diet | Follow-Up Time (Years) | Outcome |
---|---|---|---|---|---|---|---|---|---|---|
Levitan et al., 2009 [33] | Cohort | Cohort of Swedish Men | 38,987 | 45–79 | 710 | 97 | Self-administered FFQ | DASH | 9 | Incidence |
Levitan et al., 2009 [18] | Cohort | Swedish Mammography Cohort | 36,019 | 48–83 | 415 | 28 | Self-administered FFQ | DASH | 7 | Incidence |
Levitan et al., 2013 [14] | Cohort | Women’s Health Initiative | 161,808 | 50–79 | 3215 | 1385 | Modified block FFQ | MED | 4.6 | All-cause mortality |
Levitan et al., 2013 [14] | Cohort | Women’s Health Initiative | 161,808 | 50–79 | 3215 | 1385 | Modified block FFQ | DASH | 4.6 | All-cause mortality |
Del Gobbo et al., 2015 [26] | Cohort | Cardiovascular Health Study | 5201 | ≥65 | 1380 | N/A | 99-item FFQ | DASH | 21.5 | Incidence |
Tektonidis et al., 2015 [16] | Population based cohort | Swedish Mammography Cohort | 32,921 | 48–83 | 1648 | N/A | FFQ | MED | 10.4 | Incidence |
Wirth et al., 2016 [15] | Prospective population-based cohort | EPIC | 24,008 | 35–65 | 209 | N/A | Semi-quantitative, self-administered FFQ | MED | 8.2 | Incidence |
Tektonidis et al., 2016 [32] | Population-based cohort | Cohort of Swedish Men | 37,308 | 45–79 | 1269 | 146 | 96-item semi-quantitative, self-administered FFQ | MED | 10.9 | Incidence |
Miro et al., 2018 [17] | Prospective cohort study | MEDIT-AHF | 991 | N/A | N/A | 569 | PREDIMED questionnaire | MED | 2.1 | All-cause mortality |
Campos et al., 2019 [29] | Cohort | MESA | 4478 | 45–84 | 179 | N/A | 120-item FFQ | DASH | 13 | Incidence |
Strengers et al., 2021 (a) [31] | Cohort | EPIC-NL | 9316 | 21–64 | 144 | N/A | Semi-quantitative FFQ | MED | 15 | Incidence |
Strengers et al., 2021 (b) [31] | Cohort | EPIC-NL | 27,645 | 40–70 | 489 | N/A | Semi-quantitative FFQ | MED | 15 | Incidence |
Goyal et al., 2021 [19] | Cohort | REGARDS | 18,856 | ≥45 | 767 | 111 | FFQ | DASH | 10.1 | Incidence |
Chang et al., 2022 [28] | Population-based cohort | NHANES | 832 | ≥18 | 832 | 319 | 24 h dietary recall interview | MED | 4.7 | All-cause mortality |
Chang et al., 2022 [30] | Prospective cohort study | SCCS | 25,300 | 40–79 | 7045 | N/A | 89 food items 24 h dietary recall questionnaires | DASH | 11 | Incidence |
Chou et al., 2022 [27] | Population-based cohort | NHANES | 832 | ≥18 | 832 | 319 | 24 h dietary recall interview | DASH | 4.7 | All-cause mortality |
Analysis | Analysis Model | Number of Reports (n) | Effect Size (OR) | 95% CI | p Value | I2 | p Value |
---|---|---|---|---|---|---|---|
Fruits | Fixed | 4 | 0.92 | 0.85–0.99 | 0.03 | 0.00% | 0.76 |
Legumes | Fixed | 4 | 0.93 | 0.86–0.99 | 0.04 | 0.01% | 0.48 |
Moderate Alcohol | Fixed | 4 | 0.91 | 0.83–0.98 | 0.02 | 0.03% | 0.38 |
Vegetables | Fixed | 4 | 0.97 | 0.85–1.08 | 0.61 | 60.48% | 0.07 |
Fish | Fixed | 4 | 0.94 | 0.86–1.01 | 0.11 | 0.00% | 0.54 |
Less Dairy | Fixed | 3 | 0.92 | 0.84–1.00 | 0.05 | 0.08% | 0.19 |
Fiber | Fixed | 2 | 0.92 | 0.84–1.00 | 0.06 | 0.00% | 0.89 |
Analysis | Model | Number of Reports (n) | Effect Size (RR) | 95% CI | p Value | I2 | p Value |
---|---|---|---|---|---|---|---|
Fruits | Fixed | 3 | 0.99 | 0.90–1.09 | 0.99 | 0.77% | 0.36 |
Legumes | Fixed | 3 | 0.89 | 0.78–1.00 | 0.06 | 24.78% | 0.27 |
Moderate Alcohol | Random | 2 | 1.07 | 0.78–1.36 | 0.62 | 75.28% | 0.04 |
Vegetables | Fixed | 3 | 0.82 | 0.72–0.92 | 0.001 | 0.00% | 0.56 |
Fish | Fixed | 2 | 1.01 | 0.86–1.16 | 0.87 | 0.00% | 0.69 |
Less Diary | Fixed | 2 | 0.80 | 0.65–0.95 | 0.01 | 0.00% | 0.78 |
Less sodium | Fixed | 2 | 1.09 | 0.94–1.25 | 0.25 | 0.00% | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arayici, M.E.; Kilic, M.E.; Yilmaz, M.B. High and Low Adherence to Mediterranean and DASH Diet Patterns and the Risk of Heart Failure: A Meta-Analysis of Observational Studies. Life 2025, 15, 63. https://doi.org/10.3390/life15010063
Arayici ME, Kilic ME, Yilmaz MB. High and Low Adherence to Mediterranean and DASH Diet Patterns and the Risk of Heart Failure: A Meta-Analysis of Observational Studies. Life. 2025; 15(1):63. https://doi.org/10.3390/life15010063
Chicago/Turabian StyleArayici, Mehmet Emin, Mustafa Eray Kilic, and Mehmet Birhan Yilmaz. 2025. "High and Low Adherence to Mediterranean and DASH Diet Patterns and the Risk of Heart Failure: A Meta-Analysis of Observational Studies" Life 15, no. 1: 63. https://doi.org/10.3390/life15010063
APA StyleArayici, M. E., Kilic, M. E., & Yilmaz, M. B. (2025). High and Low Adherence to Mediterranean and DASH Diet Patterns and the Risk of Heart Failure: A Meta-Analysis of Observational Studies. Life, 15(1), 63. https://doi.org/10.3390/life15010063