The Origin(s) of LUCA: Computer Simulation of a New Theory †
Abstract
:1. Introduction
2. Materials and Methods
Parameters | Explanation | Value |
---|---|---|
tickCount | count of cycles within a simulation | 1 cycle = 1 wet phase or one dry phase, alternated |
currentVolume | units of volume of a pond | dry phase: (50, 80), wet phase: (80, 100); initiation: 100 |
numPeptide | number of peptide | see Table 2 for specific values |
numRNA | number of RNA | see Table 2 for specific values |
numAA | number of AAs in a peptide | see Table 2 for specific values |
numNBase | number of nucleotides in an RNA | 3 × numAA |
V1InitNum | initial number of V1 | 3000 |
V2InitNum | initial number of V2 | 2000 |
totalnum | external supply of V1 and V2 in every cycle | dry phase: (2000, 3000), wet phase: (4000, 5000) |
pContact | probability of contact with another vesicle | (10−5, 10−6) × (100/currentVolume)2 |
mergeP | probability of absorbing another vesicle | See Table 3 for details |
conjugateP | probability of joining peptides or RNAs after absorbing or merging | See Table 4 for details |
fitnessScore | jointly determined by the number of AAs assigned (NA) and the total number of peptides (NP) within the vesicle | FS = NA × NP |
pSurvival | vesicles’ probability of survival | pSurvival = ln(fitnessScore)/10 |
rndIndexAA | type of AAs within a vesicle | V1–V5: AA1–AA10, V6: AA1–AA20 |
pABS | probability of absorbing more AAs and NNs from the pond | 5 × 10−3 |
pSynchronize | probability of assigning one AA to one set of codons within a cycle | 0.999 |
2.1. The First Stage: The Origin(s) of FUCAs
2.2. The Second Stage: From FUCAs to LUCA
- -
- For simplicity, we skip the evolution of the stop codon. Hence, when all of the 20 AAs have been assigned to their codons, the full SGC has evolved, and we can consider that LUCA now exists. Accordingly, there may be a few LUCAs and they have different genomes, but they all have the same SGC. Very critically, according to our theory, SGC could have only evolved by drawing from “global inventions” via the merger and acquisition of vesicles [5,15,16,17,22] (in this sense, we agree with Herron’s [55] stand that SGC should not be classified as a distinct “major transition” because the evolution of SGC has been a (gradual) process [2]. Notably, while Maynard Smith and Szathmáry [2] identified SGC and protocell (FUCA) as two distinct transitions, Szathmáry later argued that they might have co-evolved in prokaryotic cells. Our thesis holds that they had evolved mostly together, most likely by LUCA [56]).
- -
- Taking cues from the thesis that SGC was a “frozen accident” [50,52,57,58,59,60], we assume that there might have been 4 to 6 nucleotides available for making into the SGC before the SGC was finally fixed. Thus, the total combinations of 20 AAs with the possible codons are anywhere between and , or 1280 to 4320. Thus, for each simulation, the exact number of possible combinations to be assigned is a random number anywhere from 1280 to 4320. For a whole wet-and-dry cycle, FUCAs can only assign one AA to one set of codons, with a fixed probability of 0.999. We are keenly aware that biologically and mathematically, there is a positive feedback mechanism in the evolution of SGC: once one AA has been assigned a set of codons, the remaining AAs will have a smaller pool of codons to be assigned. Hence, an earlier assigning of one AA to a set of codons will accelerate the next cycle of assigning the remaining AAs and codons. As a result, if the probability of assigning the first AA with a set of codons is 10−3, the probability of assigning the next AA with the remaining sets of codons becomes: , with n denoting the number of AAs already assigned. So, for the first AA to be assigned, n is 0, and for the second AA, n is 1, and so on. The ratio is used to magnify the cumulative impact of previous rounds of assigning upon the remaining synchronizations. We initially hoped to implement such dynamics in the simulation. However, due to the fact that many vesicles will die in each cycle (as predicted by our theory [5]), implementing such dynamics requires significant computational resources. We therefore set the probability of successful codon assignment to a fixed probability of 0.999 to speed up the process. Most likely, decreasing the probability will merely prolong the process without fundamentally changing the overall results.
- -
- For simplicity, we assume that when two vesicles with different AAs already assigned to their specific codons merge with each other, the merged vesicle obtains all the codons, and hence the evolution of the universal codon accelerates. For example, vesicle-1 has A1, A2, A3, A4, and A5 assigned, whereas vesicle-2 has A1, A2, A3, A4, and A6, then the merged vesicle of the two vesicles will have A1, A2, A3, A4, A5, and A6 assigned. This is consistent with the dynamics underscored by Vetsigian et al. [61] that SGC had most likely evolved via “collective evolution” by drawing from “global innovations” with “horizontal gene transfer” (HGT). Indeed, according to Tang [5], absorption, acquisition, and merger by vesicles entail extensive “horizontal biomolecule transfer” (HBMT) rather than merely HGT: HBMT thus subsuming HGT because HBMT entails exchange and retention of biological ingredients other than genetic materials. Of course, if two vesicles have the same set of AAs assigned (i.e., when both vesicle-1 and vesicle-2 have A1, A2, A3, A4, and A5 assigned), the newly merged vesicle of the two vesicles does not gain a new AA assigned. But the new merged vesicle can still gain peptides and RNAs, thus also increasing its fitness score according to FS = NA × NP.
2.3. The Two Stages Together
3. Results
3.1. The First Stage: The Origin(s) of FUCAs
3.2. The Second Stage: The Origin of LUCA
3.3. The Two Stages Together
3.4. Control Simulations: The Two Stages Together
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woese, C.R.; Fox, G.E. The Concept of Cellular Evolution. J. Mol. Evol. 1977, 10, 1–6. [Google Scholar] [CrossRef]
- Maynard Smith, J.; Szathmáry, E. The Major Transitions in Evolution; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Koonin, E.V. Carl Woese’s Vision of Cellular Evolution and the Domains of Life. RNA Biol. 2014, 11, 197–204. [Google Scholar] [CrossRef]
- Koonin, E.V. The Origin of Cellular Life. Antonie Van Leeuwenhoek 2014, 106, 27–41. [Google Scholar] [CrossRef]
- Tang, S. The Origin(s) of Cell(s): Pre-Darwinian Evolution from FUCAs to LUCA. J. Mol. Evol. 2021, 89, 427–447. [Google Scholar] [CrossRef]
- Mulkidjanian, A.Y.; Bychkov, A.Y.; Dibrova, D.V.; Galperin, M.Y.; Koonin, E.V. Origin of First Cells at Terrestrial, Anoxic Geothermal Fields. Proc. Natl. Acad. Sci. USA 2012, 109, E821–E830. [Google Scholar] [CrossRef] [PubMed]
- Damer, B.; Deamer, D. Coupled Phases and Combinatorial Selection in Fluctuating Hydrothermal Pools: A Scenario to Guide Experimental Approaches to the Origin of Cellular Life. Life 2015, 5, 872–887. [Google Scholar] [CrossRef] [PubMed]
- Higgs, P.G. The Effect of Limited Diffusion and Wet-Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids. Life 2016, 6, 24. [Google Scholar] [CrossRef]
- Zhu, T.F.; Adamala, K.; Zhang, N.; Szostak, J.W. Photochemically Driven Redox Chemistry Induces Protocell Membrane Pearling and Division. Proc. Natl. Acad. Sci. USA 2012, 109, 9828–9832. [Google Scholar] [CrossRef] [PubMed]
- Prosdocimi, F.; José, M.V.; de Farias, S.T. The First Universal Common Ancestor (FUCA) as the Earliest Ancestor of LUCA’s (Last UCA) Lineage. In Evolution, Origin of Life, Concepts and Methods; Pontarotti, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 43–54. [Google Scholar]
- Prosdocimi, F.; de Farias, S.T. Origin of Life: Drawing the Big Picture. Prog. Biophys. Mol. Biol. 2023, 180–181, 28–36. [Google Scholar] [CrossRef]
- Prosdocimi, F.; de Farias, S.T. Major Evolutionary Transitions Before Cells: A Journey from Molecules to Organisms. Prog. Biophys. Mol. Biol. 2024, 191, 11–24. [Google Scholar] [CrossRef]
- Lopez, A.; Fiore, M. Investigating Prebiotic Protocells for a Comprehensive Understanding of the Origins of Life: A Prebiotic Systems Chemistry Perspective. Life 2019, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.J.; Goldman, A.D. The Very Early Evolution of Protein Translocation Across Membranes. PLoS Comput. Biol. 2021. [CrossRef]
- Woese, C.R. The Universal Ancestor. Proc. Natl. Acad. Sci. USA 1998, 95, 6854–6859. [Google Scholar] [CrossRef] [PubMed]
- Woese, C.R. Interpreting the Universal Phylogenetic Tree. Proc. Natl. Acad. Sci. USA 2000, 97, 8392–8396. [Google Scholar] [CrossRef] [PubMed]
- Woese, C.R. On the Evolution of Cells. Proc. Natl. Acad. Sci. USA 2002, 99, 8742–8747. [Google Scholar] [CrossRef]
- Klein, A.; Bock, M.; Alt, W. Simple Mechanisms of Early Life-Simulation Model on the Origin of Semi-Cells. Biosystems 2017, 151, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.L.; Lancet, D.; Zidovetzki, R. Replication of Simulated Prebiotic Amphiphilic Vesicles in a Finite Environment Exhibits Complex Behavior That Includes High Progeny Variability and Competition. Astrobiology 2018, 18, 419–430. [Google Scholar] [CrossRef]
- Lancet, D.; Zidovetzki, R.; Markovitch, O. Systems Protobiology: Origin of Life in Lipid Catalytic Networks. J. R. Soc. Interface 2018, 15, 20180159. [Google Scholar] [CrossRef]
- Takagi, Y.A.; Nguyen, D.H.; Wexler, T.B.; Goldman, A.D. The Coevolution of Cellularity and Metabolism Following the Origin of Life. J. Mol. Evol. 2020, 88, 598–617. [Google Scholar] [CrossRef]
- Tang, S. Pre-Darwinian Evolution Before LUCA. Biol. Theory 2020, 15, 175–179. [Google Scholar] [CrossRef]
- Ross, D.S.; Deamer, D. Dry/Wet Cycling and the Thermodynamics and Kinetics of Prebiotic Polymer Synthesis. Life 2016, 6, 28. [Google Scholar] [CrossRef]
- Hargrave, M.; Spencer, S.K.; Deamer, D.W. Computational Models of Polymer Synthesis Driven by Dehydration/Rehydration Cycles: Repurination in Simulated Hydrothermal Fields. J. Mol. Evol. 2018, 86, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Yu, C.; Zhang, W.; Hu, J. Nucleotide Synthetase Ribozymes May Have Emerged First in the RNA World. RNA 2007, 13, 2012–2019. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.T.; Hu, J.M. Computer Simulation on the Cooperation of Functional Molecules During the Early Stages of Evolution. PLoS ONE 2012, 7, e35454. [Google Scholar] [CrossRef]
- Kim, Y.E.; Higgs, P.G. Co-operation Between Polymerases and Nucleotide Synthetases in the RNA World. PLoS Comput. Biol. 2016, 12, e1005161. [Google Scholar] [CrossRef]
- Müller, F.; Escobar, L.; Xu, F.; Węgrzyn, E.; Nainytė, M.; Amatov, T.; Chan, C.; Pichler, A.; Carell, T. A Prebiotically Plausible Scenario of an RNA-Peptide World. Nature 2022, 605, 279–284. [Google Scholar] [CrossRef]
- Singer, J.N.; Müller, F.M.; Węgrzyn, E.; Hölzl, C.; Hurmiz, H.; Liu, C.; Escobar, L.; Carell, T. Loading of Amino Acids onto RNA in a Putative RNA-Peptide World. Angew. Chem. Int. Ed. 2023, 62, e202302360. [Google Scholar] [CrossRef]
- Radakovic, A.; Lewicka, A.; Todisco, M.; Aitken, H.R.M.; Weiss, Z.; Kim, S.; Bannan, A.; Piccirilli, J.A.; Szostak, J.W. A Potential Role for RNA Aminoacylation Prior to Its Role in Peptide Synthesis. Proc. Natl. Acad. Sci. USA 2024, 121, e2410206121. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Chen, Y.; Yu, C.; Ma, W. From Molecular to Cellular Form: Modeling the First Major Transition During the Arising of Life. BMC Evol. Biol. 2019, 19, 84. [Google Scholar] [CrossRef]
- Nunes Palmeira, R.; Colnaghi, M.; Harrison, S.A.; Pomiankowski, A.; Lane, N. The Limits of Metabolic Heredity in Protocells. Proc. R. Soc. B 2022, 289, 20221469. [Google Scholar] [CrossRef]
- Szathmáry, E. Coevolution of Metabolic Networks and Membranes: The Scenario of Progressive Sequestration. Philos. Trans. R. Soc. B 2007, 362, 1781–1787. [Google Scholar] [CrossRef]
- Charlebois, R.L.; Doolittle, W.F. Computing Prokaryotic Gene Ubiquity: Rescuing the Core from Extinction. Genome Res. 2004, 14, 2469–2477. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.K.; Kelley, S.T.; Spiegelman, G.B.; Pace, N.R. The Genetic Core of the Universal Ancestor. Genome Res. 2003, 13, 407–412. [Google Scholar] [CrossRef]
- Koonin, E.V. Comparative Genomics, Minimal Gene-Sets and the Last Universal Common Ancestor. Nat. Rev. Microbiol. 2003, 1, 127–136. [Google Scholar] [CrossRef]
- Ranea, J.A.; Sillero, A.; Thornton, J.M.; Orengo, C.A. Protein Superfamily Evolution and the Last Universal Common Ancestor. J. Mol. Evol. 2006, 63, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Wolf, Y.I.; Koonin, E.V. On the Origin of the Translation System and the Genetic Code in the RNA World by Means of Natural Selection, Exaptation, and Subfunctionalization. Biol. Direct 2007, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Goldman, A.D.; Bernhard, T.M.; Dolzhenko, E.; Landweber, L.F. LUCApedia: A Database for the Study of Ancient Life. Nucleic Acids Res. 2013, 41, D1079–D1082. [Google Scholar] [CrossRef]
- Maynard Smith, J.; Szathmáry, E. The Evolution of Chromosome I. Selection for Linkage. J. Theor. Biol. 1993, 164, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Moody, E.R.R.; Álvarez-Carretero, S.; Mahendrarajah, T.A.; Clark, J.W.; Betts, H.C.; Dombrowski, N.; Szánthó, L.L.; Boyle, R.A.; Daines, S.; Chen, X.; et al. The Nature of the Last Universal Common Ancestor and Its Impact on the Early Earth System. Nat. Ecol. Evol. 2024, 8, 1654–1666. [Google Scholar] [CrossRef]
- Jheeta, S.; Chatzitheodoridis, E. Origin of Life. In Conflicting Models for the Origin of Life; Smoukov, S.K., Seckbach, J., Gordon, R., Eds.; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Kovacs, N.A.; Petrov, A.S.; Lanier, K.A.; Williams, L.D. Frozen in Time: The History of Proteins. Mol. Biol. Evol. 2017, 34, 1252–1260. [Google Scholar] [CrossRef]
- Damer, B.; Deamer, D. The Hot Spring Hypothesis for an Origin of Life. Astrobiology 2020, 20, 429–452. [Google Scholar] [CrossRef]
- Deamer, D. Assembling Life; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Wong, J.T. A Co-Evolution Theory of the Genetic Code. Proc. Natl. Acad. Sci. USA 1975, 72, 1909–1912. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.T. Coevolution Theory of the Genetic Code at Age Thirty. Bioessays 2005, 27, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Francis, B.R. Evolution of the Genetic Code by Incorporation of Amino Acids That Improved or Changed Protein Function. J. Mol. Evol. 2013, 77, 134–158. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Higgs, P.G. Pathways of Genetic Code Evolution in Ancient and Modern Organisms. J. Mol. Evol. 2015, 80, 229–243. [Google Scholar] [CrossRef]
- Koonin, E.V. Frozen Accident Pushing 50: Stereochemistry, Expansion, and Chance in the Evolution of the Genetic Code. Life 2017, 7, 22. [Google Scholar] [CrossRef]
- Yarus, M. The Genetic Code and RNA-Amino Acid Affinities. Life 2017, 7, 13. [Google Scholar] [CrossRef]
- Yarus, M. Evolution of the Standard Genetic Code. J. Mol. Evol. 2021, 89, 19–44. [Google Scholar] [CrossRef] [PubMed]
- Mirkin, B.G.; Fenner, T.I.; Galperin, M.Y.; Koonin, E.V. Algorithms for Computing Parsimonious Evolutionary Scenarios for Genome Evolution, the Last Universal Common Ancestor, and Dominance of Horizontal Gene Transfer in the Evolution of Prokaryotes. BMC Evol. Biol. 2003, 3, 2. [Google Scholar] [CrossRef]
- Koonin, E.V.; Novozhilov, A.S. Origin and Evolution of the Universal Genetic Code. Annu. Rev. Genet. 2017, 51, 45–62. [Google Scholar] [CrossRef]
- Herron, M.D. What Are the Major Transitions? Biol. Philos. 2021, 36, 2. [Google Scholar] [CrossRef]
- Szathmáry, E. Toward Major Evolutionary Transitions Theory 2.0. Proc. Natl. Acad. Sci. USA 2015, 112, 10104–10111. [Google Scholar] [CrossRef]
- Woese, C.R. On the Origin of the Genetic Code. Proc. Natl. Acad. Sci. USA 1965, 54, 1546–1552. [Google Scholar] [CrossRef]
- Woese, C.R. The Genetic Code; Harper & Row: New York, NY, USA, 1967. [Google Scholar]
- Crick, F.H. The Origin of the Genetic Code. J. Mol. Biol. 1968, 38, 367–379. [Google Scholar] [CrossRef]
- Orgel, L.E. Evolution of the Genetic Apparatus. J. Mol. Biol. 1968, 38, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Vetsigian, K.; Woese, C.; Goldenfeld, N. Collective Evolution and the Genetic Code. Proc. Natl. Acad. Sci. USA 2006, 103, 10696–10701. [Google Scholar] [CrossRef]
- Sagan, L. On the Origin of Mitosing Cells. J. Theoret Biol. 1967, 14, 225–274. [Google Scholar] [CrossRef] [PubMed]
- Margulis, L. Symbiosis in Cell Evolution: Life and Its Environment on the Early Earth; W. H. Freeman: San Francisco, CA, USA, 1981. [Google Scholar]
- Margulis, L. Symbiogenesis and Symbionticism. In Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis; Margulis, L., Fester, R., Eds.; MIT Press: Cambridge, UK, 1991; pp. 1–14. [Google Scholar]
- O’Malley, M.A. Endosymbiosis and Its Implications for Evolutionary Theory. Proc. Natl. Acad. Sci. USA 2014, 112, 10270–10277. [Google Scholar] [CrossRef] [PubMed]
- Woese, C.R. A New Biology for a New Century. Microbiol. Mol. Biol. Rev. 2004, 68, 173–186. [Google Scholar] [CrossRef]
- Damer, B. A Field Trip to the Archaean in Search of Darwin’s Warm Little Pond. Life 2016, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Milshteyn, D.; Damer, B.; Havig, J.; Deamer, D. Amphiphilic Compounds Assemble into Membranous Vesicles in Hydrothermal Hot Spring Water but Not in Seawater. Life 2018, 8, 11. [Google Scholar] [CrossRef]
- Deamer, D.W.; Damer, B.; Kompanichenko, V. Hydrothermal Chemistry and the Origin of Cellular Life. Astrobiology 2019, 19, 1523–1537. [Google Scholar] [CrossRef]
- Koonin, E.V.; Martin, W. On the Origin of Genomes and Cells Within Inorganic Compartments. Trends Genet. 2005, 21, 647–654. [Google Scholar] [CrossRef]
- Martin, W.; Russell, M.J. On the Origin of Biochemistry at an Alkaline Hydrothermal Vent. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2007, 362, 1887–1925. [Google Scholar] [CrossRef]
- Lane, N.; Martin, W.F. The Origin of Membrane Bioenergetics. Cell 2012, 151, 1406–1416. [Google Scholar] [CrossRef] [PubMed]
Types of Vesicles | No. of Peptides (NP) | No. of RNAs (NR) | No. of AAs Assigned (NA) | Fitness Score (F) |
---|---|---|---|---|
V1 | 2–4 | 5–10 | 5–6 | 10–24 |
V2 | 5–10 | 10–30 | 6–8 | 30–80 |
V3 | 11–20 | 25–70 | 8–10 | 88–200 |
V4 | 21–30 | 50–100 | 10–12 | 210–360 |
V5 | 31–40 | 75–140 | 12–14 | 272–560 |
V6 (as FUCAs) | 41–50 | 120–160 | 14–16 | 576–800 |
V1 | V2 | V3 | V4 | V5 | V6 | |
---|---|---|---|---|---|---|
V1 | 0.5; 0.5 | 0; 1 | 0; 1 | 0; 1 | 0; 1 | 0; 1 |
V2 | 1; 0 | 0.5; 0.5 | 0.4; 0.6 | 0.3; 0.7 | 0.2; 0.8 | 0.1; 0.9 |
V3 | 1; 0 | 0.6; 0.4 | 0.5; 0.5 | 0.4; 0.6 | 0.3; 0.7 | 0.2; 0.8 |
V4 | 1; 0 | 0.7; 0.3 | 0.6; 0.4 | 0.5; 0.5 | 0.4; 0.6 | 0.3; 0.7 |
V5 | 1; 0 | 0.8; 0.2 | 0.7; 0.3 | 0.6; 0.4 | 0.5; 0.5 | 0.4; 0.6 |
V6 | 1; 0 | 0.9; 0.1 | 0.8; 0.2 | 0.7; 0.3 | 0.6 0.4 | 0.5; 0.5 |
(A) | ||||
Length of Peptide (AAs) | 3–10 | 11–25 | 26–50 | >51 |
3–10 | 1 × 10−5 | 0.6 × 10−5 | 0.3 × 10−5 | 0.1 × 10−5 |
11–25 | 0.6 × 10−5 | 0.3 × 10−5 | 0.1 × 10−5 | 0.05 × 10−5 |
26–50 | 0.3 × 10−5 | 0.1 × 10−5 | 0.05 × 10−5 | 0.02 × 10−5 |
>51 | 0.1 × 10−5 | 0.05 × 10−5 | 0.02 × 10−5 | 0.01 × 10−5 |
(B) | ||||
Length of RNA (NBs) | 6–30 | 31–60 | 61–100 | >100 |
6–30 | 1 × 10−5 | 0.6 × 10−5 | 0.3 × 10−5 | 0.1 × 10−5 |
31–60 | 0.6 × 10−5 | 0.3 × 10−5 | 0.1 × 10−5 | 0.05 × 10−5 |
61–120 | 0.3 × 10−5 | 0.1 × 10−5 | 0.05 × 10−5 | 0.02 × 10−5 |
>120 | 0.1 × 10−5 | 0.05 × 10−5 | 0.02 × 10−5 | 0.01 × 10−5 |
Indicators\Simulations | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Volume of the pond (in units) | 60 | 72 | 66 | 69 | 52 | 93 | 85 | 62 |
No. of V1 vesicles alive | 1863 | 1845 | 1888 | 1928 | 1784 | 1608 | 1624 | 1568 |
No. of V2 vesicles alive | 1867 | 1849 | 1895 | 1891 | 1785 | 1610 | 1621 | 1552 |
No. of V3 vesicles alive | 926 | 926 | 944 | 980 | 906 | 903 | 897 | 880 |
No. of V4 vesicles alive | 265 | 280 | 288 | 317 | 374 | 439 | 438 | 471 |
No. of V5 vesicles alive | 71 | 77 | 89 | 98 | 120 | 171 | 174 | 239 |
Total No. of vesicles (V1–V6) alive | 5028 | 5019 | 5149 | 5266 | 5039 | 4865 | 4893 | 4994 |
No. of V6 (i.e., FUCAs) produced | 36 | 42 | 45 | 52 | 70 | 134 | 139 | 284 |
Cycles needed for the first FUCA to evolve | 112 | 115 | 118 | 125 | 128 | 140 | 142 | 170 |
Simulation | FUCAs | No. of Cycles for Producing LUCA | No. of LUCA Produced | LUCA | ||
---|---|---|---|---|---|---|
No. of Peptides | No. of RNAs | No. of Peptides | No. of RNAs | |||
1 | (100, 389) | (300, 1127) | 50 | 1 | 239 | 851 |
2 | (100, 416) | (300, 1204) | 56 | 8 | (212, 416) | (679, 1204) |
3 | (101, 290) | (300, 834) | 54 | 1 | 253 | 768 |
4 | (100, 276) | (300, 843) | 54 | 1 | 276 | 627 |
5 | (100, 297) | (300, 886) | 54 | 1 | 230 | 675 |
6 | (100, 277) | (300, 831) | 56 | 4 | (246, 277) | (672, 823) |
7 | (100, 404) | (300, 1222) | 54 | 1 | 286 | 719 |
8 | (100, 294) | (302, 805) | 56 | 2 | (253, 294) | (655, 756) |
9 | (100, 276) | (300, 827) | 56 | 2 | (249, 276) | (751, 827) |
10 | (100, 389) | (300, 1198) | 54 | 1 | 215 | 721 |
11 | (100, 280) | (300, 859) | 56 | 1 | 249 | 778 |
12 | (100, 280) | (300, 836) | 56 | 2 | (210, 261) | (693, 780) |
13 | (100, 297) | (300, 801) | 54 | 1 | 289 | 736 |
14 | (100, 290) | (300, 846) | 52 | 1 | 223 | 836 |
15 | (100, 292) | (300, 875) | 54 | 1 | 217 | 716 |
16 | (100, 296) | (300, 842) | 54 | 1 | 231 | 694 |
17 | (100, 294) | (300, 849) | 54 | 1 | 244 | 715 |
18 | (100, 275) | (300, 880) | 56 | 1 | 259 | 807 |
19 | (100, 392) | (300, 1275) | 56 | 1 | 274 | 787 |
20 | (100, 266) | (300, 832) | 54 | 1 | 264 | 728 |
21 | (100, 263) | (300, 806) | 56 | 1 | 227 | 723 |
22 | (100, 293) | (300, 867) | 54 | 1 | 232 | 793 |
23 | (100, 403) | (300, 1149) | 56 | 2 | (264, 403) | (858, 1149) |
24 | (100, 401) | (300, 1193) | 56 | 4 | (248, 272) | (714, 874) |
25 | (100, 347) | (300, 1246) | 54 | 1 | 251 | 683 |
Parameters\Simulations | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Volume of the pond (in units) | 58 | 76 | 55 | 57 |
No. of V1s and V2s alive when simulations are halted | 1169; 2036 | 1014; 1812 | 985; 1839 | 993; 1885 |
Percentage of peptides or proteins longer than 50 AAs in LUCA | 80% | 80% | 80% | 80% |
Percentage of RNAs longer than 150 NBs in LUCA | 70% | 75% | 78% | 80% |
Total No. of protocells perished | 2,946,377 | 3,712,377 | 3,083,724 | 4,085,174 |
Total No. of alive protocells when the first LUCA emerged | 3510 | 3125 | 3212 | 3337 |
No. of cycles until the first LUCA emerged | 800 | 1000 | 840 | 1120 |
No. of FUCA produced | 50 | 71 | 59 | 67 |
No. of LUCA produced | 1 | 1 | 1 | 1 |
Parameters\Simulations | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Volume of the pond (in units) | 53 | 88 | 83 | 80 |
No. of V1s and V2s alive when simulations are halted | 1163; 1952 | 1476; 2187 | 1588; 2459 | 1663; 2327 |
Percentage of peptides or proteins longer than 50 AAs in a LUCA | N.A. | N.A. | N.A. | N.A. |
Percentage of RNAs longer than 150 NBs in a LUCA | N.A. | N.A. | N.A. | N.A. |
Total No. of protocells perished | 4,646,260 | 4,590,189 | 5,024,335 | 4,836,936 |
Total No. of alive protocells when simulation is halted | 3115 | 3663 | 4047 | 3960 |
No. of cycles when simulation is halted | 1330 | 1320 | 1440 | 1360 |
No. of FUCA produced | 0 | 0 | 0 | 0 |
No. of LUCA produced | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Gao, M. The Origin(s) of LUCA: Computer Simulation of a New Theory. Life 2025, 15, 75. https://doi.org/10.3390/life15010075
Tang S, Gao M. The Origin(s) of LUCA: Computer Simulation of a New Theory. Life. 2025; 15(1):75. https://doi.org/10.3390/life15010075
Chicago/Turabian StyleTang, Shiping, and Ming Gao. 2025. "The Origin(s) of LUCA: Computer Simulation of a New Theory" Life 15, no. 1: 75. https://doi.org/10.3390/life15010075
APA StyleTang, S., & Gao, M. (2025). The Origin(s) of LUCA: Computer Simulation of a New Theory. Life, 15(1), 75. https://doi.org/10.3390/life15010075