Assessment of Micro- and Macronutrient Intake in Male Competitive Athletes Using the Epic-Norfolk Food Frequency Questionnaire
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Subjects Characteristics
2.3. Body Composition and Body Fluid Status
2.4. Food Frequency Questionnaire (FFQ)
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Energy Intake in Competitive Athletes
4.2. Macronutrient Intake in Competitive Athletes
4.3. Vitamin D Intake in Competitive Athletes
4.4. Folic Acid Intake in Competitive Athletes
4.5. Sodium, Potassium, and Na/K Ratio in Competitive Athletes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FFQ | Food frequency questionnaire |
Na-to-K | Sodium-to-potassium ratio |
RBC | Red blood count |
LERs | Low-energy reporters |
WHO | World Health Organization |
EFSA | European Food Safety Authority |
BMI | Body mass index |
WHR | Waist-to-hip ratio |
ECW | Extracellular water |
ICW | Intracellular water |
FETA | FFQ EPIC Tool for Analysis |
EIrep | Reported energy intake |
RMR | Resting metabolic rate |
LER | Low-energy reporters |
SD | Standard deviation |
AR | Average requirement |
PRI | Population reference intake |
BW | Body weight |
RDA | Recommended daily allowance |
BH4 | Tetrahydrobiopterin |
References
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN Exercise & Sports Nutrition Review Update: Research & Recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for Training and Competition. J. Sports Sci. 2011, 29, S17–S27. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Churchward-Venne, T.A.; Burd, N.A.; Breen, L.; Tarnopolsky, M.A.; Phillips, S.M. Myofibrillar Protein Synthesis Following Ingestion of Soy Protein Isolate at Rest and after Resistance Exercise in Elderly Men. Nutr. Metab. 2012, 9, 57. [Google Scholar] [CrossRef]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and Exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Ivy, J.L. Regulation of Muscle Glycogen Repletion, Muscle Protein Synthesis and Repair Following Exercise. J. Sports Sci. Med. 2004, 3, 131–138. [Google Scholar] [PubMed]
- Kerksick, C.M.; Kulovitz, M. Requirements of Energy, Carbohydrates, Proteins and Fats for Athletes. In Nutrition and Enhanced Sports Performance; Elsevier: Amsterdam, the Netherlands, 2013; pp. 355–366. [Google Scholar]
- Ghazzawi, H.A.; Alshuwaier, G.O.; Alaqil, A.I.; Bursais, A.K.; Al-Nuaim, A.A.; Alhaji, J.H.; Gautam, Y.R.; Aljaloud, K.S.; Alosaimi, F.N.; Amawi, A.T.; et al. Correlation of Consumption Vegetables, Fruit, and Nuts with Body Mass Index and Fat Deposition in Saudi Elite Male Soccer Players. Int. J. Hum. Mov. Sports Sci. 2023, 11, 350–359. [Google Scholar] [CrossRef]
- Burke, L.M. Re-Examining High-Fat Diets for Sports Performance: Did We Call the ‘Nail in the Coffin’ Too Soon? Sports Med. 2015, 45, 33–49. [Google Scholar] [CrossRef]
- Amawi, A.; AlKasasbeh, W.; Jaradat, M.; Almasri, A.; Alobaidi, S.; Hammad, A.A.; Bishtawi, T.; Fataftah, B.; Turk, N.; Al Saoud, H.; et al. Athletes’ Nutritional Demands: A Narrative Review of Nutritional Requirements. Front. Nutr. 2024, 10, 1331854. [Google Scholar] [CrossRef]
- Garvican-Lewis, L.A.; Govus, A.D.; Peeling, P.; Abbiss, C.R.; Gore, C.J. Iron Supplementation and Altitude: Decision Making Using a Regression Tree. J. Sports Sci. Med. 2016, 15, 204–205. [Google Scholar]
- Beck, K.L.; Mitchell, S.; Foskett, A.; Conlon, C.A.; Von Hurst, P.R. Dietary Intake, Anthropometric Characteristics, and Iron and Vitamin D Status of Female Adolescent Ballet Dancers Living in New Zealand. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 335–343. [Google Scholar] [CrossRef]
- Binia, A.; Jaeger, J.; Hu, Y.; Singh, A.; Zimmermann, D. Daily Potassium Intake and Sodium-to-Potassium Ratio in the Reduction of Blood Pressure. J. Hypertens. 2015, 33, 1509–1520. [Google Scholar] [CrossRef]
- Iwahori, T.; Miura, K.; Ueshima, H. Time to Consider Use of the Sodium-to-Potassium Ratio for Practical Sodium Reduction and Potassium Increase. Nutrients 2017, 9, 700. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; Parker, E.A.; Rhodes, D.G.; Goldman, J.D.; Clemens, J.C.; Moshfegh, A.J.; Thuppal, S.V.; Weaver, C.M. Estimating Sodium and Potassium Intakes and Their Ratio in the American Diet: Data from the 2011–2012 NHANES. J. Nutr. 2016, 146, 745–750. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guideline: Sodium Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Cook, N.R. Joint Effects of Sodium and Potassium Intake on Subsequent Cardiovascular Disease. Arch. Intern. Med. 2009, 169, 32. [Google Scholar] [CrossRef] [PubMed]
- DRV Finder: Dietary Reference Values for the EU. Available online: https://multimedia.efsa.europa.eu/drvs/index.htm (accessed on 10 December 2024).
- Davidović Cvetko, E.; Drenjančević, I.; Jukić, I.; Stupin, A.; Šušnjara, P.; Vulin, M.; Kos, M.; Lukić, M.; Stanojević, L. Cross-Cultural Adaptation and Reproducibility of the EPIC-Norfolk Food Frequency Questionnaire in Young People Living in Croatia. Croat. Med. J. 2024, 65, 20–29. [Google Scholar] [CrossRef]
- Mulligan, A.A.; Luben, R.N.; Bhaniani, A.; Parry-Smith, D.J.; O’Connor, L.; Khawaja, A.P.; Forouhi, N.G.; Khaw, K.-T. A New Tool for Converting Food Frequency Questionnaire Data into Nutrient and Food Group Values: FETA Research Methods and Availability. BMJ Open 2014, 4, e004503. [Google Scholar] [CrossRef]
- Day, N.; Oakes, S.; Luben, R.; Khaw, K.T.; Bingham, S.; Welch, A.; Wareham, N. EPIC-Norfolk: Study Design and Characteristics of the Cohort. European Prospective Investigation of Cancer. Br. J. Cancer 1999, 80 (Suppl. S1), 95–103. [Google Scholar]
- Goldberg, G.R.; Black, A.E.; Jebb, S.A.; Cole, T.J.; Murgatroyd, P.R.; Coward, W.A.; Prentice, A.M. Critical Evaluation of Energy Intake Data Using Fundamental Principles of Energy Physiology: 1. Derivation of Cut-off Limits to Identify under-Recording. Eur. J. Clin. Nutr. 1991, 45, 569–581. [Google Scholar]
- Black, A. Critical Evaluation of Energy Intake Using the Goldberg Cut-off for Energy Intake:Basal Metabolic Rate. A Practical Guide to Its Calculation, Use and Limitations. Int. J. Obes. 2000, 24, 1119–1130. [Google Scholar] [CrossRef]
- Walker, S.; von Bonsdorff, M.; Cheng, S.; Häkkinen, K.; Bondarev, D.; Heinonen, A.; Korhonen, M.T. Body Composition in Male Lifelong Trained Strength, Sprint and Endurance Athletes and Healthy Age-Matched Controls. Front. Sports Act. Living 2023, 5, 1295906. [Google Scholar] [CrossRef]
- Boulay, M.R.; Serresse, O.; Almeras, N.; Tremblay, A. Energy Expenditure Measurement in Male Cross-Country Skiers: Comparison of Two Fieid Methods. Med. Sci. Sports Exerc. 1994, 26, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Fudge, B.W.; Westerterp, K.R.; Kiplamai, F.K.; Onywera, V.O.; Boit, M.K.; Kayser, B.; Pitsiladis, Y.P. Evidence of Negative Energy Balance Using Doubly Labelled Water in Elite Kenyan Endurance Runners Prior to Competition. Br. J. Nutr. 2006, 95, 59–66. [Google Scholar] [CrossRef]
- Heydenreich, J.; Kayser, B.; Schutz, Y.; Melzer, K. Total Energy Expenditure, Energy Intake, and Body Composition in Endurance Athletes Across the Training Season: A Systematic Review. Sports Med. Open 2017, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Rehrer, N.J.; Hellemans, I.J.; Rolleston, A.K.; Rush, E.; Miller, B.F. Energy Intake and Expenditure during a 6-day Cycling Stage Race. Scand. J. Med. Sci. Sports 2010, 20, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Hulton, A.T.; Lahart, I.; Williams, K.L.; Godfrey, R.; Charlesworth, S.; Wilson, M.; Pedlar, C.; Whyte, G. Energy Expenditure in the Race Across America (RAAM). Int. J. Sports Med. 2010, 31, 463–467. [Google Scholar] [CrossRef]
- Bescós, R.; Rodríguez, F.A.; Iglesias, X.; Knechtle, B.; Benítez, A.; Marina, M.; Padullés, J.M.; Torrado, P.; Vazquez, J.; Rosemann, T. Nutritional Behavior of Cyclists during a 24-Hour Team Relay Race: A Field Study Report. J. Int. Soc. Sports Nutr. 2012, 9, 3. [Google Scholar] [CrossRef]
- Costa, R.J.S.; Gill, S.K.; Hankey, J.; Wright, A.; Marczak, S. Perturbed Energy Balance and Hydration Status in Ultra-Endurance Runners during a 24 h Ultra-Marathon. Br. J. Nutr. 2014, 112, 428–437. [Google Scholar] [CrossRef]
- Magkos, F.; Yannakoulia, M. Methodology of Dietary Assessment in Athletes: Concepts and Pitfalls. Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Bingham, S.A.; Gill, C.; Welch, A.; Day, K.; Cassidy, A.; Khaw, K.T.; Sneyd, M.J.; Key, T.J.A.; Roe, L.; Day, N.E. Comparison of Dietary Assessment Methods in Nutritional Epidemiology: Weighed Records v. 24 h Recalls, Food-Frequency Questionnaires and Estimated-Diet Records. Br. J. Nutr. 1994, 72, 619–643. [Google Scholar] [CrossRef]
- Braakhuis, A.J.; Meredith, K.; Cox, G.R.; Hopkins, W.G.; Burke, L.M. Variability in Estimation of Self-Reported Dietary Intake Data from Elite Athletes Resulting from Coding by Different Sports Dietitians. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 152–165. [Google Scholar] [CrossRef]
- Ward, K.D.; Hunt, K.M.; Berg, M.B.; Slawson, D.A.; Vukadinovich, C.M.; McClanahan, B.S.; Clemens, L.H. Reliability and Validity of a Brief Questionnaire to Assess Calcium Intake in Female Collegiate Athletes. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 209–221. [Google Scholar] [CrossRef]
- Subar, A.F.; Freedman, L.S.; Tooze, J.A.; Kirkpatrick, S.I.; Boushey, C.; Neuhouser, M.L.; Thompson, F.E.; Potischman, N.; Guenther, P.M.; Tarasuk, V.; et al. Addressing Current Criticism Regarding the Value of Self-Report Dietary Data. J. Nutr. 2015, 145, 2639–2645. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Shaoni, G.L.L.; Stuart-Smith, W.A.; Davies, A.J.; Gifford, J.A. Dietary Intake of Masters Athletes: A Systematic Review. Nutrients 2023, 15, 4973. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-K.; Borer, K.; Lin, P.-J. Low-Carbohydrate-High-Fat Diet: Can It Help Exercise Performance? J. Hum. Kinet. 2017, 56, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Rebolledo, B.J.; Bernard, J.A.; Werner, B.C.; Finlay, A.K.; Nwachukwu, B.U.; Dare, D.M.; Warren, R.F.; Rodeo, S.A. The Association of Vitamin D Status in Lower Extremity Muscle Strains and Core Muscle Injuries at the National Football League Combine. Arthrosc. J. Arthrosc. Relat. Surg. 2018, 34, 1280–1285. [Google Scholar] [CrossRef]
- de la Puente Yagüe, M.; Collado Yurrita, L.; Ciudad Cabañas, M.; Cuadrado Cenzual, M. Role of Vitamin D in Athletes and Their Performance: Current Concepts and New Trends. Nutrients 2020, 12, 579. [Google Scholar] [CrossRef]
- Carswell, A.T.; Oliver, S.J.; Wentz, L.M.; Kashi, D.S.; Roberts, R.; Tang, J.C.Y.; Izard, R.M.; Jackson, S.; Allan, D.; Rhodes, L.E.; et al. Influence of Vitamin D Supplementation by Sunlight or Oral D3 on Exercise Performance. Med. Sci. Sports Exerc. 2018, 50, 2555–2564. [Google Scholar] [CrossRef]
- Angeline, M.E.; Gee, A.O.; Shindle, M.; Warren, R.F.; Rodeo, S.A. The Effects of Vitamin D Deficiency in Athletes. Am. J. Sports Med. 2013, 41, 461–464. [Google Scholar] [CrossRef]
- Teixeira, P.; Santos, A.C.; Casalta-Lopes, J.; Almeida, M.; Loureiro, J.; Ermida, V.; Caldas, J.; Fontes-Ribeiro, C. Prevalence of Vitamin D Deficiency amongst Soccer Athletes and Effects of 8 Weeks Supplementation. J. Sports Med. Phys. Fit. 2019, 59, 693–699. [Google Scholar] [CrossRef]
- Żebrowska, A.; Sadowska-Krępa, E.; Stanula, A.; Waśkiewicz, Z.; Łakomy, O.; Bezuglov, E.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. The Effect of Vitamin D Supplementation on Serum Total 25(OH) Levels and Biochemical Markers of Skeletal Muscles in Runners. J. Int. Soc. Sports Nutr. 2020, 17, 18. [Google Scholar] [CrossRef]
- Abrams, G.D.; Feldman, D.; Safran, M.R. Effects of Vitamin D on Skeletal Muscle and Athletic Performance. J. Am. Acad. Orthop. Surg. 2018, 26, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Larson-Meyer, E. Vitamin D Supplementation in Athletes. Nestle Nutr. Inst. Workshop Ser. 2013, 75, 109–121. [Google Scholar] [PubMed]
- Yoon, S.; Kwon, O.; Kim, J. Vitamin D in Athletes: Focus on Physical Performance and Musculoskeletal Injuries. Phys. Act. Nutr. 2021, 25, 20–25. [Google Scholar] [CrossRef]
- Rippin, H.; Hutchinson, J.; Jewell, J.; Breda, J.; Cade, J. Adult Nutrient Intakes from Current National Dietary Surveys of European Populations. Nutrients 2017, 9, 1288. [Google Scholar] [CrossRef] [PubMed]
- Molina-López, J.; Molina, J.M.; Chirosa, L.J.; Florea, D.I.; Sáez, L.; Planells, E. Effect of Folic Acid Supplementation on Homocysteine Concentration and Association with Training in Handball Players. J. Int. Soc. Sports Nutr. 2013, 10, 10. [Google Scholar] [CrossRef]
- Woolf, K.; Manore, M.M. B-Vitamins and Exercise: Does Exercise Alter Requirements? Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 453–484. [Google Scholar] [CrossRef]
- Hyndman, M.E.; Verma, S.; Rosenfeld, R.J.; Anderson, T.J.; Parsons, H.G. Interaction of 5-Methyltetrahydrofolate and Tetrahydrobiopterin on Endothelial Function. Am. J. Physiol. -Heart Circ. Physiol. 2002, 282, H2167–H2172. [Google Scholar] [CrossRef]
- Stroes, E.S.G.; van Faassen, E.E.; Yo, M.; Martasek, P.; Boer, P.; Govers, R.; Rabelink, T.J. Folic Acid Reverts Dysfunction of Endothelial Nitric Oxide Synthase. Circ. Res. 2000, 86, 1129–1134. [Google Scholar] [CrossRef]
- Hoch, A.Z.; Lynch, S.L.; Jurva, J.W.; Schimke, J.E.; Gutterman, D.D. Folic Acid Supplementation Improves Vascular Function in Amenorrheic Runners. Clin. J. Sport Med. 2010, 20, 205–210. [Google Scholar] [CrossRef]
- Marinović Glavić, M.; Bilajac, L.; Bolješić, M.; Bubaš, M.; Capak, K.; Domislović, M.; Džakula, A.; Fuček, M.; Gellineo, L.; Jelaković, A.; et al. Assessment of Salt, Potassium, and Iodine Intake in the Croatian Adult Population Using 24 h Urinary Collection: The EH-UH 2 Study. Nutrients 2024, 16, 2599. [Google Scholar] [CrossRef]
- Reddin, C.; Ferguson, J.; Murphy, R.; Clarke, A.; Judge, C.; Griffith, V.; Alvarez, A.; Smyth, A.; Mente, A.; Yusuf, S.; et al. Global Mean Potassium Intake: A Systematic Review and Bayesian Meta-Analysis. Eur. J. Nutr. 2023, 62, 2027–2037. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.A.; Dhaun, N. Salt Sensitivity: Causes, Consequences, and Recent Advances. Hypertension 2024, 81, 476–489. [Google Scholar] [CrossRef] [PubMed]
Variable | Subjects | Reference Values * |
---|---|---|
Number | 31 | |
Age (year) | 24 ± 6 | |
Body mass index (kg/m2) | 24.5 ± 2.2 | 18.5–24.9 |
Waist-to-hip ratio | 0.82 ± 0.04 | <0.95 |
Systolic blood pressure (mmHg) | 132 ± 10 | <140 |
Diastolic blood pressure (mmHg) | 77 ± 7 | <90 |
Mean arterial pressure (mmHg) | 95 ± 7 | 70–100 |
Erythrocytes (10 × 1012/L) | 5.12 ± 0.30 | 4.34–5.72 |
Hemoglobin (g/L) | 148 ± 8 | 138–175 |
Hematocrit (%) | 0.440 ± 0.020 | 0.415–0.530 |
MCV (fL) | 86.8 ± 3.3 | 83.0–97.2 |
MCH (pg) | 28.8 ± 1.1 | 27.4–33.9 |
MCHC (g/L) | 332 ± 8 | 320–345 |
RDW-CV (%) | 12.6 ± 0.5 | 9.0–15.0 |
Cholesterol (mmol/L) | 4.31 ± 0.79 | <5.00 |
Triglycerides (mmol/L) | 0.89 ± 0.55 | <1.70 |
HDL cholesterol (mmol/L) | 1.46 ± 0.27 | <1.00 |
LDL cholesterol (mmol/L) | 2.82 ± 0.62 | <3.00 |
Variable | Subjects | Reference Values [23] |
---|---|---|
Muscle mass (kg) | 37.0 ± 10.5 | <20 kg low muscle mass |
Fat free mass (%) | 84.5 ± 4.7 | 80–90%; <75% obesity |
Fat (%) | 15.5 ± 4.7 | 10–20%; >25% obesity |
Total body water (%) | 66.1 ± 7.5 | 55–70% |
Extracellular water (%) | 49.1 ± 9.4 | |
Intracellular water (%) | 50.9 ± 9.4 | |
ECW/ICW | 1.04 ± 0.46 | |
Plasma fluid (L) | 5.6 ± 1.4 | |
Interstitial fluid (L) | 19.7 ± 4.8 | |
Body density (kg/L) | 1.05 ± 0.02 |
FFQ | AR or PRI * | |
---|---|---|
Reported energy intake (EIrep) (kcal/day) | 2105 ± 666 | 3350 |
Resting metabolic rate (RMR) (kcal) † | 1972 ± 146 | |
EIrep/RMR | 1.07 ± 0.35 | |
LER, number (%) | 22 (71.0%) | |
nonLER, number (%) | 9 (29.0%) | |
Protein (g/day) | 105 ± 43 | |
Protein (g/kg BW) | 1.25 ± 0.47 | 1.2–2.0 g/kg BW |
Protein (%E) | 19.9 ± 4.3 | 10–35% of energy |
Carbohydrates (g/day) | 231 ± 86 | |
Carbohydrates (g/kg BW) | 2.8 ± 1.1 | 5–12 g/kg BW |
Carbohydrates (%E) | 43.9 ± 6.1 | 45–60% of energy |
Fats (g/day) | 89 ± 30 | |
Fats (%E) | 38.0 ± 3.7 | 20–35% of energy |
Nutrient | FFQ | AR or PRI * | FFQ vs. AR or PRI ** |
---|---|---|---|
Vitamin A (μg/day) | 678 ± 484 | 750 | ↔ |
Vitamin D (μg/day) | 3.6 ± 2.2 | 15 | ↓ |
Vitamin E (mg/day) | 11.8 ± 5.0 | 13 | ↔ |
Folate (μg/day) | 268 ± 101 | 330 | ↓ |
Niacin (mg/day) | 27 ± 11 | 18 | ↑ |
Riboflavin (mg/day) | 2.1 ± 0.8 | 1.6 | ↑ |
Thiamin (mg/day) | 1.7 ± 0.6 | 1.4 | ↑ |
Vitamin B6 (mg/day) | 2.5 ± 0.9 | 1.7 | ↑ |
Vitamin B12 (μg/day) | 7.8 ± 4.8 | 4 | ↑ |
Vitamin C (mg/day) | 109 ± 86 | 110 | ↔ |
Sodium (mg/day) | 3192 ± 1103 | 2000 | ↑ |
Potassium (mg/day) | 3624 ± 1199 | 3500 | ↔ |
Calcium (mg/day) | 991 ± 368 | 950 | ↔ |
Chloride (g/day) | 4.7 ± 1.6 | 3.1 | ↑ |
Copper (mg/day) | 1.3 ± 0.5 | 1.6 | ↓ |
Iron (mg/day) | 11.2 ± 4.0 | 11 | ↔ |
Iodine (μg/day) | 168 ± 64 | 150 | ↑ |
Magnesium (mg/day) | 322 ± 97 | 350 | ↔ |
Manganese (mg/day) | 2.7 ± 0.9 | 3 | ↔ |
Selenium (μg/day) | 73 ± 30 | 70 | ↔ |
Zinc (mg/day) | 11.9 ± 5.3 | 11 | ↔ |
FFQ | |
---|---|
Alcoholic beverages (g/day) | 44.7 ± 51.8 |
Cereals and cereal products (g/day) | 277 ± 112 |
Eggs and egg dishes (g/day) | 50 ± 57 |
Fats and oils (g/day) | 12 ± 6 |
Fish and fish products (g/day) | 33 ± 40 |
Fruit (g/day) | 286 ± 284 |
Meat and meat products (g/day) | 195 ± 120 |
Milk and milk products (g/day) | 385 ± 218 |
Non-alcoholic beverages (g/day) | 342 ± 361 |
Nuts and seeds (g/day) | 11 ± 11 |
Potatoes (g/day) | 80 ± 54 |
Soups and sauces (g/day) | 138 ± 194 |
Sugars (g/day) | 43 ± 63 |
Vegetables (g/day) | 184 ± 135 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stupin, A.; Perić, L.; Jukić, I.; Boris, A.; Stanojević, L.; Drenjančević, I. Assessment of Micro- and Macronutrient Intake in Male Competitive Athletes Using the Epic-Norfolk Food Frequency Questionnaire. Life 2025, 15, 458. https://doi.org/10.3390/life15030458
Stupin A, Perić L, Jukić I, Boris A, Stanojević L, Drenjančević I. Assessment of Micro- and Macronutrient Intake in Male Competitive Athletes Using the Epic-Norfolk Food Frequency Questionnaire. Life. 2025; 15(3):458. https://doi.org/10.3390/life15030458
Chicago/Turabian StyleStupin, Ana, Leon Perić, Ivana Jukić, Alina Boris, Lorena Stanojević, and Ines Drenjančević. 2025. "Assessment of Micro- and Macronutrient Intake in Male Competitive Athletes Using the Epic-Norfolk Food Frequency Questionnaire" Life 15, no. 3: 458. https://doi.org/10.3390/life15030458
APA StyleStupin, A., Perić, L., Jukić, I., Boris, A., Stanojević, L., & Drenjančević, I. (2025). Assessment of Micro- and Macronutrient Intake in Male Competitive Athletes Using the Epic-Norfolk Food Frequency Questionnaire. Life, 15(3), 458. https://doi.org/10.3390/life15030458