Polymorphisms of PPARα and ACTN3 Among Adolescent Egyptian Athletes: A Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
- Genotyping of ACTN3 and PPARα
- Sample collection
- DNA Extraction
- Genotyping
Primers’ Sequence | Annealing Temp. | Sources | PCR Product | |
---|---|---|---|---|
ACTN3 | F 5′-CTGTTGCCTGTGGTAAGTGGG-3′ | 60 | Pereira et al. (2013) [21] | 291 bp |
R 5′TGGTCACAGTATGCAGGAGGG-3′ | ||||
PPARα | F 5′-ACAATCACTCCTTAAATATGGTGG-3′ | 50 | Paoli et al. (2014) [22] | 266 bp |
R 5′-AAGTAGGGACAGACAGGACCAGTA-3′ |
SNP | Restriction Enzyme | Temperature | Restriction Product |
---|---|---|---|
ACTN3 R577X gene | FastDigest HpyF3I (Dded I) | 37 °C | RR 205 and 86 bp, XX 108, 97, and 86 bp. RX 205 and 108, 97, and 86 bp. |
PPARα rs4253778 | FastDigest TaqI | 65 °C | GG 266 CC 216, 50 GC 266, 216, and 50 bp |
- Statistical Analysis:
3. Results
Characteristic | Athlete Group N = 118 | Control Group N = 110 | p |
---|---|---|---|
Sex | |||
Male | 77 (65.3%) | 68 (61.8%) | #0.590 |
Female | 41 (34.7%) | 42 (38.2%) | |
BMI | |||
<25 kg/m2 | 90 (76.3%) | 73 (66.4%) | #0.098 |
≥25 kg/m2 | 28 (23.7%) | 37 (33.6%) | |
Median | 21.9 | 23.4 | $0.022 |
(Q1–Q3) | (20.6–24.9) | (21.5–25.8) | |
Age (years) | 15.5 (13–18) | 14.5 (13–16) | $ < 0.001 |
- Comparison of ACTN3 SNP between Two Groups
- Comparison of PPARα SNP between Two Groups
Gene | Best Model | Genotypes | Athlete Group | Control Group | AORs (95% CI) | p-Value | AIC | BIC |
---|---|---|---|---|---|---|---|---|
ACTN3 | Recessive | X/X-X/R R/R | 45 (38.1%) 73 (61.9%) | 80 (72.7%) 30 (27.3%) | r(1) 6.7 (3–15.1) | <0.001 | 282.6 | 594.7 |
PPARα | Recessive | G/G-G/C C/C | 23 (19.5%) 95 (80.5%) | 107 (97.3%) 3 (2.7%) | r(1) 2943 (229.4–37761) | <0.001 | 221.1 | 533.2 |
Characteristic | Athlete Group N = 118 | Control Group N = 110 | p |
---|---|---|---|
ACTN3 | |||
R/R | 73 (61.9%) | 30 (27.3%) | <0.001 |
R/X-X/X | 45 (38.1%) | 80 (72.7%) | |
z-tests | a | a | |
PPARα | |||
C/C | 95 (80.5%) | 3 (2.7%) | <0.001 |
C/G-G/G | 23 (19.5%) | 107 (97.3%) | |
z-tests | a | a |
Gene | Athlete Group | Control Group | Chi-Square Test of Association | Binary Logistic Regression | |||
---|---|---|---|---|---|---|---|
N = 118 | N = 110 | χ2 | ϕ | p-Value | COR (95% CI) | p-Value | |
ACTN3 | 24.14 | 0.23 | <0.001 | <0.001 | |||
‘R’ allele | 183 (77.5%) | 123 (55.9%) | 2.7 (1.8–4.1) | ||||
‘X’ allele | 53 (22.5%) | 97 (44.1%) | r(1) | ||||
PPARα | 238.62 | 0.723 | <0.001 | <0.001 | |||
‘C’ allele | 204 (86.4%) | 31 (14.1%) | 38.9 (22.8–66.2) r(1) | ||||
‘G’ allele | 32 (13.6%) | 189 (85.9%) |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, M.S.; Hagberg, J.M.; Pérusse, L.; Rankinen, T.; Roth, S.M.; Wolfarth, B.; Bouchard, C. The human gene map for performance and health-related fitness phenotypes: The 2006–2007 update. Med. Sci. Sports Exerc. 2009, 41, 34–72. [Google Scholar] [CrossRef]
- John, R.; Dhillon, M.S.; Dhillon, S. Genetics and the Elite Athlete: Our Understanding in 2020. Indian J. Orthop. 2020, 54, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Varillas-Delgado, D.; Del Coso, J.; Gutiérrez-Hellín, J.; Aguilar-Navarro, M.; Muñoz, A.; Maestro, A.; Morencos, E. Genetics and sports performance: The present and future in the identification of talent for sports based on DNA testing. Eur. J. Appl. Physiol. 2022, 122, 1811–1830. [Google Scholar] [CrossRef] [PubMed]
- Beunen, G.; Thomis, M. Gene driven power athletes? Genetic variation in muscular strength and power. Br. J. Sports Med. 2006, 40, 822–823. [Google Scholar] [CrossRef] [PubMed]
- Muniesa, C.A.; González-Freire, M.; Santiago, C.; Lao, J.I.; Buxens, A.; Rubio, J.C.; Martín, M.A.; Arenas, J.; Gomez-Gallego, F.; Lucia, A. World-class performance in lightweight rowing: Is it genetically influenced? A comparison with cyclists, runners and non-athletes. Br. J. Sports Med. 2010, 44, 898–901. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Fedotovskaya, O.N. Current Progress in Sports Genomics. Adv. Clin. Chem. 2015, 70, 247–314. [Google Scholar] [CrossRef]
- Lucia, A.; Gómez-Gallego, F.; Barroso, I.; Rabadán, M.; Bandrés, F.; Juan, A.F.S.; Chicharro, J.L.; Ekelund, U.; Brage, S.; Earnest, C.P.; et al. PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J. Appl. Physiol. 2005, 99, 344–348. [Google Scholar] [CrossRef]
- Maciejewska-Skrendo, A.; Buryta, M.; Czarny, W.; Król, P.; Spieszny, M.; Stastny, P.; Petr, M.; Safranow, K.; Sawczuk, M. The Polymorphisms of the Peroxisome-Proliferator Activated Receptors’ Alfa Gene Modify the Aerobic Training Induced Changes of Cholesterol and Glucose. J. Clin. Med. 2019, 8, 1043. [Google Scholar] [CrossRef]
- Fattahi, Z.; Najmabadi, H. Prevalence of ACTN3 (the athlete gene) R577X polymorphism in Iranian population. Iran. Red Crescent Med. J. 2012, 14, 617–622. [Google Scholar]
- Yang, N.; MacArthur, D.G.; Gulbin, J.P.; Hahn, A.G.; Beggs, A.H.; Easteal, S.; North, K. ACTN3 genotype is associated with human elite athletic performance. Am. J. Hum. Genet. 2003, 73, 627–631. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Mozhayskaya, I.A.; Lyubaeva, E.V.; Vinogradova, O.L.; Rogozkin, V.A. PPARG Gene Polymorphism and Locomotor Activity in Humans. Bull. Exp. Biol. Med. 2008, 146, 630–632. [Google Scholar] [CrossRef] [PubMed]
- Alfred, T.; Ben-Shlomo, Y.; Cooper, R.; Hardy, R.; Cooper, C.; Deary, I.J.; Gunnell, D.; Harris, S.E.; Kumari, M.; Martin, R.M.; et al. ACTN3 genotype, athletic status, and life course physical capability: Meta-analysis of the published literature and findings from nine studies. Hum. Mutat. 2011, 32, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Berman, Y.; North, K.N. A gene for speed: The emerging role of alpha-actinin-3 in muscle metabolism. Physiology 2010, 25, 250–259. [Google Scholar] [CrossRef]
- Fiuza-Luces, C.; Ruiz, J.R.; Rodríguez-Romo, G.; Santiago, C.; Gómez-Gallego, F.; Yvert, T.; Cano-Nieto, A.; Garatachea, N.; Morán, M.; Lucia, A. Are ‘endurance’ alleles ‘survival’ alleles? Insights from the ACTN3 R577X polymorphism. PLoS ONE 2011, 6, e17558. [Google Scholar] [CrossRef]
- Garton, F.C.; Houweling, P.J.; Vukcevic, D.; Meehan, L.R.; Lee, F.X.; Lek, M.; Roeszler, K.N.; Hogarth, M.W.; Tiong, C.F.; Zannino, D.; et al. The Effect of ACTN3 Gene Doping on Skeletal Muscle Performance. Am. J. Hum. Genet. 2018, 102, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Broos, S.; Windelinckx, A.; De Mars, G.; Huygens, W.; Peeters, M.W.; Aerssens, J.; Vlietinck, R.; Beunen, G.P.; Thomis, M.A. Is PPARα intron 7 G/C polymorphism associated with muscle strength characteristics in nonathletic young men? Scand. J. Med. Sci. Sports 2013, 23, 494–500. [Google Scholar] [CrossRef]
- Eynon, N.; Meckel, Y.; Sagiv, M.; Yamin, C.; Amir, R.; Goldhammer, E.; Duarte, J.A.; Oliveira, J. Do PPARGC1A and PPARalpha polymorphisms influence sprint or endurance phenotypes? Scand. J. Med. Sci. Sports 2010, 20, e145–e150. [Google Scholar] [CrossRef]
- Russell, A.P.; Feilchenfeldt, J.; Schreiber, S.; Praz, M.; Crettenand, A.; Gobelet, C.; Meier, C.A.; Bell, D.R.; Kralli, A.; Giacobino, J.-P.; et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 2003, 52, 2874–2881. [Google Scholar] [CrossRef]
- Seto, J.T.; Quinlan, K.G.; Lek, M.; Zheng, X.F.; Garton, F.; MacArthur, D.G.; Hogarth, M.W.; Houweling, P.J.; Gregorevic, P.; Turner, N.; et al. ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling. J. Clin. Investig. 2013, 123, 4255–4263. [Google Scholar] [CrossRef]
- Massidda, M.; Bachis, V.; Corrias, L.; Piras, F.; Scorcu, M.; Culigioni, C.; Masala, D.; Calò, C.M. ACTN3 R577X polymorphism is not associated with team sport athletic status in Italians. Sports Med. Open 2015, 1, 6. [Google Scholar] [CrossRef]
- Pereira, A.; Costa, A.M.; Izquierdo, M.; Silva, A.J.; Bastos, E.; Marques, M.C. ACE I/D and ACTN3 R/X polymorphisms as potential factors in modulating exercise-related phenotypes in older women in response to a muscle power training stimuli. AGE 2013, 35, 1949–1959. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Proia, P.; Schiera, G.; Saladino, P.; Traina, M.; Palma, A.; Contro, V.; Caramazza, G.; Bianco, A.; Grimaldi, K. PPARα gene variants as predicted performance-enhancing polymorphisms in professional Italian soccer players. Open Access J. Sports Med. 2014, 5, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Santiago, C.; González-Freire, M.; Serratosa, L.; Morate, F.J.; Meyer, T.; Gómez-Gallego, F.; Lucia, A. ACTN3 genotype in professional soccer players. Br. J. Sports Med. 2008, 42, 71–73. [Google Scholar] [CrossRef]
- Pimenta, E.M.; Coelho, D.B.; Veneroso, C.E.; Coelho, E.J.B.; Cruz, I.R.; Morandi, R.F.; Pussieldi, G.D.A.; Carvalho, M.R.; Garcia, E.S.; Fernández, J.A.D.P. Effect of ACTN3 gene on strength and endurance in soccer players. J. Strength Cond. Res. 2013, 27, 3286–3292. [Google Scholar] [CrossRef]
- Paparini, A.; Ripani, M.; Giordano, G.D.; Santoni, D.; Pigozzi, F.; Romano-Spica, V. ACTN3 genotyping by real-time PCR in the Italian population and athletes. Med. Sci. Sports Exerc. 2007, 39, 810–815. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, D.G.; Seto, J.T.; Chan, S.; Quinlan, K.G.; Raftery, J.M.; Turner, N.; Nicholson, M.D.; Kee, A.J.; Hardeman, E.C.; Gunning, P.W.; et al. An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum. Mol. Genet. 2008, 17, 1076–1086. [Google Scholar] [CrossRef]
- Eynon, N.; Banting, L.K.; Ruiz, J.R.; Cieszczyk, P.; Dyatlov, D.A.; Maciejewska-Karlowska, A.; Sawczuk, M.; Pushkarev, V.P.; Kulikov, L.M.; Pushkarev, E.D.; et al. ACTN3 R577X polymorphism and team-sport performance: A study involving three European cohorts. J. Sci. Med. Sport 2014, 17, 102–106. [Google Scholar] [CrossRef]
- Kikuchi, N.; Miyamoto-Mikami, E.; Murakami, H.; Nakamura, T.; Min, S.; Mizuno, M.; Naito, H.; Miyachi, M.; Nakazato, K.; Fuku, N. ACTN3 R577X genotype and athletic performance in a large cohort of Japanese athletes. Eur. J. Sport Sci. 2016, 16, 694–701. [Google Scholar] [CrossRef]
- Akazawa, N.; Ohiwa, N.; Shimizu, K.; Suzuki, N.; Kumagai, H.; Fuku, N.; Suzuki, Y. The association of ACTN3 R577X polymorphism with sports specificity in Japanese elite athletes. Biol. Sport 2022, 39, 905–911. [Google Scholar] [CrossRef]
- Yang, S.; Lin, W.; Jia, M.; Chen, H. Association between ACTN3 R577x and the physical performance of Chinese 13 to 15-year-old elite and sub-elite football players at different positions. Front. Genet. 2023, 14, 1038075. [Google Scholar] [CrossRef]
- Seto, J.T.; Roeszler, K.N.; Meehan, L.R.; Wood, H.D.; Tiong, C.; Bek, L.; Lee, S.F.; Shah, M.; Quinlan, K.G.R.; Gregorevic, P.; et al. ACTN3 genotype influences skeletal muscle mass regulation and response to dexamethasone. Sci. Adv. 2021, 7, eabg0088. [Google Scholar] [CrossRef]
- Garatachea, N.; Verde, Z.; Santos-Lozano, A.; Yvert, T.; Rodriguez-Romo, G.; Sarasa, F.J.; Hernández-Sánchez, S.; Santiago, C.; Lucia, A. ACTN3 R577X polymorphism and explosive leg-muscle power in elite basketball players. Int. J. Sports Physiol. Perform. 2014, 9, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Döring, F.E.; Onur, S.; Geisen, U.; Boulay, M.R.; Pérusse, L.; Rankinen, T.; Rauramaa, R.; Wolfahrt, B.; Bouchard, C. ACTN3 R577X and other polymorphisms are not associated with elite endurance athlete status in the Genathlete study. J. Sports Sci. 2010, 28, 1355–1359. [Google Scholar] [CrossRef] [PubMed]
- Tural, E.; Kara, N.; Agaoglu, S.A.; Elbistan, M.; Tasmektepligil, M.Y.; Imamoglu, O. PPAR-α and PPARGC1A gene variants have strong effects on aerobic performance of Turkish elite endurance athletes. Mol. Biol. Rep. 2014, 41, 5799–5804. [Google Scholar] [CrossRef]
- Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Genes and Athletic Performance: The 2023 Update. Genes 2023, 14, 1235. [Google Scholar] [CrossRef] [PubMed]
- Humińska-Lisowska, K.; Chmielowiec, K.; Chmielowiec, J.; Strońska-Pluta, A.; Bojarczuk, A.; Dzitkowska-Zabielska, M.; Łubkowska, B.; Spieszny, M.; Surała, O.; Grzywacz, A. Association Between the rs4680 Polymorphism of the COMT Gene and Personality Traits among Combat Sports Athletes. J. Hum. Kinet. 2023, 89, 89–99. [Google Scholar] [CrossRef]
- Petr, M.; Maciejewska-Skrendo, A.; Zajac, A.; Chycki, J.; Stastny, P. Association of Elite Sports Status with Gene Variants of Peroxisome Proliferator Activated Receptors and Their Transcriptional Coactivator. Int. J. Mol. Sci. 2019, 21, 162. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, J.; Guo, Z.; Wu, M.; Chen, Q.; Zhou, Z.; Ding, Y.; Luo, W. Association and interaction between 10 SNP of peroxisome proliferator-activated receptor and non-HDL-C. Zhonghua Yu Fang Yi Xue Za Zhi [Chin. J. Prev. Med.] 2015, 49, 259–264. [Google Scholar]
- Piqueras, L.; Reynolds, A.R.; Hodivala-Dilke, K.M.; Alfranca, A.; Redondo, J.M.; Hatae, T.; Tanabe, T.; Warner, T.D.; Bishop-Bailey, D. Activation of PPARbeta/delta induces endothelial cell proliferation and angiogenesis. Arter. Thromb. Vasc. Biol. 2007, 27, 63–69. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Zhang, C.-L.; Yu, R.T.; Cho, H.K.; Nelson, M.C.; Bayuga-Ocampo, C.R.; Ham, J.; Kang, H.; Evans, R.M. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol. 2004, 2, e294, Erratum in PLoS Biol. 2005, 3, e61. [Google Scholar] [CrossRef]
- Maciejewska-Karlowska, A.; Sawczuk, M.; Cieszczyk, P.; Zarebska, A.; Sawczyn, S. Association between the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma gene and strength athlete status. PLoS ONE 2013, 8, e67172. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska-Skrendo, A.; Mieszkowski, J.; Kochanowicz, A.; Niespodziński, B.; Cieszczyk, P.; Leźnicka, K.; Leońska-Duniec, A.; Kolbowicz, M.; Kaczmarczyk, M.; Piskorska, E.; et al. Does the PPARA Intron 7 Gene Variant (rs4253778) Influence Performance in Power/Strength-Oriented Athletes? A Case-Control Replication Study in Three Cohorts of European Gymnasts. J. Hum. Kinet. 2021, 79, 77–85. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramadan, W.; Monir, R.; El-Emam, O.; Diab, M.; Shaheen, D. Polymorphisms of PPARα and ACTN3 Among Adolescent Egyptian Athletes: A Case–Control Study. Life 2025, 15, 477. https://doi.org/10.3390/life15030477
Ramadan W, Monir R, El-Emam O, Diab M, Shaheen D. Polymorphisms of PPARα and ACTN3 Among Adolescent Egyptian Athletes: A Case–Control Study. Life. 2025; 15(3):477. https://doi.org/10.3390/life15030477
Chicago/Turabian StyleRamadan, Wael, Rehan Monir, Ola El-Emam, Mohamed Diab, and Dalia Shaheen. 2025. "Polymorphisms of PPARα and ACTN3 Among Adolescent Egyptian Athletes: A Case–Control Study" Life 15, no. 3: 477. https://doi.org/10.3390/life15030477
APA StyleRamadan, W., Monir, R., El-Emam, O., Diab, M., & Shaheen, D. (2025). Polymorphisms of PPARα and ACTN3 Among Adolescent Egyptian Athletes: A Case–Control Study. Life, 15(3), 477. https://doi.org/10.3390/life15030477