Dapagliflozin in Chronic Kidney Disease: Insights from Network Pharmacology and Molecular Docking Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drug Activity Evaluation of Dapagliflozin
2.2. Screening the Targets of Dapagliflozin and Chronic Kidney Disease
2.3. Construction of Drug-Target Network
2.4. Construction of Protein-Protein Interaction (PPI) Network
2.5. Gene Functions and Pathway Enrichment Analysis with Potential Targets
2.6. Protein and Compound Preparation
2.7. Molecular Docking Simulation
3. Results
3.1. Drug Activity of Dapagliflozin
3.2. Targets of Dapagliflozin and Chronic Kidney Disease
3.3. Prediction of Common Targets Between Dapagliflozin and Chronic Kidney Disease
3.4. Construction of PPI Networks
3.5. KEGG Pathway Enrichment Analysis and GO Enrichment Analysis
3.5.1. KEGG Pathway Enrichment Analysis
3.5.2. GO Biological Process Enrichment Analysis
3.5.3. GO Molecular Function Enrichment Analysis
3.5.4. GO Cellular Component Enrichment Analysis
3.6. Molecular Docking Verification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADME | Absorption, distribution, metabolism, and excretion |
ADMET | Absorption, distribution, metabolism, excretion, and toxicity |
ADT | AutoDock Tools |
AGE-RAGE | Advanced glycation end-products—Receptor for advanced glycation end-products |
BBB | Blood–brain barrier |
CASP3 | Caspase-3 |
CKD | Chronic kidney disease |
CYP | Cytochrome P450 |
DC | Degree centrality |
EGFR | Epidermal growth factor receptor |
eGFR | Estimated glomerular filtration rate |
ESOL | Estimation of solubility |
ESRD | End-stage renal disease |
FDR | False discovery rate |
GAPDH | Glyceraldehyde 3-phosphate dehydrogenase |
GA | Genetic algorithm |
GO | Gene ontology |
GSK3β | Glycogen synthase kinase 3 beta |
HBV | Hepatitis B virus |
HF | Heart failure |
HSP90AA1 | Heat shock protein 90 alpha family class A member 1 |
HSP90AB1 | Heat shock protein 90 alpha family class B member 1 |
IL-6 | Interleukin-6 |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
LD50 | Lethal dose, 50% |
LOAEL | Lowest observed adverse effect level |
MAPK | Mitogen-activated protein kinase |
MAPK3 | Mitogen-activated protein kinase 3 |
MAPK14 | Mitogen-activated protein kinase 14 |
NFKB1 | Nuclear factor kappa B subunit 1 |
Nrf2 | Nuclear factor erythroid 2–related factor 2 |
PDB | Protein Data Bank |
pkCSM | Pharmacokinetics of small molecules |
PI3K-Akt | Phosphoinositide 3-kinase—Protein kinase B |
PPI | Protein-protein interaction |
SEA | Similarity ensemble approach |
SMILES | Simplified molecular input line entry system |
SRC | Proto-oncogene tyrosine-protein kinase Src |
STRING | Search tool for the retrieval of interacting genes/proteins |
SwissADME | Swiss absorption, distribution, metabolism, and excretion |
TNF-α | Tumor necrosis factor-α |
TPSA | Topological polar surface area |
UniProt | Universal Protein Resource |
SMILES | Simplified molecular input line entry system |
References
- Zhang, S.; Ren, H.-F.; Du, R.-X.; Sun, W.-L.; Fu, M.-L.; Zhang, X.-C. Global, regional, and national burden of kidney dysfunction from 1990 to 2019: A systematic analysis from the global burden of disease study 2019. BMC Public Health 2023, 23, 1218. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.K.; Okpechi, I.G.; Levin, A.; Ye, F.; Damster, S.; Arruebo, S.; Donner, J.A.; Caskey, F.J.; Cho, Y.; Davids, M.R.; et al. An update on the global disparities in kidney disease burden and care across world countries and regions. Lancet Glob. Health 2024, 12, e382–e395. [Google Scholar] [CrossRef] [PubMed]
- Ebert, T.; Neytchev, O.; Witasp, A.; Kublickiene, K.; Stenvinkel, P.; Shiels, P.G. Inflammation and oxidative stress in chronic kidney disease and dialysis patients. Antioxid. Redox Signal. 2021, 35, 1426–1448. [Google Scholar] [CrossRef]
- Altamura, S.; Pietropaoli, D.; Lombardi, F.; Del Pinto, R.; Ferri, C. An overview of chronic kidney disease pathophysiology: The impact of gut dysbiosis and oral disease. Biomedicines 2023, 11, 3033. [Google Scholar] [CrossRef]
- Zhong, J.; Yang, H.C.; Fogo, A.B. A perspective on chronic kidney disease progression. Am. J. Physiol. Renal Physiol. 2017, 312, F375–F384. [Google Scholar] [CrossRef] [PubMed]
- Amdur, R.L.; Feldman, H.I.; Gupta, J.; Yang, W.; Kanetsky, P.; Shlipak, M.; Rahman, M.; Lash, J.P.; Townsend, R.R.; Ojo, A.; et al. Inflammation and progression of CKD: The CRIC study. Clin. J. Am. Soc. Nephrol. 2016, 11, 1546–1556. [Google Scholar] [CrossRef]
- Mihai, S.; Codrici, E.; Popescu, I.D.; Enciu, A.M.; Albulescu, L.; Necula, L.G.; Mambet, C.; Anton, G.; Tanase, C. Inflammation-related mechanisms in chronic kidney disease prediction, progression, and outcome. J. Immunol. Res. 2018, 2018, 2180373. [Google Scholar] [CrossRef]
- Ratliff, B.B.; Abdulmahdi, W.; Pawar, R.; Wolin, M.S. Oxidant mechanisms in renal injury and disease. Antioxid. Redox Signal. 2016, 25, 119–146. [Google Scholar] [CrossRef]
- Daenen, K.; Andries, A.; Mekahli, D.; Van Schepdael, A.; Jouret, F.; Bammens, B. Oxidative stress in chronic kidney disease. Pediatr. Nephrol. 2019, 34, 975–991. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef]
- Nishiyama, A.; Kitada, K. Possible renoprotective mechanisms of SGLT2 inhibitors. Front. Med. 2023, 10, 1115413. [Google Scholar] [CrossRef]
- Sun, X.; Wang, G. Renal outcomes with sodium-glucose cotransporters 2 inhibitors. Front. Endocrinol. 2022, 13, 1063341. [Google Scholar] [CrossRef]
- Nørgaard, S.A.; Briand, F.; Sand, F.W.; Galsgaard, E.D.; Søndergaard, H.; Sørensen, D.B.; Sulpice, T. Nephropathy in diabetic db/db mice is accelerated by high protein diet and improved by the SGLT2 inhibitor dapagliflozin. Eur. J. Pharmacol. 2019, 860, 172537. [Google Scholar] [CrossRef] [PubMed]
- Shibusawa, R.; Yamada, E.; Okada, S.; Nakajima, Y.; Bastie, C.C.; Maeshima, A.; Kaira, K.; Yamada, M. Dapagliflozin rescues endoplasmic reticulum stress-mediated cell death. Sci. Rep. 2019, 9, 9887. [Google Scholar] [CrossRef] [PubMed]
- Chertow, G.M.; Correa-Rotter, R.; Vart, P.; Jongs, N.; McMurray, J.J.V.; Rossing, P.; Langkilde, A.M.; Sjöström, C.D.; Toto, R.D.; Wheeler, D.C.; et al. Effects of dapagliflozin in chronic kidney disease, with and without other cardiovascular medications: DAPA-CKD trial. J. Am. Heart Assoc. 2023, 12, e028739. [Google Scholar] [CrossRef] [PubMed]
- Vart, P.; Correa-Rotter, R.; Hou, F.F.; Jongs, N.; Chertow, G.M.; Langkilde, A.M.; McMurray, J.J.V.; Rossing, P.; Sjöström, C.D.; Stefansson, B.V.; et al. Efficacy and safety of dapagliflozin in patients with CKD across major geographic regions. Kidney Int. Rep. 2022, 7, 699–707. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, D.; Zhou, W.; Wang, L.; Wang, B.; Zhang, T.; Li, S. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief. Bioinform. 2023, 25, bbad518. [Google Scholar] [CrossRef]
- Tedasen, A.; Chiabchalard, A.; Tencomnao, T.; Yamasaki, K.; Majima, H.J.; Phongphithakchai, A.; Chatatikun, M. Anti-melanogenic activity of ethanolic Eextract from Garcinia atroviridis fruits using in vitro experiments, network pharmacology, molecular docking, and molecular dynamics simulation. Antioxidants 2024, 13, 713. [Google Scholar] [CrossRef]
- Ren, X.; Yan, C.-X.; Zhai, R.-X.; Xu, K.; Li, H.; Fu, X.-J. Comprehensive survey of target prediction web servers for Traditional Chinese Medicine. Heliyon 2023, 9, e19151. [Google Scholar] [CrossRef]
- Consortium, T.U. UniProt: The universal protein knowledgebase in 2025. Nucleic Acids Res. 2024, 53, D609–D617. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinf. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Chai, J.; Yuan, S.; Mai, C.; Cai, L.; Murphy, R.W.; Zhou, W.; Luo, J. VennPainter: A Tool for the comparison and identification of candidate genes based on venn diagrams. PLoS ONE 2016, 11, e0154315. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Franz, M.; Lopes, C.T.; Fong, D.; Kucera, M.; Cheung, M.; Siper, M.C.; Huck, G.; Dong, Y.; Sumer, O.; Bader, G.D. Cytoscape.js 2023 update: A graph theory library for visualization and analysis. Bioinformatics 2023, 39, btad031. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Burley, S.K.; Berman, H.M.; Duarte, J.M.; Feng, Z.; Flatt, J.W.; Hudson, B.P.; Lowe, R.; Peisach, E.; Piehl, D.W.; Rose, Y.; et al. Protein data bank: A comprehensive review of 3D structure holdings and worldwide utilization by researchers, educators, and students. Biomolecules 2022, 12, 1425. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chao, H.; Chen, L.; Craig, P.A.; Crichlow, G.V.; Dalenberg, K.; Duarte, J.M.; et al. RCSB Protein Data Bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023, 51, D488–D508. [Google Scholar] [CrossRef]
- El-Hachem, N.; Haibe-Kains, B.; Khalil, A.; Kobeissy, F.H.; Nemer, G. AutoDock and AutoDockTools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study. Methods Mol. Biol. 2017, 1598, 391–403. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF chimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Hyde, C.L.; Nagle, M.W.; Tian, C.; Chen, X.; Paciga, S.A.; Wendland, J.R.; Tung, J.Y.; Hinds, D.A.; Perlis, R.H.; Winslow, A.R. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat. Genet. 2016, 48, 1031–1036. [Google Scholar] [CrossRef]
- Wang, H.; Gao, L.; Zhao, C.; Fang, F.; Liu, J.; Wang, Z.; Zhong, Y.; Wang, X. The role of PI3K/Akt signaling pathway in chronic kidney disease. Int. Urol. Nephrol. 2024, 56, 2623–2633. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Tang, B.; Zhang, C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct. Target. Ther. 2022, 7, 182. [Google Scholar] [CrossRef]
- Fotheringham, A.K.; Gallo, L.A.; Borg, D.J.; Forbes, J.M. Advanced glycation end products (AGEs) and chronic kidney disease: Does the modern diet AGE the kidney? Nutrients 2022, 14, 2675. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, H.; Radford, R.; Slyne, J.; O’Connell, S.; Slattery, C.; Ryan, M.P.; McMorrow, T. The Role of MAPK in Drug-Induced Kidney Injury. J. Signal Transduct. 2012, 2012, 463617. [Google Scholar] [CrossRef]
- Alsereidi, F.R.; Khashim, Z.; Marzook, H.; Al-Rawi, A.M.; Salomon, T.; Almansoori, M.K.; Madkour, M.M.; Hamam, A.M.; Ramadan, M.M.; Peterson, Q.P.; et al. Dapagliflozin mitigates cellular stress and inflammation through PI3K/AKT pathway modulation in cardiomyocytes, aortic endothelial cells, and stem cell-derived β cells. Cardiovasc. Diabetol. 2024, 23, 388. [Google Scholar] [CrossRef]
- Curran, C.S.; Kopp, J.B. RAGE pathway activation and function in chronic kidney disease and COVID-19. Front. Med. 2022, 9, 970423. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Kawashima, M. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci. 2022, 31, 47–53. [Google Scholar] [CrossRef]
- Cardwell, C.R.; O’Sullivan, J.M.; Jain, S.; Hicks, B.M.; Devine, P.A.; McMenamin, Ú.C. Hormone therapy use and the risk of acute kidney injury in patients with prostate cancer: A population-based cohort study. Prostate Cancer Prostatic Dis. 2021, 24, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.S.; Ryu, S.; Chang, Y.; Caínzos-Achirica, M.; Kwon, M.-J.; Zhao, D.; Shafi, T.; Lazo, M.; Pastor-Barriuso, R.; Shin, H.; et al. Hepatitis B virus infection and development of chronic kidney disease: A cohort study. BMC Nephrol. 2018, 19, 353. [Google Scholar] [CrossRef]
- Wang, J.; Li, D.; Ju, W.; Wang, H. A Network Pharmacology to Explore the Potential Targets of Canagliflozin and Dapagliflozin in Treating Atherosclerosis. J. Vasc. Dis. 2022, 1, 53–70. [Google Scholar] [CrossRef]
- Chertow, G.M.; Vart, P.; Jongs, N.; Toto, R.D.; Gorriz, J.L.; Hou, F.F.; McMurray, J.J.V.; Correa-Rotter, R.; Rossing, P.; Sjöström, C.D.; et al. Effects of dapagliflozin in stage 4 chronic kidney disease. J. Am. Soc. Nephrol. 2021, 32, 2352–2361. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.C. The role of the epidermal growth factor receptor in diabetic kidney disease. Cells 2022, 11, 3416. [Google Scholar] [CrossRef]
- Harskamp, L.R.; Gansevoort, R.T.; van Goor, H.; Meijer, E. The epidermal growth factor receptor pathway in chronic kidney diseases. Nat. Rev. Nephrol. 2016, 12, 496–506. [Google Scholar] [CrossRef]
- Wang, Z.; Havasi, A.; Gall, J.; Bonegio, R.; Li, Z.; Mao, H.; Schwartz, J.H.; Borkan, S.C. GSK3beta promotes apoptosis after renal ischemic injury. J. Am. Soc. Nephrol. 2010, 21, 284–294. [Google Scholar] [CrossRef]
- Zhao, K.; Chen, C.; Shi, Q.; Deng, W.; Zuo, T.; He, X.; Liu, T.; Zhao, L.; Wang, W. Inhibition of glycogen synthase kinase-3β attenuates acute kidney injury in sodium taurocholate-induced severe acute pancreatitis in rats. Mol. Med. Rep. 2014, 10, 3185–3192. [Google Scholar] [CrossRef]
- Lu, M.; Wang, P.; Qiao, Y.; Jiang, C.; Ge, Y.; Flickinger, B.; Malhotra, D.K.; Dworkin, L.D.; Liu, Z.; Gong, R. GSK3β-mediated Keap1-independent regulation of Nrf2 antioxidant response: A molecular rheostat of acute kidney injury to chronic kidney disease transition. Redox Biol. 2019, 26, 101275. [Google Scholar] [CrossRef]
- Bao, H.; Ge, Y.; Wang, Z.; Zhuang, S.; Dworkin, L.; Peng, A.; Gong, R. Delayed administration of a single dose of lithium promotes recovery from AKI. J. Am. Soc. Nephrol. 2014, 25, 488–500. [Google Scholar] [CrossRef]
- Jamadar, A.; Rao, R. Glycogen synthase kinase-3 signaling in acute kidney injury. Nephron 2020, 144, 609–612. [Google Scholar] [CrossRef] [PubMed]
- Mirza, S.; Hossain, M.; Mathews, C.; Martinez, P.; Pino, P.; Gay, J.L.; Rentfro, A.; McCormick, J.B.; Fisher-Hoch, S.P. Type 2-diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin and low levels of leptin in a population of Mexican Americans: A cross-sectional study. Cytokine 2012, 57, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Kreiner, F.F.; Kraaijenhof, J.M.; von Herrath, M.; Hovingh, G.K.K.; von Scholten, B.J. Interleukin 6 in diabetes, chronic kidney disease, and cardiovascular disease: Mechanisms and therapeutic perspectives. Expert Rev. Clin. Immunol. 2022, 18, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Magno, A.L.; Herat, L.Y.; Carnagarin, R.; Schlaich, M.P.; Matthews, V.B. Current knowledge of IL-6 cytokine family members in acute and chronic kidney disease. Biomedicines 2019, 7, 19. [Google Scholar] [CrossRef]
- Gohari, S.; Ismail-Beigi, F.; Mahjani, M.; Ghobadi, S.; Jafari, A.; Ahangar, H.; Gohari, S. The effect of sodium-glucose co-transporter-2 (SGLT2) inhibitors on blood interleukin-6 concentration: A systematic review and meta-analysis of randomized controlled trials. BMC Endocr. Disord. 2023, 23, 257. [Google Scholar] [CrossRef]
- Llerena-Velastegui, J.; Santamaria-Lasso, M.; Mejia-Mora, M.; Granda-Munoz, A.; Trujillo-Delgado, M.; Hurtado-Alzate, C.; de Jesus, A.; Coelho, P.M.; Baldelomar-Ortiz, J. Impact of sodium-glucose cotransporter 2 inhibitors on cardiovascular and Renal outcomes in heart failure patients with type 2 fiabetes: A literature review. J. Clin. Med. Res. 2024, 16, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Tziastoudi, M.; Pissas, G.; Golfinopoulos, S.; Filippidis, G.; Dousdampanis, P.; Eleftheriadis, T.; Stefanidis, I. Sodium–glucose transporter 2 (SGLT2) inhibitors and iron deficiency in heart failure and chronic kidney disease: A literature review. Life 2023, 13, 2338. [Google Scholar] [CrossRef]
- Koshino, A.; Neuen, B.L.; Jongs, N.; Pollock, C.; Greasley, P.J.; Andersson, E.-M.; Hammarstedt, A.; Karlsson, C.; Langkilde, A.M.; Wada, T.; et al. Effects of dapagliflozin and dapagliflozin-saxagliptin on erythropoiesis, iron and inflammation markers in patients with type 2 diabetes and chronic kidney disease: Data from the DELIGHT trial. Cardiovasc. Diabetol. 2023, 22, 330. [Google Scholar] [CrossRef]
Targets | PDB ID | Method | Resolution (Å) | R-Value Free | R-Value Work | Spacing (Å) | Center Grid Box | ||
---|---|---|---|---|---|---|---|---|---|
X Center | Y Center | Z Center | |||||||
GAPDH | 6M61 | X-ray diffraction | 1.82 | 0.228 | 0.192 | 0.375 | −15.666 | 6.041 | −22.87 |
IL6 | 1ALU | X-ray diffraction | 1.90 | 0.277 | 0.213 | 0.375 | 2.836 | −19.593 | 9.095 |
SRC | 1Y57 | X-ray diffraction | 1.91 | 0.213 | 0.188 | 0.375 | 12.093 | 34.632 | 39.141 |
EGFR | 1M17 | X-ray diffraction | 2.60 | 0.295 | 0.251 | 0.375 | 24.838 | 0.016 | 53.366 |
HSP90AA1 | 4AWQ | X-ray diffraction | 1.60 | 0.262 | 0.227 | 0.375 | −2.926 | 4.130 | −4.899 |
NFKB | 3GUT | X-ray diffraction | 3.59 | 0.301 | 0.245 | 0.375 | 30.231 | −27.423 | 64.005 |
CASP3 | 3KJF | X-ray diffraction | 2.00 | 0.206 | 0.181 | 0.375 | 16.346 | −5.814 | 3.906 |
HSP0AB1 | 5UCJ | X-ray diffraction | 1.69 | 0.197 | 0.174 | 0.375 | −24.841 | 99.831 | 0.583 |
MAPK3 | 4QTB | X-ray diffraction | 1.40 | 0.175 | 0.147 | 0.375 | 33.748 | 54.397 | 49.771 |
GSK3B | 6TCU | X-ray diffraction | 2.14 | 0.240 | 0.202 | 0.375 | −14.502 | −14.985 | −0.926 |
Target | Common Name |
---|---|
Multidrug resistance-associated protein 1 | ABCC1 |
Tyrosine-protein kinase ABL1 | ABL1 |
Acetylcholinesterase | ACHE |
Activin receptor type-1-like | ACVRL1 |
Disintegrin and metalloproteinase domain-containing protein 10 | ADAM10 |
Adenosine kinase | ADK |
Adenosine receptor A1 | ADORA1 |
Adenosine receptor A2a | ADORA2A |
Adenosine receptor A2b | ADORA2B |
Adenosine receptor A3 | ADORA3 |
Adenosylhomocysteinase | AHCY |
Alkaline phosphatase, tissue-nonspecific isozyme | ALPL |
Amine oxidase [copper containing] 3 | AOC3 |
DNA repair nuclease/redox regulator APEX1 | APEX1 |
Cysteine protease ATG4B | ATG4B |
Aurora kinase B | AURKB |
RecQ-like DNA helicase BLM | BLM |
Serine/threonine-protein kinase B-raf | BRAF |
C5a anaphylatoxin chemotactic receptor 1 | C5AR1 |
Carbonic anhydrase 14 | CA14 |
Voltage-gated N-type calcium channel alpha-1B subunit | CACNA1B |
Voltage-gated T-type calcium channel alpha-1H subunit | CACNA1H |
CaM-kinase kinase beta | CAMKK2 |
Calpain 1 | CAPN1 |
Histone-arginine methyltransferase CARM1 | CARM1 |
Caspase-3 | CASP3 |
G2/mitotic-specific cyclin-B1 | CCNB1 |
G1/S-specific cyclin-E1 | CCNE1 |
Cyclin H | CCNH |
Cyclin T1 | CCNT1 |
Cell division cycle 7-related protein kinase | CDC7 |
Cyclin-dependent kinase 1 | CDK1 |
Cyclin-dependent kinase 2 | CDK2 |
Cyclin-dependent kinase 7 | CDK7 |
Cyclin-dependent kinase 9 | CDK9 |
Cystic fibrosis transmembrane conductance regulator | CFTR |
Serine/threonine-protein kinase Chk1 | CHEK1 |
Conserved helix-loop-helix ubiquitous kinase | CHUK |
Cannabinoid receptor 1 | CNR1 |
Cannabinoid receptor 2 | CNR2 |
Casein kinase I isoform alpha | CSNK1A1 |
Casein kinase II subunit alpha | CSNK2A1 |
Cathepsin D | CTSD |
Cathepsin L | CTSL |
C-X-C chemokine receptor type 2 | CXCR2 |
C-X-C chemokine receptor type 3 | CXCR3 |
Cysteinyl leukotriene receptor 2 | CYSLTR2 |
Dihydroorotate dehydrogenase | DHODH |
DNA (cytosine-5)-methyltransferase 1 | DNMT1 |
Dipeptidyl peptidase 2 | DPP7 |
Dipeptidyl peptidase 9 | DPP9 |
Dual-specificity tyrosine-phosphorylation-regulated kinase 1A | DYRK1A |
Epidermal growth factor receptor | EGFR |
Ephrin type-A receptor 5 | EPHA5 |
Endoplasmic reticulum aminopeptidase 1 | ERAP1 |
Coagulation factor XIII A chain | F13A1 |
Coagulation factor VII/tissue factor | F3 |
Fatty-acid amide hydrolase 1 | FAAH |
Fatty acid binding protein, adipocyte | FABP4 |
Squalene synthetase | FDFT1 |
Free fatty acid receptor 4 | FFAR4 |
Fibroblast growth factor 1 | FGF1 |
Fibroblast growth factor 2 | FGF2 |
Fibroblast growth factor receptor 1 | FGFR1 |
Tissue alpha-L-fucosidase | FUCA1 |
Lysosomal alpha-glucosidase | GAA |
Gamma-aminobutyric acid receptor subunit alpha-1 | GABRA1 |
Gamma-aminobutyric acid receptor subunit alpha-5 | GABRA5 |
Cyclin-G-associated kinase | GAK |
Glyceraldehyde-3-phosphate dehydrogenase | GAPDH |
Lysosomal acid glucosylceramidase | GBA1 |
Non-lysosomal glucosylceramidase | GBA2 |
Geranylgeranyl pyrophosphate synthetase | GGPS1 |
Beta-galactosidase | GLB1 |
Glycine receptor subunit alpha-1 | GLRA1 |
Glutaminase kidney isoform, mitochondrial | GLS |
G-protein coupled bile acid receptor 1 | GPBAR1 |
Uracil nucleotide/cysteinyl leukotriene receptor | GPR17 |
G-protein coupled receptor 35 | GPR35 |
Growth factor receptor-bound protein 2 | GRB2 |
Glutamate receptor 2 | GRIA2 |
Glutamate receptor ionotropic, kainate 1 | GRIK1 |
G protein-regulated inducer of neurite outgrowth 1 | GRIN1 |
Metabotropic glutamate receptor 4 | GRM4 |
Glycogen synthase kinase-3 beta | GSK3B |
Glutathione S-transferase Mu 1 | GSTM1 |
Glutathione S-transferase P | GSTP1 |
Beta-glucuronidase | GUSB |
Glycogen [starch] synthase, muscle | GYS1 |
Histone deacetylase 5 | HDAC5 |
Histone deacetylase 7 | HDAC7 |
Hexokinase-1 | HK1 |
Hexokinase-2 | HK2 |
15-hydroxyprostaglandin dehydrogenase [NAD+] | HPGD |
Hypoxanthine-guanine phosphoribosyltransferase | HPRT1 |
GTPase HRas | HRAS |
Histamine H3 receptor | HRH3 |
3-hydroxyacyl-CoA dehydrogenase type-2 | HSD17B10 |
Heat shock protein HSP 90-alpha | HSP90AA1 |
Heat shock protein HSP 90-beta | HSP90AB1 |
Endoplasmic reticulum chaperone BiP | HSPA5 |
Heat shock cognate 71 kDa protein | HSPA8 |
Intercellular adhesion molecule-1 | ICAM1 |
Interleukin-2 | IL2 |
Interleukin-6 | IL6 |
Interleukin-1 receptor-associated kinase 4 | IRAK4 |
Integrin alpha-L | ITGAL |
Integrin beta-1 | ITGB1 |
Integrin beta-2 | ITGB2 |
Tyrosine-protein kinase ITK/TSK | ITK |
Tyrosine-protein kinase JAK2 | JAK2 |
Potassium voltage-gated channel subfamily A member 5 | KCNA5 |
Lysine-specific histone demethylase 1A | KDM1A |
Lysine-specific demethylase 4A | KDM4A |
Lysine-specific demethylase 4C | KDM4C |
Kruppel-like factor 5 | KLF5 |
Kallikrein-1 | KLK1 |
Plasma kallikrein | KLKB1 |
Tyrosine-protein kinase LCK | LCK |
L-lactate dehydrogenase A chain | LDHA |
Galectin-1 | LGALS1 |
Galectin-3 | LGALS3 |
Leukotriene A-4 hydrolase | LTA4H |
Dual specificity mitogen-activated protein kinase 1 | MAP2K1 |
Mitogen-activated protein kinase 1 | MAPK1 |
Mitogen-activated protein kinase 10 | MAPK10 |
Mitogen-activated protein kinase 11 | MAPK11 |
Mitogen-activated protein kinase 14 | MAPK14 |
Mitogen-activated protein kinase 15 | MAPK15 |
Mitogen-activated protein kinase 3 | MAPK3 |
Mitogen-activated protein kinase 8 | MAPK8 |
Hepatocyte growth factor receptor | MET |
Maltase-glucoamylase | MGAM |
Macrophage migration inhibitory factor | MIF |
Neprilysin | MME |
Matrix metalloproteinase 1 | MMP1 |
Matrix metalloproteinase 3 | MMP3 |
NEDD8-activating enzyme E1 regulatory subunit | NAE1 |
Nuclear factor erythroid 2-related factor 2 | NFE2L2 |
Nuclear factor NF-kappa-B p105 subunit | NFKB1 |
Tumor necrosis factor receptor superfamily member 16 | NGFR |
Nitric oxide synthase, inducible | NOS2 |
NADPH oxidase 1 | NOX1 |
Nuclear receptor subfamily 1 group I member 2 | NR1I2 |
Mineralocorticoid receptor | NR3C2 |
GTPase NRas | NRAS |
5′-nucleotidase | NT5E |
High affinity nerve growth factor receptor | NTRK1 |
NT-3 growth factor receptor | NTRK3 |
Protein O-GlcNAcase | OGA |
P2X purinoceptor 4 | P2RX4 |
P2Y purinoceptor 12 | P2RY12 |
Phosphodiesterase 5A | PDE5A |
Phosphodiesterase 11A | PDE11A |
Platelet-derived growth factor receptor beta | PDGFRB |
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 | PFKFB3 |
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform | PIK3CB |
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform | PIK3CG |
Tissue-type plasminogen activator | PLAT |
Urokinase-type plasminogen activator | PLAU |
Lysosomal Pro-X carboxypeptidase | PRCP |
DNA-dependent protein kinase catalytic subunit | PRKDC |
Protein-arginine N-methyltransferase 1 | PRMT1 |
Protein arginine N-methyltransferase 7 | PRMT7 |
Serine protease 1 | PRSS1 |
Proteasome subunit beta type-1 | PSMB1 |
Proteasome subunit beta type-2 | PSMB2 |
Prostaglandin E2 receptor EP1 subtype | PTGER1 |
Prostaglandin G/H synthase 1 | PTGS1 |
Tyrosine-protein phosphatase non-receptor type 1 | PTPN1 |
Tyrosine-protein phosphatase non-receptor type 7 | PTPN7 |
Glycogen phosphorylase, liver form | PYGL |
Glycogen phosphorylase, muscle form | PYGM |
Nuclear receptor ROR-beta | RORB |
Sphingosine 1-phosphate receptor 3 | S1PR3 |
Sphingosine 1-phosphate receptor 4 | S1PR4 |
SUMO-activating enzyme subunit 1 | SAE1 |
Stearoyl-CoA desaturase | SCD |
Sodium channel protein type 4 subunit alpha | SCN4A |
E-Selectin | SELE |
Sucrase-isomaltase | SI |
Excitatory amino acid transporter 1 | SLC1A3 |
Sodium/nucleoside cotransporter 2 | SLC28A2 |
Equilibrative nucleoside transporter 1 | SLC29A1 |
Solute carrier family 2, facilitated glucose transporter member 1 | SLC2A1 |
Sodium/glucose cotransporter 1 | SLC5A1 |
Sodium/myo-inositol cotransporter 2 | SLC5A11 |
Sodium/glucose cotransporter 2 | SLC5A2 |
Probable glucose sensor protein SLC5A4 | SLC5A4 |
Sodium-dependent noradrenaline transporter | SLC6A2 |
Sodium-dependent serotonin transporter | SLC6A4 |
Sodium- and chloride-dependent glycine transporter 2 | SLC6A5 |
Proto-oncogene tyrosine-protein kinase Src | SRC |
Stimulator of interferon genes protein | STING1 |
Tyrosine-protein kinase SYK | SYK |
Substance-K receptor | TACR2 |
Tyrosyl-DNA phosphodiesterase 1 | TDP1 |
Tissue factor pathway inhibitor | TFPI |
Thyroid hormone receptor alpha | THRA |
Thymidine kinase 2, mitochondrial | TK2 |
Transmembrane protease serine 6 | TMPRSS6 |
DNA topoisomerase 2-alpha | TOP2A |
Transcription intermediary factor 1-alpha | TRIM24 |
Tyrosinase | TYR |
Tyrosine-protein kinase receptor TYRO3 | TYRO3 |
Ubiquitin-like modifier-activating enzyme 7 | UBA7 |
Vascular cell adhesion protein 1 | VCAM1 |
Vascular endothelial growth factor A, long form | VEGFA |
Pathway | Description | Number of Genes | Pathway Genes | Fold Enrichment | Enrichment FDR |
---|---|---|---|---|---|
hsa05215 | Prostate cancer | 22 | 97 | 23.81 | 5.9925 × 10−22 |
hsa05417 | Lipid and atherosclerosis | 28 | 214 | 13.73 | 1.2173 × 10−21 |
hsa05200 | Pathways in cancer | 38 | 530 | 7.53 | 1.7505 × 10−20 |
hsa04015 | Rap1 signaling pathway | 25 | 210 | 12.50 | 1.8249 × 10−18 |
hsa04010 | MAPK signaling pathway | 28 | 294 | 10.00 | 3.1128 × 10−18 |
hsa04151 | PI3K-Akt signaling pathway | 30 | 354 | 8.89 | 3.1609 × 10−18 |
hsa04933 | AGE-RAGE signaling pathway in diabetic complications | 19 | 100 | 19.94 | 4.1871 × 10−18 |
hsa05230 | Central carbon metabolism in cancer | 17 | 70 | 25.49 | 4.1871 × 10−18 |
hsa01521 | EGFR tyrosine kinase inhibitor resistance | 17 | 79 | 22.59 | 3.4162 × 10−17 |
hsa04722 | Neurotrophin signaling pathway | 19 | 119 | 16.76 | 9.6469 × 10−17 |
hsa05418 | Hepatitis B | 20 | 138 | 15.21 | 9.6469 × 10−17 |
hsa05161 | Kaposi sarcoma-associated herpesvirus infection | 21 | 162 | 13.61 | 1.2309 × 10−16 |
hsa05167 | Chemical carcinogenesis-reactive oxygen species | 22 | 194 | 11.90 | 3.3219 × 10−16 |
hsa04068 | FoxO signaling pathway | 19 | 131 | 15.22 | 4.5985 × 10−16 |
hsa05208 | Chemical carcinogenesis-reactive oxygen species | 23 | 223 | 10.83 | 4.5985 × 10−16 |
hsa04660 | T cell receptor signaling pathway | 17 | 103 | 17.32 | 2.2045 × 10−15 |
hsa04917 | Prolactin signaling pathway | 15 | 70 | 22.49 | 2.2045 × 10−15 |
hsa04657 | L-17 signaling pathway | 16 | 93 | 18.06 | 8.1213 × 10−15 |
hsa05010 | Alzheimer disease | 27 | 384 | 7.38 | 8.8190 × 10−15 |
hsa04014 | Ras signaling pathway | 22 | 235 | 9.83 | 1.3050 × 10−14 |
GO | Description | Number of Genes | Pathway Genes | Fold Enrichment | Enrichment FDR |
---|---|---|---|---|---|
GO:0010033 | Response to organic substance | 111 | 3269 | 3.56 | 4.6987 × 10−34 |
GO:0042221 | Response to chemical | 131 | 4821 | 2.85 | 9.3426 × 10−33 |
GO:0006950 | Response to stress | 121 | 4424 | 2.87 | 1.6161 × 10−29 |
GO:0070887 | Cellular response to chemical stimulus | 105 | 3300 | 3.34 | 1.6161 × 10−29 |
GO:1901698 | Response to nitrogen compound | 65 | 1172 | 5.82 | 3.8489 × 10−29 |
GO:0065008 | GO:0065008 regulation of biological quality | 115 | 4103 | 2.94 | 1.5913 × 10−28 |
GO:0016310 | Phosphorylation | 80 | 1994 | 4.21 | 1.7416 × 10−27 |
GO:1901700 | Response to oxygen-containing compound | 75 | 1752 | 4.49 | 3.0411 × 10−27 |
GO:0010243 | Response to organonitrogen compound | 60 | 1061 | 5.94 | 3.0857 × 10−27 |
GO:0006468 | Protein phosphorylation | 71 | 1684 | 4.43 | 3.5421 × 10−25 |
GO:0071310 | Cellular response to organic substance | 87 | 2609 | 3.50 | 7.9542 × 10−25 |
GO:0006796 | Phosphate-containing compound metabolic process | 91 | 3005 | 3.18 | 2.8057 × 10−23 |
GO:0009719 | Response to endogenous stimulus | 68 | 1660 | 4.30 | 2.8057 × 10−23 |
GO:0032101 | Reg. of response to external stimulus | 56 | 1089 | 5.40 | 2.8057 × 10−23 |
GO:0006793 | Phosphorus metabolic process | 91 | 3030 | 3.15 | 4.5212 × 10−23 |
GO:0035556 | Intracellular signal transduction | 88 | 2847 | 3.24 | 5.4800 × 10−23 |
GO:0051239 | Regulation of multicellular organismal process | 90 | 3024 | 3.12 | 1.6576 × 10−22 |
GO:0009605 | Response to external stimulus | 90 | 3073 | 3.07 | 4.9737 × 10−22 |
GO:0010646 | Regulation of cell communication | 97 | 3602 | 2.83 | 1.4809 × 10−21 |
GO:0023051 | Regulation of signaling | 97 | 3615 | 2.82 | 1.8495 × 10−21 |
GO | Description | Number of Genes | Pathway Genes | Fold Enrichment | Enrichment FDR |
---|---|---|---|---|---|
GO:0004712 | Protein serine/threonine/tyrosine kinase activity | 41 | 470 | 9.16 | 1.5084 × 10−24 |
GO:0016773 | Phosphotransferase activity alcohol group as acceptor | 49 | 748 | 6.88 | 1.5688 × 10−24 |
GO:0004672 | Protein kinase activity | 45 | 632 | 7.47 | 4.2997 × 10−24 |
GO:0016301 | Kinase activity | 51 | 849 | 6.30 | 4.2997 × 10−24 |
GO:0140096 | Catalytic activity acting on a protein | 84 | 2577 | 3.42 | 1.7598 × 10−23 |
GO:0000166 | Nucleotide binding | 80 | 2381 | 3.53 | 4.4649 × 10−23 |
GO:1901265 | Nucleoside phosphate binding | 80 | 2382 | 3.53 | 4.4649 × 10−23 |
GO:0036094 | Small molecule binding | 85 | 2743 | 3.25 | 1.5947 × 10−22 |
GO:0016772 | Transferase activity transferring phosphorus-containing groups | 52 | 1008 | 5.41 | 5.0793 × 10−22 |
GO:0043168 | Anion binding | 82 | 2630 | 3.27 | 8.4681 × 10−22 |
GO:0030554 | Adenyl nucleotide binding | 65 | 1741 | 3.92 | 1.4539 × 10−20 |
GO:0097367 | Carbohydrate derivative binding | 78 | 2505 | 3.27 | 1.5727 × 10−22 |
GO:0032559 | Adenyl ribonucleotide binding | 64 | 1729 | 3.89 | 4.5342 × 10−22 |
GO:0005524 | ATP binding | 62 | 1662 | 3.92 | 1.5083 × 10−19 |
GO:0017076 | Purine nucleotide binding | 70 | 2120 | 3.47 | 1.6300 × 10−19 |
GO:0032553 | Ribonucleotide binding | 70 | 2123 | 3.46 | 1.6547 × 10−19 |
GO:0032555 | Purine ribonucleotide binding | 69 | 2106 | 3.44 | 4.7366 × 10−19 |
GO:0035639 | Purine ribonucleoside triphosphate binding | 65 | 2034 | 3.35 | 3.1939 × 10−17 |
GO:0004674 | Protein serine/threonine kinase activity | 31 | 471 | 6.91 | 1.0688 × 10−15 |
GO:0106310 | Protein serine kinase activity | 28 | 376 | 7.82 | 1.6779 × 10−15 |
GO | Description | Number of Genes | Pathway Genes | Fold Enrichment | Enrichment FDR |
---|---|---|---|---|---|
GO:0005887 | Integral component of plasma membrane | 63 | 1894 | 3.49 | 1.8106 × 10−16 |
GO:0031226 | Intrinsic component of plasma membrane | 63 | 1978 | 3.34 | 7.9143 × 10−16 |
GO:0031982 | Vesicle | 97 | 4466 | 2.28 | 5.4624 × 10−15 |
GO:0031410 | Cytoplasmic vesicle | 73 | 2849 | 2.69 | 4.6323 × 10−14 |
GO:0097708 | Intracellular vesicle | 73 | 2851 | 2.69 | 4.6323 × 10−14 |
GO:0098590 | Plasma membrane region | 46 | 1332 | 3.62 | 1.4203 × 10−12 |
GO:0009986 | Cell surface | 40 | 1050 | 4.00 | 3.1974 × 10−12 |
GO:0101002 | Ficolin-1-rich granule | 20 | 223 | 9.41 | 3.1974 × 10−12 |
GO:0030141 | Secretory granule | 38 | 987 | 4.04 | 9.6672 × 10−12 |
GO:0070062 | Extracellular exosome | 58 | 2316 | 2.63 | 1.7271 × 10−10 |
GO:0005615 | Extracellular space | 75 | 3577 | 2.20 | 2.0066 × 10−10 |
GO:0043230 | Extracellular organelle | 58 | 2343 | 2.60 | 2.0066 × 10−10 |
GO:0065010 | Extracellular membrane-bounded organelle | 58 | 2343 | 2.60 | 2.0066 × 10−10 |
GO:1903561 | Extracellular vesicle | 58 | 2342 | 2.60 | 2.0066 × 10−10 |
GO:0099503 | Secretory vesicle | 39 | 1165 | 3.51 | 2.0319 × 10−10 |
GO:1904813 | Ficolin-1-rich granule lumen | 15 | 142 | 11.09 | 2.1738 × 10−10 |
GO:0030054 | Junction | 56 | 2293 | 2.56 | 7.1862 × 10−10 |
GO:0043235 | Receptor complex | 23 | 429 | 5.63 | 7.1862 × 10−10 |
GO:0005576 | Extracellular region | 87 | 4673 | 1.95 | 8.3852 × 10−10 |
GO:0045121 | Membrane raft | 20 | 351 | 5.98 | 4.7000 × 10−9 |
No. | Protein | Drugs | Docking Score (kcal/mol) | Inhibition Constant (Ki) |
---|---|---|---|---|
1 | GAPDH | Heptelidic acid | −6.69 | 12.38 µM |
(PDB 6M61) | Dapagliflozin | −6.27 | 25.38 µM | |
2 | IL6 | HY-115910 | −6.73 | 11.7 µM |
(PDB 1ALU) | Dapagliflozin | −6.83 | 9.87 µM | |
3 | SRC | MPZ600 | −8.98 | 262.77 nM |
(PDB 1Y57) | Dapagliflozin | −6.53 | 16.23 µM | |
4 | EGFR | Erlotinib | −7.02 | 7.19 µM |
(PDB 1M17) | Dapagliflozin | −8.42 | 673.48 nM | |
5 | HSP90AA1 | N-benzyl-6-[(3-endo)-3-{[(3-methoxy-2-methylphenyl)carbonyl]amino}-8-azabicyclo[3.2.1]oct-8-yl]pyridine-3-carboxamide (592) | −13.86 | 69.38 pM |
(PDB 4AWQ) | Dapagliflozin | −8.5 | 587.42 nM | |
6 | NFKB | BAY11-7082 | −6.72 | 11.92 µM |
(PDB 3GUT) | Dapagliflozin | −6.23 | 27.3 µM | |
7 | CASP3 | (3S)-3-({[(5S,10aS)-2-{(2S)-4-carboxy-2-[(phenylacetyl)amino]butyl}-1,3-dioxo-2,3,5,7,8,9,10,10a-octahydro-1H-[1,2,4]triazolo[1,2-a]cinnolin-5-yl]carbonyl}amino)-4-oxopentanoic acid (B92) | −10.56 | 18.06 nM |
(PDB 3KJF) | Dapagliflozin | −7.46 | 3.39 µM | |
8 | HSP0AB1 | (5-fluoroisoindolin-2-yl)(4-hydroxy-5-isopropylbenzo[d]isoxazol-7-yl)methanone (KU3) | −8.29 | 841.21 nM |
(PDB 5UCJ) | Dapagliflozin | −6.51 | 16.83 µM | |
9 | MAPK3 | SCH772984 | −13.06 | 266.89 pM |
(PDB 4QTB) | Dapagliflozin | −8.87 | 314.47 nM | |
10 | GSK3B | 5-[2,3-bis(fluoranyl)phenyl]-~{N}-[[1-(2-methoxyethyl)piperidin-4-yl]methyl]-1~{H}-indazole-3-carboxamide (N1Q) | −7.67 | 2.41 µM |
(PDB 6TCU) | Dapagliflozin | −7.70 | 2.27 µM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phongphithakchai, A.; Tedasen, A.; Netphakdee, R.; Leelawattana, R.; Srithongkul, T.; Raksasuk, S.; Huang, J.C.; Chatatikun, M. Dapagliflozin in Chronic Kidney Disease: Insights from Network Pharmacology and Molecular Docking Simulation. Life 2025, 15, 437. https://doi.org/10.3390/life15030437
Phongphithakchai A, Tedasen A, Netphakdee R, Leelawattana R, Srithongkul T, Raksasuk S, Huang JC, Chatatikun M. Dapagliflozin in Chronic Kidney Disease: Insights from Network Pharmacology and Molecular Docking Simulation. Life. 2025; 15(3):437. https://doi.org/10.3390/life15030437
Chicago/Turabian StylePhongphithakchai, Atthaphong, Aman Tedasen, Ratana Netphakdee, Rattana Leelawattana, Thatsaphan Srithongkul, Sukit Raksasuk, Jason C. Huang, and Moragot Chatatikun. 2025. "Dapagliflozin in Chronic Kidney Disease: Insights from Network Pharmacology and Molecular Docking Simulation" Life 15, no. 3: 437. https://doi.org/10.3390/life15030437
APA StylePhongphithakchai, A., Tedasen, A., Netphakdee, R., Leelawattana, R., Srithongkul, T., Raksasuk, S., Huang, J. C., & Chatatikun, M. (2025). Dapagliflozin in Chronic Kidney Disease: Insights from Network Pharmacology and Molecular Docking Simulation. Life, 15(3), 437. https://doi.org/10.3390/life15030437