Impact of Altitude Training on Athletes’ Aerobic Capacity: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion/Exclusion Criteria
2.2.1. Inclusion Criteria
- (1)
- Study subjects: Athletes engaged in any sport, aged 18 years or older.
- (2)
- Intervention: Any form of altitude endurance training.
- (3)
- Experimental and control groups: The experimental group received any form of altitude training, while the control group underwent endurance training at sea level.
- (4)
- Outcome indicators: Studies must report at least one of the following: maximal oxygen uptake, field test performance, blood markers, etc.
- (5)
- Experimental design: Randomized controlled trials (RCTs) with a detailed exercise intervention program.
2.2.2. Exclusion Criteria
- (1)
- Non-athlete subjects, including individuals with cardiorespiratory diseases.
- (2)
- Studies without an aerobic training group (positive control group).
- (3)
- The absence of pre- and post-intervention study parameters.
- (4)
- Animal-based experiments.
- (5)
- Literature not based on direct experimentation or relying on secondary citations of experimental data for review or analysis purposes.
- (6)
- Studies lacking a clear description of experimental protocols, procedures, data collection, statistical testing, or analytical methods.
- (7)
- Conference abstracts, review articles, dissertations, or qualitative studies.
2.3. Screening of Literature
2.4. Data Extraction
2.5. Risk of Bias Assessment
2.6. Data Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics and Risk of Bias
3.3. Meta-Analysis Results
3.3.1. Pooled Outcomes
3.3.2. Heterogeneity
Heterogeneity Test of Hemoglobin
Heterogeneity Test of Hbmass
Heterogeneity Test of Time Trial
3.3.3. Sensitivity Analysis
3.3.4. Bias Test
3.3.5. Subgroup Analyses
4. Discussion
4.1. Maximal Oxygen Uptake
4.2. Blood Indicator
4.3. Trial Test Performance
4.4. Altitude and Duration
4.5. Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinex, J.A.; Chapman, R.F. Hypoxic Training Methods for Improving Endurance Exercise Performance. J. Sport Health Sci. 2015, 4, 325–332. [Google Scholar] [CrossRef]
- Jackson, R.; Balke, B. Training at Altitude for Performance at Sea Level. Schweiz. Z. Fur Sportmed. 1971, (Suppl. S19–S27). [Google Scholar] [PubMed]
- Adams, W.C.; Bernauer, E.M.; Dill, D.B.; Bomar, J.B. Effects of Equivalent Sea-Level and Altitude Training on VO2max and Running Performance. J. Appl. Physiol. 1975, 39, 262–266. [Google Scholar] [CrossRef]
- Daniels, J. Altitude and Athletic Training and Performance. Am. J. Sports Med. 1979, 7, 371–373. [Google Scholar] [CrossRef]
- Bailey, D.M.; Davies, B.; Romer, L.; Castell, L.; Newsholme, E.; Gandy, G. Implications of Moderate Altitude Training for Sea-Level Endurance in Elite Distance Runners. Eur. J. Appl. Physiol. 1998, 78, 360–368. [Google Scholar] [CrossRef]
- Feng, X.; Zhao, L.; Chen, Y.; Wang, Z.; Lu, H.; Wang, C. Optimal Type and Dose of Hypoxic Training for Improving Maximal Aerobic Capacity in Athletes: A Systematic Review and Bayesian Model-Based Network Meta-Analysis. Front. Physiol. 2023, 14, 1223037. [Google Scholar] [CrossRef]
- Girard, O.; Brocherie, F.; Goods, P.S.R.; Millet, G.P. An Updated Panorama of “Living Low-Training High” Altitude/Hypoxic Methods. Front. Sports Act. Living 2020, 2, 26. [Google Scholar] [CrossRef]
- Tsai, K.-Z.; Lai, S.-W.; Hsieh, C.-J.; Lin, C.-S.; Lin, Y.-P.; Tsai, S.-C.; Chung, P.-S.; Lin, Y.-K.; Lin, T.-C.; Ho, C.-L.; et al. Association between Mild Anemia and Physical Fitness in a Military Male Cohort: The CHIEF Study. Sci. Rep. 2019, 9, 11165. [Google Scholar] [CrossRef]
- Green, H.J. Altitude Acclimatization, Training and Performance. J. Sci. Med. Sport 2000, 3, 299–312. [Google Scholar] [CrossRef]
- Barnes, K.R.; Kilding, A.E. Strategies to Improve Running Economy. Sports Med. 2015, 45, 37–56. [Google Scholar] [CrossRef]
- Płoszczyca, K.; Langfort, J.; Czuba, M. The Effects of Altitude Training on Erythropoietic Response and Hematological Variables in Adult Athletes: A Narrative Review. Front. Physiol. 2018, 9, 375. [Google Scholar] [CrossRef] [PubMed]
- Sitkowski, D.; Szygula, Z.; Surała, O.; Orysiak, J.; Zdanowicz, R.; Pokrywka, A.; Starczewski, M.; Malczewska-Lenczowska, J. Hematological Status and Endurance Performance Predictors after Low Altitude Training Supported by Normobaric Hypoxia: A Double-Blind, Placebo-controlled Study. Biol. Sport 2019, 36, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Bejder, J.; Andersen, A.B.; Goetze, J.P.; Aachmann-Andersen, N.J.; Nordsborg, N.B. Plasma Volume Reduction and Hematological Fluctuations in High-level Athletes after an Increased Training Load. Scand. J. Med. Sci. Sports 2017, 27, 1605–1615. [Google Scholar] [CrossRef] [PubMed]
- Neya, M.; Enoki, T.; Ohiwa, N.; Kawahara, T.; Gore, C.J. Increased Hemoglobin Mass and VO2max with 10 h Nightly Simulated Altitude at 3000 m. Int. J. Sports Physiol. Perform. 2013, 8, 366–372. [Google Scholar] [CrossRef]
- Svedenhag, J.; Saltin, B.; Johansson, C.; Kaijser, L. Aerobic and Anaerobic Exercise Capacities of Elite Middle-distance Runners after Two Weeks of Training at Moderate Altitude. Scand. J. Med. Sci. Sports 1991, 1, 205–214. [Google Scholar] [CrossRef]
- Graybiel, A.; Smedal, H.A. History of the Development of the Physiological Research Department and the Altitude Training Unit. Contact 1946, 6, 153–159. [Google Scholar]
- Faulkner, J.A.; Daniels, J.T.; Balke, B. Effects of Training at Moderate Altitude on Physical Performance Capacity. J. Appl. Physiol. 1967, 23, 85–89. [Google Scholar] [CrossRef]
- Travers, P.R.; Watson, R. Results of Altitude Training in British Track and Field Athletes, 1972. Br. J. Sports Med. 1974, 8, 46–51. [Google Scholar] [CrossRef]
- Levine, B.D.; Stray-Gundersen, J. “Living High-Training Low”: Effect of Moderate-Altitude Acclimatization with Low-Altitude Training on Performance. J. Appl. Physiol. 1997, 83, 102–112. [Google Scholar] [CrossRef]
- Brocherie, F.; Millet, G.P.; Hauser, A.; Steiner, T.; Rysman, J.; Wehrlin, J.P.; Girard, O. “Live High–Train Low and High” Hypoxic Training Improves Team-Sport Performance. Med. Sci. Sports Exerc. 2015, 47, 2140–2149. [Google Scholar] [CrossRef]
- Hoppeler, H.; Vogt, M. Hypoxia Training for Sea-Level Performance: Training High—Living Low. In Hypoxia; Roach, R.C., Wagner, P.D., Hackett, P.H., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 2001; Volume 502, pp. 61–73. ISBN 978-1-4419-3374-4. [Google Scholar]
- Roels, B.; Millet, G.P.; Marcoux, C.J.L.; Coste, O.; Bentley, D.J.; Candau, R.B. Effects of Hypoxic Interval Training on Cycling Performance. Med. Sci. Sports Exerc. 2005, 37, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Glazachev, O.S.; Orlova, M.A. Analysis of the effectiveness of interval hypoxic training in rehabilitation of apparently healthy persons: An individual approach. Vestn. Ross. Akad. Med. Nauk. 1997, 50–55. [Google Scholar] [PubMed]
- Guenette, J.A.; Sporer, B.C.; MacNutt, M.J.; Coxson, H.O.; Sheel, A.W.; Mayo, J.R.; McKenzie, D.C. Lung Density Is Not Altered Following Intense Normobaric Hypoxic Interval Training in Competitive Female Cyclists. J. Appl. Physiol. 2007, 103, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Rusko, H.R. New Aspects of Altitude Training. Am. J. Sports Med. 1996, 24, S48–S52. [Google Scholar] [CrossRef]
- Buchheit, M.; Racinais, S.; Bilsborough, J.; Hocking, J.; Mendez-Villanueva, A.; Bourdon, P.C.; Voss, S.; Livingston, S.; Christian, R.; Périard, J.; et al. Adding Heat to the Live-High Train-Low Altitude Model: A Practical Insight from Professional Football. Br. J. Sports Med. 2013, 47, i59–i69. [Google Scholar] [CrossRef]
- Levine, B.D.; Stray-Gundersen, J. Dose-Response of Altitude Training: How Much Altitude Is Enough? In Hypoxia and Exercise; Roach, R.C., Wagner, P.D., Hackett, P.H., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 2006; Volume 588, pp. 233–247. ISBN 978-0-387-34816-2. [Google Scholar]
- Gore, C.J.; Rodríguez, F.A.; Truijens, M.J.; Townsend, N.E.; Stray-Gundersen, J.; Levine, B.D. Increased Serum Erythropoietin but Not Red Cell Production after 4 Wk of Intermittent Hypobaric Hypoxia (4,000–5,500 m). J. Appl. Physiol. 2006, 101, 1386–1393. [Google Scholar] [CrossRef]
- Nasser, M. New Standards for Systematic Reviews Incorporate Population Health Sciences. Am. J. Public Health 2020, 110, 753–754. [Google Scholar] [CrossRef]
- Czuba, M.; Fidos-Czuba, O.; Płoszczyca, K.; Zając, A.; Langfort, J. Comparison of the Effect of Intermittent Hypoxic Training vs. the Live High, Train Low Strategy on Aerobic Capacity and Sports Performance in Cyclists in Normoxia. Biol. Sport 2018, 35, 39–48. [Google Scholar] [CrossRef]
- Kettunen, O.; Leppävuori, A.; Mikkonen, R.; Peltonen, J.E.; Nummela, A.; Wikström, B.; Linnamo, V. Hemoglobin Mass and Performance Responses during 4 Weeks of Normobaric “Live High–Train Low and High”. Scand. J. Med. Sci. Sports 2023, 33, 1335–1344. [Google Scholar] [CrossRef]
- Robach, P.; Siebenmann, C.; Jacobs, R.A.; Rasmussen, P.; Nordsborg, N.; Pesta, D.; Gnaiger, E.; Díaz, V.; Christ, A.; Fiedler, J.; et al. The Role of Haemoglobin Mass on VO2 Max Following Normobaric ‘Live High–Train Low’ in Endurance-Trained Athletes. Br. J. Sports Med. 2012, 46, 822–827. [Google Scholar] [CrossRef]
- Siebenmann, C.; Robach, P.; Jacobs, R.A.; Rasmussen, P.; Nordsborg, N.; Diaz, V.; Christ, A.; Olsen, N.V.; Maggiorini, M.; Lundby, C. “Live High–Train Low” Using Normobaric Hypoxia: A Double-Blinded, Placebo-Controlled Study. J. Appl. Physiol. 2011, 112, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Czuba, M.; Zając, A.; Maszczyk, A.; Roczniok, R.; Poprzęcki, S.; Garbaciak, W.; Zając, T. The Effects of High Intensity Interval Training in Normobaric Hypoxia on Aerobic Capacity in Basketball Players. J. Hum. Kinet. 2013, 39, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Czuba, M.; Maszczyk, A.; Gerasimuk, D.; Roczniok, R.; Fidos-Czuba, O.; Zając, A.; Gołaś, A.; Mostowik, A.; Langfort, J. The Effects of Hypobaric Hypoxia on Erythropoiesis, Maximal Oxygen Uptake and Energy Cost of Exercise Under Normoxia in Elite Biathletes. J. Sports Sci. Med. 2014, 13, 912. [Google Scholar]
- Fernández-Lázaro, D.; Mielgo-Ayuso, J.; Santamaría, G.; Gutiérrez-Abejón, E.; Domínguez-Ortega, C.; García-Lázaro, S.M.; Seco-Calvo, J. Adequacy of an Altitude Fitness Program (Living and Training) plus Intermittent Exposure to Hypoxia for Improving Hematological Biomarkers and Sports Performance of Elite Athletes: A Single-Blind Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2022, 19, 9095. [Google Scholar] [CrossRef]
- McLean, B.D.; Buttifant, D.; Gore, C.J.; White, K.; Liess, C.; Kemp, J. Physiological and Performance Responses to a Preseason Altitude-Training Camp in Elite Team-Sport Athletes. Int. J. Sports Physiol. Perform. 2013, 8, 391–399. [Google Scholar] [CrossRef]
- Morton, J.P.; Cable, N.T. The Effects of Intermittent Hypoxic Training on Aerobic and Anaerobic Performance. Ergonomics 2005, 48, 1535–1546. [Google Scholar] [CrossRef]
- Bonne, T.C.; Lundby, C.; Jørgensen, S.; Johansen, L.; Mrgan, M.; Bech, S.R.; Sander, M.; Papoti, M.; Nordsborg, N.B. “Live High–Train High” Increases Hemoglobin Mass in Olympic Swimmers. Eur. J. Appl. Physiol. 2014, 114, 1439–1449. [Google Scholar] [CrossRef]
- Peltonen, J.E.; Leppävuori, A.; Lehtonen, E.; Mikkonen, R.S.; Kettunen, O.; Nummela, A.; Ohtonen, O.; Gagnon, D.D.; Wehrlin, J.P.; Wilber, R.L.; et al. Combined Intermittent Hypoxic Exposure at Rest and Continuous Hypoxic Training Can Maintain Elevated Hemoglobin Mass after a Hypoxic Camp. J. Appl. Physiol. 2024, 137, 409–420. [Google Scholar] [CrossRef]
- Urianstad, T.; Villanova, S.; Odden, I.; Hansen, J.; Mølmen, K.S.; Porcelli, S.; Rønnestad, B.R.; Cardinale, D.A. Carbon Monoxide Supplementation: Evaluating Its Potential to Enhance Altitude Training Effects and Cycling Performance in Elite Athletes. J. Appl. Physiol. 2024, 137, 1092–1105. [Google Scholar] [CrossRef]
- Holmer, I. Oxygen Uptake during Swimming in Man. Appl. Physiol. 1972, 33, 502–509. [Google Scholar] [CrossRef]
- Chen, B.; Wu, Z.; Huang, X.; Li, Z.; Wu, Q.; Chen, Z. Effect of Altitude Training on the Aerobic Capacity of Athletes: A Systematic Review and Meta-Analysis. Heliyon 2023, 9, e20188. [Google Scholar] [CrossRef] [PubMed]
- Zelenovic, M.; Kontro, T.; Stojanovic, T.; Alexe, D.I.; Bozic, D.; Aksovic, N.; Bjelica, B.; Milanovic, Z.; Adrian, S.M. Effects of Repeated Sprint Training in Hypoxia on Physical Performance Among Athletes: A Systematic Review. Int. J. Morphol. 2021, 39, 1625–1634. [Google Scholar] [CrossRef]
- Gore, C.; Craig, N.; Hahn, A.; Rice, A.; Bourdon, P.; Lawrence, S.; Walsh, C.; Stanef, T.; Barnes, P.; Parisotto, R.; et al. Altitude Training at 2690m Does Not Increase Total Haemoglobin Mass or Sea Level VO2max in World Champion Track Cyclists. J. Sci. Med. Sport 1998, 1, 156–170. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Edmunds, R.M.; Clark, A.; King, L.; Gallant, R.M.; Namm, S.; Fischer, A.; Wood, K.A. Increased Cardiac Output and Maximal Oxygen Uptake in Response to Ten Sessions of High Intensity Interval Training. J. Sports Med. Phys. Fit. 2017, 58, 164–171. [Google Scholar] [CrossRef]
- Bassett, D.R. Limiting Factors for Maximum Oxygen Uptake and Determinants of Endurance Performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef]
- Morgan, D.W.; Baldini, F.D.; Martin, P.E.; Kohrt, W.M. Ten Kilometer Performance and Predicted Velocity at V02max among Well-Trained Male Runners. Med. Sci. Sports Exerc. 1989, 21, 78–83. [Google Scholar] [CrossRef]
- Rosenblat, M.A.; Granata, C.; Thomas, S.G. Effect of Interval Training on the Factors Influencing Maximal Oxygen Consumption: A Systematic Review and Meta-Analysis. Sports Med. 2022, 52, 1329–1352. [Google Scholar] [CrossRef]
- Levine, B.D.; Stray-Gundersen, J. Point: Positive Effects of Intermittent Hypoxia (Live High:Train Low) on Exercise Performance Are Mediated Primarily by Augmented Red Cell Volume. J. Appl. Physiol. 2005, 99, 2053–2055. [Google Scholar] [CrossRef]
- Gunga, H.-C.; Kirsch, K.A.; Roecker, L.; Kohlberg, E.; Tiedemann, J.; Steinach, M.; Schobersberger, W. Erythropoietin Regulations in Humans under Different Environmental and Experimental Conditions. Respir. Physiol. Neurobiol. 2007, 158, 287–297. [Google Scholar] [CrossRef]
- Man, M.C.; Ganera, C.; Bărbuleț, G.D.; Krzysztofik, M.; Panaet, A.E.; Cucui, A.I.; Tohănean, D.I.; Alexe, D.I. The Modifications of Haemoglobin, Erythropoietin Values and Running Performance While Training at Mountain vs. Hilltop vs. Seaside. Int. J. Environ. Res. Public Health 2021, 18, 9486. [Google Scholar] [CrossRef]
- Schmidt, W.; Heinicke, K.; Rojas, J.; Manuel Gomez, J.; Serrato, M.; Mora, M.; Wolfarth, B.; Schmid, A.; Keul, J. Blood Volume and Hemoglobin Mass in Endurance Athletes from Moderate Altitude. Med. Sci. Sports Exerc. 2002, 34, 1934–1940. [Google Scholar] [CrossRef] [PubMed]
- Brugniaux, J.V.; Schmitt, L.; Robach, P.; Nicolet, G.; Fouillot, J.-P.; Moutereau, S.; Lasne, F.; Pialoux, V.; Saas, P.; Chorvot, M.-C.; et al. Eighteen Days of “Living High, Training Low” Stimulate Erythropoiesis and Enhance Aerobic Performance in Elite Middle-Distance Runners. J. Appl. Physiol. 2006, 100, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Dickson, D.; Wilkinson, R.; Noakes, T. Effects of Ultra-Marathon Training and Racing on Hematologic Parameters and Serum Ferritin Levels in Well-Trained Athletes. Int. J. Sports Med. 1982, 3, 111–117. [Google Scholar] [CrossRef]
- Nummela, A.; Eronen, T.; Koponen, A.; Tikkanen, H.; Peltonen, J.E. Variability in Hemoglobin Mass Response to Altitude Training Camps. Scand. Med. Sci. Sports 2021, 31, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Wilhite, D.P.; Mickleborough, T.D.; Laymon, A.S.; Chapman, R.F. Increases in VO2max with “Live High–Train Low” Altitude Training: Role of Ventilatory Acclimatization. Eur. J. Appl. Physiol. 2013, 113, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Dragos, O.; Alexe, D.I.; Ursu, E.V.; Alexe, C.I.; Voinea, N.L.; Haisan, P.L.; Panaet, A.E.; Albina, A.M.; Monea, D. Training in Hypoxia at Alternating High Altitudes Is a Factor Favoring the Increase in Sports Performance. Healthcare 2022, 10, 2296. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; Díaz, J.; Caballero, A.; Córdova, A. Entrenamiento de Fuerza y Resistencia En Hipoxia: Efecto En La Hipertrofia Muscular. Biomedica 2019, 39, 212–220. [Google Scholar] [CrossRef]
- Wehrlin, J.P.; Marti, B.; Hallén, J. Hemoglobin Mass and Aerobic Performance at Moderate Altitude in Elite Athletes. In Hypoxia; Roach, R.C., Hackett, P.H., Wagner, P.D., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 2016; Volume 903, pp. 357–374. ISBN 978-1-4899-7676-5. [Google Scholar]
- Millet, G.P.; Brocherie, F. Hypoxic Training Is Beneficial in Elite Athletes. Med. Sci. Sports Exerc. 2020, 52, 515–518. [Google Scholar] [CrossRef]
- McLean, B.D.; Buttifant, D.; Gore, C.J.; White, K.; Kemp, J. Year-to-Year Variability in Haemoglobin Mass Response to Two Altitude Training Camps. Br. J. Sports Med. 2013, 47, i51–i58. [Google Scholar] [CrossRef]
Authors | Sample Size (M/F,A/C) | Age (Years, Mean ± SD) | Height (m) | Body Mass (kg) | Type of Athletes | Intervention | Training Period | Performance Test | |
---|---|---|---|---|---|---|---|---|---|
A | C | ||||||||
Bonne et al. (2014) [39] | 20 (9/11,10/10) | 20.9 ± 3.1 | 1.79 ± 0.06 | 72.8 ± 9.5 | Swimming | LHTH | SLT | 3 weeks | VO2max, Hb, TT |
Czuba et al. (2013) [34] | 12 (12/0,6/6) | 22.0 ± 1.9 | 1.89 ± 0.61 | 83.9 ± 7.2 | Basketball | GAT | SLT | 3 weeks | Hb, VO2max |
Czuba et al. (2014) [35] | 15 (15/0,7/8) | 25.0 ± 3.7 | 1.78 ± 0.05 | 67.8 ± 6.4 | Biathlon | GAT | SLT | 3 weeks | VO2max, Hb |
Czuba et al. (2018) [30] | 20 (—,10/10) | 21.2 ± 3.5 | 1.79 ± 0.04 | 68.8 ± 4.3 | Cyclist | LHTL | SLT | 4 weeks | VO2max, Hb, TT |
Fernández-Lázaro et al. (2022) [36] | 24 (24/0,12/12) | 25.7 ± 3.7 | 1.82 ± 0.49 | 74.0 ± 5.6 | Athletes (middle- and long-distance) | GAT | SLT | 8 weeks | TT, Hb |
Kettunen et al. (2023) [31] | 34 (14/20,19/15) | 22.0 ± 4.0 | — | 69.1 ± 10.6 | Cross-country skiers | LHTL | SLT | 4 weeks | VO2max, Hb |
McLean et al. (2013) [37] | 30 (—,21/9) | 23.0 ± 3.0 | 1.88 ± 0.08 | 88.0 ± 9.0 | Football | GAT | SLT | 3 weeks | TT, Hb |
Morton et al. (2005) [38] | 16 (16/0,8/8) | 20.5 ± 0.8 | 1.78 ± 0.03 | 79.6 ± 10.2 | Team sports players | GAT | SLT | 3 weeks | VO2max, Hb |
Peltonen et al. (2024) [40] | 36 (21/15,22/14) | 22.3 ± 1.0 | 1.79 ± 0.22 | 72.6 ± 2.4 | Endurance athletes | LHTH | SLT | 4 weeks | VO2max, Hb |
Robach et al. (2012) [32] | 16 (15/1,10/6) | 29.0 ± 6.0 | 1.79 ± 0.08 | 69.0 ± 9.0 | Cyclists, Triathlete | LHTL | SLT | 4 weeks | VO2max, Hb |
Siebenmann et al. (2011) [33] | 16 (15/1,10/6) | 29.0 ± 6.0 | 1.79 ± 0.08 | 69.0 ± 9.0 | Cyclist | LHTL | SLT | 3 weeks | VO2max, Hb |
Sitkowski et al. (2019) [12] | 15 (0/15,8/7) | 20.5 ± 2.9 | 1.70 ± 0.05 | 60.2 ± 6.6 | Track and field, Cyclists | LHTL | SLT | 3 weeks | VO2max, Hb |
Urianstad et al. (2024) [41] | 22 (22/0,10/12) | 26.0 ± 6.8 | 1.82 ± 0.49 | 74.0 ± 5.6 | Cyclists | LHTH | SLT | 3 weeks | VO2max, Hb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, L.; Liu, Y.; Chen, B.; Hou, J.; Liu, A.; Yuan, X. Impact of Altitude Training on Athletes’ Aerobic Capacity: A Systematic Review and Meta-Analysis. Life 2025, 15, 305. https://doi.org/10.3390/life15020305
Deng L, Liu Y, Chen B, Hou J, Liu A, Yuan X. Impact of Altitude Training on Athletes’ Aerobic Capacity: A Systematic Review and Meta-Analysis. Life. 2025; 15(2):305. https://doi.org/10.3390/life15020305
Chicago/Turabian StyleDeng, Lin, Yuhang Liu, Baili Chen, Jiawan Hou, Ao Liu, and Xiaoyi Yuan. 2025. "Impact of Altitude Training on Athletes’ Aerobic Capacity: A Systematic Review and Meta-Analysis" Life 15, no. 2: 305. https://doi.org/10.3390/life15020305
APA StyleDeng, L., Liu, Y., Chen, B., Hou, J., Liu, A., & Yuan, X. (2025). Impact of Altitude Training on Athletes’ Aerobic Capacity: A Systematic Review and Meta-Analysis. Life, 15(2), 305. https://doi.org/10.3390/life15020305