Central Serous Chorioretinopathy in Endometriosis Treatment with Progestogen: A Metabolic Understanding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anamnesis and Diagnosis
2.2. Pharmacological Treatment and Instrumental Exams
2.3. Clinical Biochemistry
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saunders, P.T.K.; Horne, A.W. Endometriosis: Etiology, Pathobiology, and Therapeutic Prospects. Cell 2021, 184, 2807–2824. [Google Scholar] [CrossRef] [PubMed]
- Zondervan, K.T.; Becker, C.M.; Koga, K.; Missmer, S.A.; Taylor, R.N.; Viganò, P. Endometriosis. Nat. Rev. Dis. Primers 2018, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Bourgioti, C.; Preza, O.; Panourgias, E.; Chatoupis, K.; Antoniou, A.; Nikolaidou, M.E.; Moulopoulos, L.A. MR Imaging of Endometriosis: Spectrum of Disease. Diagn. Interv. Imaging 2017, 98, 751–767. [Google Scholar] [CrossRef] [PubMed]
- Mechsner, S.; Weichbrodt, M.; Riedlinger, W.F.J.; Bartley, J.; Kaufmann, A.M.; Schneider, A.; Kohler, C. Estrogen and Progestogen Receptor Positive Endometriotic Lesions and Disseminated Cells in Pelvic Sentinel Lymph Nodes of Patients with Deep Infiltrating Rectovaginal Endometriosis: A Pilot Study. Hum. Reprod. 2008, 23, 2202–2209. [Google Scholar] [CrossRef] [PubMed]
- Sourial, S.; Tempest, N.; Hapangama, D.K. Theories on the Pathogenesis of Endometriosis. Int. J. Reprod. Med. 2014, 2014, 179515. [Google Scholar] [CrossRef]
- Lamceva, J.; Uljanovs, R.; Strumfa, I. The Main Theories on the Pathogenesis of Endometriosis. Int. J. Mol. Sci. 2023, 24, 4254. [Google Scholar] [CrossRef]
- Nisenblat, V.; Farquhar, C.; Akoum, A.; Fraser, I.; Bossuyt, P.M.; Hull, M.L. Non-Invasive Tests for the Diagnosis of Endometriosis. In Cochrane Database of Systematic Reviews; The Cochrane Collaboration, Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2012; p. CD009591. [Google Scholar]
- Parasar, P.; Ozcan, P.; Terry, K.L. Endometriosis: Epidemiology, Diagnosis and Clinical Management. Curr. Obstet. Gynecol. Rep. 2017, 6, 34–41. [Google Scholar] [CrossRef]
- Jamieson, D.; Steege, J. The Prevalence of Dysmenorrhea, Dyspareunia, Pelvic Pain, and Irritable Bowel Syndrome in Primary Care Practices. Obstet. Gynecol. 1996, 87, 55–58. [Google Scholar] [CrossRef]
- Alkatout, I.; Mettler, L.; Beteta, C.; Hedderich, J.; Jonat, W.; Schollmeyer, T.; Salmassi, A. Combined Surgical and Hormone Therapy for Endometriosis Is the Most Effective Treatment: Prospective, Randomized, Controlled Trial. J. Minim. Invasive Gynecol. 2013, 20, 473–481. [Google Scholar] [CrossRef]
- Vannuccini, S.; Clemenza, S.; Rossi, M.; Petraglia, F. Hormonal Treatments for Endometriosis: The Endocrine Background. Rev. Endocr. Metab. Disord. 2022, 23, 333–355. [Google Scholar] [CrossRef]
- Rzewuska, A.M.; Żybowska, M.; Sajkiewicz, I.; Spiechowicz, I.; Żak, K.; Abramiuk, M.; Kułak, K.; Tarkowski, R. Gonadotropin-Releasing Hormone Antagonists—A New Hope in Endometriosis Treatment? J. Clin. Med. 2023, 12, 1008. [Google Scholar] [CrossRef] [PubMed]
- Chandra, V.; Kim, J.J.; Benbrook, D.M.; Dwivedi, A.; Rai, R. Therapeutic Options for Management of Endometrial Hyperplasia. J. Gynecol. Oncol. 2016, 27, e8. [Google Scholar] [CrossRef] [PubMed]
- Pavone, M.E.; Bulun, S.E. Aromatase Inhibitors for the Treatment of Endometriosis. Fertil. Steril. 2012, 98, 1370–1379. [Google Scholar] [CrossRef] [PubMed]
- Schindler, A. Dienogest in Long-Term Treatment of Endometriosis. Int. J. Women’s Health 2011, 3, 175–184. [Google Scholar] [CrossRef]
- Sasagawa, S.; Shimizu, Y.; Nagaoka, T.; Tokado, H.; Imada, K.; Mizuguchi, K. Dienogest, a Selective Progestin, Reduces Plasma Estradiol Level through Induction of Apoptosis of Granulosa Cells in the Ovarian Dominant Follicle without Follicle-Stimulating Hormone Suppression in Monkeys. J. Endocrinol. Investig. 2008, 31, 636–641. [Google Scholar] [CrossRef]
- Okada, A.; Sato, T.; Ohta, Y.; Buchanan, D.; Iguchi, T. Effect of Diethylstilbestrol on Cell Proliferation and Expression of Epidermal Growth Factor in the Developing Female Rat Reproductive Tract. J. Endocrinol. 2001, 170, 539–554. [Google Scholar] [CrossRef]
- Katsuki, Y.; Takano, Y.; Futamura, Y.; Shibutani, Y.; Aoki, D.; Udagawa, Y.; Nozawa, S. Effects of Dienogest, a Synthetic Steroid, on Experimental Endometriosis in Rats. Eur. J. Endocrinol. 1998, 138, 216–226. [Google Scholar] [CrossRef]
- Tatsumi, H.; Kitawaki, J.; Tanaka, K.; Hosoda, T.; Honjo, H. Lack of Stimulatory Effect of Dienogest on the Expression of Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 by Endothelial Cell as Compared with Other Synthetic Progestins. Maturitas 2002, 42, 287–294. [Google Scholar] [CrossRef]
- Horie, S.; Harada, T.; Mitsunari, M.; Taniguchi, F.; Iwabe, T.; Terakawa, N. Progesterone and Progestational Compounds Attenuate Tumor Necrosis Factor Alpha–Induced Interleukin-8 Production via Nuclear Factor kappaB Inactivation in Endometriotic Stromal Cells. Fertil. Steril. 2005, 83, 1530–1535. [Google Scholar] [CrossRef]
- Petraglia, F.; Hornung, D.; Seitz, C.; Faustmann, T.; Gerlinger, C.; Luisi, S.; Lazzeri, L.; Strowitzki, T. Reduced Pelvic Pain in Women with Endometriosis: Efficacy of Long-Term Dienogest Treatment. Arch. Gynecol. Obstet. 2012, 285, 167–173. [Google Scholar] [CrossRef]
- Momoeda, M.; Harada, T.; Terakawa, N.; Aso, T.; Fukunaga, M.; Hagino, H.; Taketani, Y. Long-term Use of Dienogest for the Treatment of Endometriosis. J. Obstet. Gynaecol. Res. 2009, 35, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Shackleton, C.; Pozo, O.J.; Marcos, J. GC/MS in Recent Years Has Defined the Normal and Clinically Disordered Steroidome: Will It Soon Be Surpassed by LC/Tandem MS in This Role? J. Endocr. Soc. 2018, 2, 974–996. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, L.; Barnard, L.; Baranowski, E.S.; Gilligan, L.C.; Taylor, A.E.; Arlt, W.; Shackleton, C.H.L.; Storbeck, K.-H. Human Steroid Biosynthesis, Metabolism and Excretion Are Differentially Reflected by Serum and Urine Steroid Metabolomes: A Comprehensive Review. J. Steroid Biochem. Mol. Biol. 2019, 194, 105439. [Google Scholar] [CrossRef]
- Rousson, V.; Ackermann, D.; Ponte, B.; Pruijm, M.; Guessous, I.; d’Uscio, C.H.; Ehret, G.; Escher, G.; Pechère-Bertschi, A.; Groessl, M.; et al. Sex- and Age-Specific Reference Intervals for Diagnostic Ratios Reflecting Relative Activity of Steroidogenic Enzymes and Pathways in Adults. PLoS ONE 2021, 16, e0253975. [Google Scholar] [CrossRef]
- Wickenheisser, J.K.; Nelson-DeGrave, V.L.; McAllister, J.M. Human Ovarian Theca Cells in Culture. Trends Endocrinol. Metab. 2006, 17, 65–71. [Google Scholar] [CrossRef]
- Clark, B.J.; Wells, J.; King, S.R.; Stocco, D.M. The Purification, Cloning, and Expression of a Novel Luteinizing Hormone-Induced Mitochondrial Protein in MA-10 Mouse Leydig Tumor Cells. Characterization of the Steroidogenic Acute Regulatory Protein (StAR). J. Biol. Chem. 1994, 269, 28314–28322. [Google Scholar] [CrossRef]
- Strushkevich, N.; MacKenzie, F.; Cherkesova, T.; Grabovec, I.; Usanov, S.; Park, H.-W. Structural Basis for Pregnenolone Biosynthesis by the Mitochondrial Monooxygenase System. Proc. Natl. Acad. Sci. USA 2011, 108, 10139–10143. [Google Scholar] [CrossRef]
- Breen, M.S.; Villeneuve, D.L.; Breen, M.; Ankley, G.T.; Conolly, R.B. Mechanistic Computational Model of Ovarian Steroidogenesis to Predict Biochemical Responses to Endocrine Active Compounds. Ann. Biomed. Eng. 2007, 35, 970–981. [Google Scholar] [CrossRef]
- Hall, D.F. Cytochromes P-450 and the Regulation of Steroid Synthesis. Steroids 1986, 48, 131–196. [Google Scholar] [CrossRef]
- Dhayat, N.A.; Marti, N.; Kollmann, Z.; Troendle, A.; Bally, L.; Escher, G.; Grössl, M.; Ackermann, D.; Ponte, B.; Pruijm, M.; et al. Urinary Steroid Profiling in Women Hints at a Diagnostic Signature of the Polycystic Ovary Syndrome: A Pilot Study Considering Neglected Steroid Metabolites. PLoS ONE 2018, 13, e0203903. [Google Scholar] [CrossRef]
- Miller, W.L.; Auchus, R.J. The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders. Endocr. Rev. 2011, 32, 81–151. [Google Scholar] [CrossRef]
- Bochud, M.; Ponte, B.; Pruijm, M.; Ackermann, D.; Guessous, I.; Ehret, G.; Escher, G.; Groessl, M.; Estoppey Younes, S.; d’Uscio, C.H.; et al. Urinary Sex Steroid and Glucocorticoid Hormones Are Associated With Muscle Mass and Strength in Healthy Adults. J. Clin. Endocrinol. Metab. 2019, 104, 2195–2215. [Google Scholar] [CrossRef] [PubMed]
- Shackleton, C.H.L. Mass Spectrometry in the Diagnosis of Steroid-Related Disorders and in Hypertension Research. J. Steroid Biochem. Mol. Biol. 1993, 45, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Afrin, S.; Jones, S.I.; Segars, J. Selective Progesterone Receptor Modulators—Mechanisms and Therapeutic Utility. Endocr. Rev. 2020, 41, bnaa012. [Google Scholar] [CrossRef] [PubMed]
- Çiloğlu, E.; Unal, F.; Dogan, N.C. The Relationship between the Central Serous Chorioretinopathy, Choroidal Thickness, and Serum Hormone Levels. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 1111–1116. [Google Scholar] [CrossRef]
- Leonhardt, S.A.; Edwards, D.P. Mechanism of Action of Progesterone Antagonists. Exp. Biol. Med. 2002, 227, 969–980. [Google Scholar] [CrossRef]
- Sitruk-Ware, R. New Progestogens: A Review of Their Effects in Perimenopausal and Postmenopausal Women. Drugs Aging 2004, 21, 865–883. [Google Scholar] [CrossRef]
- Fung, A.T.; Yang, Y.; Kam, A.W. Central Serous Chorioretinopathy: A Review. Clin. Exp. Ophthalmol. 2023, 51, 243–270. [Google Scholar] [CrossRef]
- Nicholson, B.P.; Atchison, E.; Idris, A.A.; Bakri, S.J. Central Serous Chorioretinopathy and Glucocorticoids: An Update on Evidence for Association. Surv. Ophthalmol. 2018, 63, 1–8. [Google Scholar] [CrossRef]
- Vajaranant, T.S.; Pasquale, L.R. Estrogen Deficiency Accelerates Aging of the Optic Nerve. Menopause 2012, 19, 942–947. [Google Scholar] [CrossRef]
- Nielsen, J.S.; Weinreb, R.N.; Yannuzzi, L.; Jampol, L.M. Mifepristone Treatment of Chronic Central Serous Chorioretinopathy. Retina 2007, 27, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.S.; Jampol, L.M. Oral Mifepristone for Chronic Central Serous Chorioretinopathy. Retina 2011, 31, 1928–1936. [Google Scholar] [CrossRef] [PubMed]
- Robin-Jagerschmidt, C.; Wurtz, J.-M.; Guillot, B.; Gofflo, D.; Benhamou, B.; Vergezac, A.; Ossart, C.; Moras, D.; Philibert, D. Residues in the Ligand Binding Domain That Confer Progestin or Glucocorticoid Specificity and Modulate the Receptor Transactivation Capacity. Mol. Endocrinol. 2000, 14, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P. Membrane Progesterone Receptors (mPRs, PAQRs): Review of Structural and Signaling Characteristics. Cells 2022, 11, 1785. [Google Scholar] [CrossRef]
- Cadepond, F.; Ulmann, A.; Baulieu, E.-E. RU486 (MIFEPRISTONE): Mechanisms of Action and Clinical Uses. Annu. Rev. Med. 1997, 48, 129–156. [Google Scholar] [CrossRef]
- Habara, M.; Shimada, M. Estrogen Receptor α Revised: Expression, Structure, Function, and Stability. BioEssays 2022, 44, 2200148. [Google Scholar] [CrossRef]
- Méar, L.; Herr, M.; Fauconnier, A.; Pineau, C.; Vialard, F. Polymorphisms and Endometriosis: A Systematic Review and Meta-Analyses. Hum. Reprod. Update 2020, 26, 73–103. [Google Scholar] [CrossRef]
- Patel, B.G.; Rudnicki, M.; Yu, J.; Shu, Y.; Taylor, R.N. Progesterone Resistance in Endometriosis: Origins, Consequences and Interventions. Acta Obstet. Gynecol. Scand. 2017, 96, 623–632. [Google Scholar] [CrossRef]
- Fabjani, G.; Tong, D.; Czerwenka, K.; Schuster, E.; Speiser, P.; Leodolter, S.; Zeillinger, R. Human Progesterone Receptor Gene Polymorphism PROGINS and Risk for Breast Cancer in Austrian Women. Breast Cancer Res. Treat. 2002, 72, 131–137. [Google Scholar] [CrossRef]
- Kado, N. Association of the CYP17 Gene and CYP19 Gene Polymorphisms with Risk of Endometriosis in Japanese Women. Hum. Reprod. 2002, 17, 897–902. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Nakajima, M.; Yokoi, T. Cytochrome P450-Mediated Metabolism of Estrogens and Its Regulation in Human. Cancer Lett. 2005, 227, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Docquier, A.; Garcia, A.; Savatier, J.; Boulahtouf, A.; Bonnet, S.; Bellet, V.; Busson, M.; Margeat, E.; Jalaguier, S.; Royer, C.; et al. Negative Regulation of Estrogen Signaling by ERβ and RIP140 in Ovarian Cancer Cells. Mol. Endocrinol. 2013, 27, 1429–1441. [Google Scholar] [CrossRef] [PubMed]
- Wieser, F.; Wenzl, R.; Tempfer, C.; Worda, C.; Huber, J.; Schneeberger, C. Catechol-O-Methyltransferase Polymorphism and Endometriosis. J. Assist. Reprod. Genet. 2002, 19, 343–348. [Google Scholar] [CrossRef] [PubMed]
Day Number | Estradiol Valerate [mg] | Dienogest [mg] |
---|---|---|
1–2 | 3.0 | 0.0 |
3–7 | 2.0 | 2.0 |
8–17 | 2.0 | 3.0 |
18–24 | 2.0 | 3.0 |
25–26 | 1.0 | 0.0 |
27–28 | 0.0 | 0.0 |
Enzymes and Pathways | Ratios | Value | Range |
---|---|---|---|
17β-hydroxysteroid dehydrogenase (HSD17B) | 0.917 | 0.366–2.580 | |
Alternative androgen backdoor pathway vs. classic pathway | 0.859 | 0.400–2.100 | |
5α-reductase deficiency | 1.164 | 0.470–2.400 | |
17,20-lyase Δ5-pathway deficiency | 3.480 | 0.028–1.880 | |
1.980 | 0.166–5.510 | ||
1.440 | 0.0229–1.870 | ||
0.670 | 0.0097–0.555 | ||
P450c17 global Δ4 vs. Δ5-pathway | 15.21 | 0.147–6.20 | |
8.65 | 1.08–20.4 | ||
0.025 | 0.0376–1.140 |
Analyte or Ratio | N | Reference Interval |
---|---|---|
E1 | 36 | 2.00–15.00 |
36 | 0.20–3.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiara, F.; Allegra, S.; Caudana, M.; Mula, J.; Turco, D.; Liuzzi, S.; Puccinelli, M.P.; Mengozzi, G.; De Francia, S. Central Serous Chorioretinopathy in Endometriosis Treatment with Progestogen: A Metabolic Understanding. Life 2025, 15, 144. https://doi.org/10.3390/life15020144
Chiara F, Allegra S, Caudana M, Mula J, Turco D, Liuzzi S, Puccinelli MP, Mengozzi G, De Francia S. Central Serous Chorioretinopathy in Endometriosis Treatment with Progestogen: A Metabolic Understanding. Life. 2025; 15(2):144. https://doi.org/10.3390/life15020144
Chicago/Turabian StyleChiara, Francesco, Sarah Allegra, Maura Caudana, Jacopo Mula, Davide Turco, Simona Liuzzi, Maria Paola Puccinelli, Giulio Mengozzi, and Silvia De Francia. 2025. "Central Serous Chorioretinopathy in Endometriosis Treatment with Progestogen: A Metabolic Understanding" Life 15, no. 2: 144. https://doi.org/10.3390/life15020144
APA StyleChiara, F., Allegra, S., Caudana, M., Mula, J., Turco, D., Liuzzi, S., Puccinelli, M. P., Mengozzi, G., & De Francia, S. (2025). Central Serous Chorioretinopathy in Endometriosis Treatment with Progestogen: A Metabolic Understanding. Life, 15(2), 144. https://doi.org/10.3390/life15020144