KIAA2022/NEXMIF c.1882C>T (p.Arg628*) Variant in a Romanian Patient with Neurodevelopmental Disorders and Epilepsy: A Case Report and Systematic Review
Abstract
:1. Introduction
1.1. The Role of NEXMIF in Neurodevelopmental Disorders
1.2. Autism Spectrum Disorder and Jeavons Syndrome: A Complex Comorbidity
1.3. Case Report Rationale
2. Materials and Methods
2.1. Informed Consent
2.2. Genetic Analysis
2.3. Systematic Literature Review
- Gene-Specific Searches: “NEXMIF cases”, “KIAA2022 cases”, “KIDLIA cases”, and “XPN cases”;
- Pathogenic Variant-Specific Searches: “NEXMIF c.1882C>T p.Arg628*”, “KIAA2022 c.1882C>T p.Arg628*”, “KIDLIA c.1882C>T p.Arg628*”, and “XPN c.1882C>T p.Arg628*”;
- Phenotype-Specific Searches: “NEXMIF autism”, “NEXMIF autism Jeavons”, “KIAA2022 autism”, “KIAA2022 autism Jeavons”, “KIDLIA autism”, “KIDLIA autism Jeavons”, “XPN autism”, and “XPN autism Jeavons”
3. Results
3.1. Case Report
3.1.1. Clinical Presentation
- Atypical language development: peculiar prosody (high-pitched tone), stereotyped verbal expressions, poor articulation, and limited sentence structure.
- Restricted and repetitive behaviors: solitary play patterns and fixations on specific objects (e.g., an intense attraction to earrings and hair, with a compulsion to touch them).
- Social and behavioral challenges: inappropriate social interactions, difficulty understanding social norms, and the presence of imaginary friends.
- Cognitive and executive dysfunction: deficits in attention, working memory, and executive functions, alongside fine motor impairments.
3.1.2. Biologic Assessment
3.1.3. Phenotypic Features
3.1.4. Genetic Analysis Results
3.2. Review of the Literature on NEXMIF c.1882C>T (p.Arg628*)
- Transcript: NM_001008537.3 (NEXMIF): c.1882C>T (p.Arg628Ter);
- Nucleotide Change: NM_001008537.3:c.1882C>T;
- Protein Change: NP_001008537.1:p.Arg628Ter (R628*);
- Variant Classification: single-nucleotide variant (1 bp length);
- Genomic Location: Xq13.3 (X: 74,742,675 [GRCh38]; X: 73,962,510 [GRCh37]).
4. Discussion
4.1. Genotype–Phenotype Correlations in NEXMIF Variants
4.2. NEXMIF and the Sex-Dependent Expression of X-Linked Disorders
4.3. NEXMIF and Epilepsy: Expanding the Clinical Spectrum
4.4. Clinical Implications and the Need for Genetic Screening
- The role of NEXMIF in synaptic plasticity and neuronal network formation.
- The relationship between specific NEXMIF variants and epilepsy subtypes.
- The impact of X-inactivation patterns on clinical severity in female carriers.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stamberger, H.; Hammer, T.B.; Gardella, E.; Vlaskamp, D.R.M.; Bertelsen, B.; Mandelstam, S.; de Lange, I.; Zhang, J.; Myers, C.T.; Fenger, C.; et al. NEXMIF encephalopathy: An X-linked disorder with male and female phenotypic patterns. Genet. Med. 2021, 23, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Alarcon-Martinez, T.; Khan, A.; Myers, K.A. Torpedo maculopathy associated with NEXMIF mutation. Mol. Syndromol. 2019, 10, 229–233. [Google Scholar] [CrossRef]
- Stekelenburg, C.; Blouin, J.L.; Santoni, F.; Zaghloul, N.; O’Hare, E.A.; Dusaulcy, R.; Maechler, P.; Schwitzgebel, V.M. Loss of Nexmif results in the expression of phenotypic variability and loss of genomic integrity. Sci. Rep. 2022, 12, 13815. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, S.; Deng, X.; Xiong, J.; Chen, B.; He, F.; Yang, L.; Yang, L.; Peng, J.; Yin, F. NEXMIF mutations in intellectual disability and epilepsy: A report of 2 cases and literature review. Zhong nan da xue xue bao. Yi Xue Ban. J. Cent. South. Univ. Med. Sci. 2022, 47, 265–270. [Google Scholar]
- Sahajpal, N.; Ziats, C.; Chaubey, A.; DuPont, B.R.; Abidi, F.; Schwartz, C.E.; Stevenson, R.E. Clinical findings in individuals with duplication of genes associated with X-linked intellectual disability. Clin. Genet. 2024, 105, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Van Maldergem, L.; Hou, Q.; Kalscheuer, V.M.; Rio, M.; Doco-Fenzy, M.; Medeira, A.; de Brouwer, A.P.; Cabrol, C.; Haas, S.A.; Cacciagli, P.; et al. Loss of function of KIAA2022 causes mild to severe intellectual disability with an autism spectrum disorder and impairs neurite outgrowth. Hum. Mol. Genet. 2013, 22, 3306–3314. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mount, R.A.; Athif, M.; O’Connor, M.; Saligrama, A.; Tseng, H.A.; Sridhar, S.; Zhou, C.; Bortz, E.; San Antonio, E.; Kramer, M.A.; et al. The autism spectrum disorder risk gene NEXMIF over-synchronizes hippocampal CA1 network and alters neuronal coding. Front. Neurosci. 2023, 17, 1277501. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Magome, T.; Hattori, T.; Taniguchi, M.; Ishikawa, T.; Miyata, S.; Yamada, K.; Takamura, H.; Matsuzaki, S.; Ito, A.; Tohyama, M.; et al. XLMR protein related to neurite extension (Xpn/KIAA2022) regulates cell-cell and cell-matrix adhesion and migration. Neurochem. Int. 2013, 63, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Cantagrel, V.; Haddad, M.R.; Ciofi, P.; Andrieu, D.; Lossi, A.M.; Maldergem Lv Roux, J.C.; Villard, L. Spatiotemporal expression in mouse brain of Kiaa2022, a gene disrupted in two patients with severe mental retardation. Gene Expr. Patterns 2009, 9, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.; Man, H.Y. The X-Linked Autism Protein KIAA2022/KIDLIA Regulates Neurite Outgrowth via N-Cadherin and δ-Catenin Signaling. eNeuro 2016, 3, ENEURO.0238-16.2016. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ishikawa, T.; Miyata, S.; Koyama, Y.; Yoshikawa, K.; Hattori, T.; Kumamoto, N.; Shingaki, K.; Katayama, T.; Tohyama, M. Transient expression of Xpn, an XLMR protein related to neurite extension, during brain development and participation in neurite outgrowth. Neuroscience 2012, 214, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Cantagrel, V.; Lossi, A.-M.; Boulanger, S.; Depetris, D.; Mattei, M.-G.; Gecz, J.; Schwartz, C.E.; Van Maldergem, L.; Villard, L. Disruption of a new X linked gene highly expressed in brain in a family with two mentally retarded males. J. Med. Genet. 2004, 41, 736–742. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; DSM-5; American Psychiatric Association: Washington DC, USA, 2013. [Google Scholar]
- Sauer, A.K.; Stanton, J.E.; Hans, S.; Grabrucker, A. Autism Spectrum Disorders: Etiology and Pathology. In Autism Spectrum Disorders [Internet]; Grabrucker, A.M., Ed.; Exon Publications: Brisbane, AU, USA, 2021; Chapter 1. Available online: https://www.ncbi.nlm.nih.gov/books/NBK573613/ (accessed on 31 January 2025). [CrossRef]
- O’Connor, M.; Qiao, H.; Odamah, K.; Cerdeira, P.C.; Man, H.Y. Heterozygous Nexmif female mice demonstrate mosaic NEXMIF expression, autism-like behaviors, and abnormalities in dendritic arborization and synaptogenesis. Heliyon 2024, 10, e24703. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eissa, N.; Sadeq, A.; Sasse, A.; Sadek, B. Role of Neuroinflammation in Autism Spectrum Disorder and the Emergence of Brain Histaminergic System. Lessons Also BPSD? Front. Pharmacol. 2020, 11, 886. [Google Scholar] [CrossRef]
- Gevezova, M.; Sbirkov, Y.; Sarafian, V.; Plaimas, K.; Suratanee, A.; Maes, M. Autistic spectrum disorder (ASD)—Gene, molecular and pathway signatures linking systemic inflammation, mitochondrial dysfunction, transsynaptic signalling, and neurodevelopment. Brain Behav. Immun. Health 2023, 30, 100646. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beversdorf, D.Q.; Stevens, H.E.; Margolis, K.G.; Van de Water, J. Prenatal Stress and Maternal Immune Dysregulation in Autism Spectrum Disorders: Potential Points for Intervention. Curr. Pharm. Des. 2019, 25, 4331–4343. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Colita, D.; Burdusel, D.; Glavan, D.; Hermann, D.M.; Colită, C.I.; Colita, E.; Udristoiu, I.; Popa-Wagner, A. Molecular mechanisms underlying major depressive disorder and post-stroke affective disorders. J. Affect. Disord. 2024, 344, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.; Bhardwaj, C.; Mandal, K. Developmental and Epileptic Encephalopathies: Need for Bridging the Gaps Between Clinical Syndromes and Underlying Genetic Etiologies. Indian J. Pediatr. 2025, 92, 52–60. [Google Scholar] [CrossRef]
- Betancur, C. Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting. Brain Res. 2011, 1380, 42–77. [Google Scholar] [CrossRef]
- Emberti Gialloreti, L.; Mazzone, L.; Benvenuto, A.; Fasano, A.; Alcon, A.G.; Kraneveld, A.; Moavero, R.; Raz, R.; Riccio, M.P.; Siracusano, M.; et al. Risk and Protective Environmental Factors Associated with Autism Spectrum Disorder: Evidence-Based Principles and Recommendations. J. Clin. Med. 2019, 8, 217. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karimi, P.; Kamali, E.; Mousavi, S.M.; Karahmadi, M. Environmental factors influencing the risk of autism. J. Res. Med. Sci. 2017, 22, 27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buicu, G.E.; Gabos Grecu, M.; Salcudean, A.; Gabos Grecu, I.; Marinescu, C.; Nirestean, S.; Turliuc, V.; Hadareanu, V.; Udristiu, I. Evaluation of elder physical abuse. Eur. Psychiatry 2017, 41, S583–S584. [Google Scholar] [CrossRef]
- Cheng, J.; Eskenazi, B.; Widjaja, F.; Cordero, J.; Hendren, R. Improving autism perinatal risk factors: A systematic review. Med. Hypotheses 2019, 127, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Love, C.; Sominsky, L.; O’Hely, M.; Berk, M.; Vuillermin, P.; Dawson, S. Prenatal environmental risk factors for autism spectrum disorder and their potential mechanisms. BMC Med. 2024, 22, 393. [Google Scholar] [CrossRef] [PubMed]
- Gheorman, V.; Dinescu, V.C.; Criciotoiu, O.; Stanca, D.; Calborean, V.; Mita, A.; Miscoci, A.; Davitoiu, D.V.; Baleanu, V.D.; Nedelcuta, R.; et al. Clinical and Biochemical Changes Induced by Alcohol at the Patients with Mental Illness. Rev. Chim. 2019, 70, 1406–1410. [Google Scholar] [CrossRef]
- Cernigliaro, F.; Santangelo, A.; Nardello, R.; Lo Cascio, S.; D’Agostino, S.; Correnti, E.; Marchese, F.; Pitino, R.; Valdese, S.; Rizzo, C.; et al. Prenatal Nutritional Factors and Neurodevelopmental Disorders: A Narrative Review. Life 2024, 14, 1084. [Google Scholar] [CrossRef]
- Botelho, R.M.; Silva, A.L.M.; Borbely, A.U. The Autism Spectrum Disorder and Its Possible Origins in Pregnancy. Int. J. Environ. Res. Public Health 2024, 21, 244. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, F.; Huo, L.; Fan, Y.; Liu, X.; Wu, Q.; Wang, H. Case Report: A Case of Eyelid Myoclonic Status With Tonic-Clonic Seizure and Literature Review. Front. Pediatr. 2021, 9, 671732. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mayo, S.; Gómez-Manjón, I.; Fernández-Martínez, F.J.; Camacho, A.; Martínez, F.; Benito-León, J. Candidate Genes for Eyelid Myoclonia with Absences, Review of the Literature. Int. J. Mol. Sci. 2021, 22, 5609. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smith, K.M.; Youssef, P.E.; Wirrell, E.C.; Nickels, K.C.; Payne, E.T.; Britton, J.W.; Shin, C.; Cascino, G.D.; Patterson, M.C.; Wong-Kisiel, L.C. Jeavons Syndrome: Clinical Features and Response to Treatment. Pediatr. Neurol. 2018, 86, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Kurioakose, M.; Rekka, Z.; Athlra, R. Jeavons syndrome. A photosensitive epilepsy syndrome. Pediatr. Companion 2022, 1, 21–23. [Google Scholar] [CrossRef]
- Zawar, I.; Knight, E.P. Epilepsy With Eyelid Myoclonia (Jeavons Syndrome). Pediatr. Neurol. 2021, 121, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Coppola, A.; Krithika, S.; Iacomino, M.; Bobbili, D.; Balestrini, S.; Bagnasco, I.; Bilo, L.; Buti, D.; Casellato, S.; Cuccurullo, C.; et al. Dissecting genetics of spectrum of epilepsies with eyelid myoclonia by exome sequencing. Epilepsia 2024, 65, 779–791. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, S.A.; Khalaf, I.B.; Saeed, A.; Hoshan, W.; Hageen, A.; Motwani, M.; Goyal, A. Exploring the Genetic Landscape of Epilepsy With Eyelid Myoclonia: A Comprehensive Review on Clinical Features and Diagnostic Challenges. Pediatr. Neurol. 2024, 161, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, P.; Cuccurullo, C.; Rubino, M.; De Vita, G.; Terrone, G.; Bilo, L.; Coppola, A. X-Linked Epilepsies: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 4110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ye, Z.L.; Yan, H.J.; Guo, Q.H.; Zhang, S.Q.; Luo, S.; Lian, Y.J.; Ma, Y.Q.; Lu, X.G.; Liu, X.R.; Shen, N.X.; et al. NEXMIF variants are associated with epilepsy with or without intellectual disability. Seizure 2024, 116, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information ClinVar. Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/190220/?oq=%22NEXMIF%22[GENE]+%22c.1882C%3ET%22[VARNAME]+%22p.Arg628*%22[VARNAME]&m=NM_001008537.3(NEXMIF):c.1882C%3ET%20(p.Arg628Ter)%3Fterm=NEXMIF%20c.1882C%3ET%20p.Arg628*) (accessed on 31 January 2025).
- National Center for Biotechnology Information ClinVar; [VCV000190220.38]. Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000190220.38/ (accessed on 1 February 2025).
- de Lange, I.M.; Helbig, K.L.; Weckhuysen, S.; Møller, R.S.; Velinov, M.; Dolzhanskaya, N.; Marsh, E.; Helbig, I.; Devinsky, O.; Tang, S.; et al. De novo mutations of KIAA2022 in females cause intellectual disability and intractable epilepsy. J. Med. Genet. 2016, 53, 850–858. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Athanasakis, E.; Licastro, D.; Faletra, F.; Fabretto, A.; Dipresa, S.; Vozzi, D.; Morgan, A.; d’Adamo, A.P.; Pecile, V.; Biarnés, X.; et al. Next generation sequencing in nonsyndromic intellectual disability: From a negative molecular karyotype to a possible causative mutation detection. Am. J. Med. Genet. A 2014, 164A, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Kozhanova, T.V.; Zhilina, S.S.; Mescheryakova, T.I.; Prokopeva, N.P.; Osipova, K.V.; Aivazyan, S.O.; Kanivets, I.V.; Konovalov, F.A.; Tolmacheva, E.R.; Koshkin, F.A.; et al. X-linked intellectual disability (Cantagrel type) in girl: Clinical case from practice. Med. Genet. 2017, 16, 42–45. [Google Scholar]
- Lambert, N.; Dauve, C.; Ranza, E.; Makrythanasis, P.; Santoni, F.; Sloan-Béna, F.; Gimelli, S.; Blouin, J.-L.; Guipponi, M.; Bottani, A.; et al. Novel NEXMIF pathogenic variant in a boy with severe autistic features, intellectual disability, and epilepsy, and his mildly affected mother. J. Hum. Genet. 2018, 63, 847–850. [Google Scholar] [CrossRef]
- Lorenzo, M.; Stolte-Dijkstra, I.; van Rheenen, P.; Garth Smith, R.; Scheers, T.; Walia, J. Clinical spectrum of KIAA2022 pathogenic variants in males: Case report of two boys with KIAA2022 pathogenic variants and review of the literature. J. Med. Genet. 2018, 176, 1455–1462. [Google Scholar] [CrossRef]
- Myers, C.; Hollingsworth, G.; Muir, A.; Schneider, A.; Thuesmunn, Z.; Knupp, A.; King, C.; Lacroix, A.; Mehaffey, M.; Berkovic, S.; et al. Parental Mosaicism in “De Novo” Epileptic Encephalopathies. N. Engl. J. Med. 2018, 378, 1646–1648. [Google Scholar] [CrossRef] [PubMed]
- Kholin, A.A.; Kholina, E.A. Case of Epileptic Encephalopathy with Mental Retardation Due to KIAA2022 Gene Impairment (Mental Retardation X-Linked 98). EC Psychol. Psychiatry 2020, 9, 11–17. [Google Scholar]
- Cioclu, M.C.; Coppola, A.; Tondelli, M.; Vaudano, A.E.; Giovannini, G.; Krithika, S.; Iacomino, M.; Zara, F.; Sisodiya, S.M.; Meletti, S. Cortical and Subcortical Network Dysfunction in a Female Patient With NEXMIF Encephalopathy. Front. Neurol. 2021, 12, 722664. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ogasawara, M.; Nakagawa, E.; Takeshita, E.; Hamanaka, K.; Miyatake, S.; Matsumoto, N.; Sasaki, M. Clonazepam as an Effective Treatment for Epilepsy in a Female Patient with NEXMIF Mutation: Case Report. Mol. Syndromol. 2020, 11, 232–237. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chorny, L.E.; Nordli, D.R., 3rd; Galan, F. NEXMIF Epilepsy: An Alternative Cause of Progressive Myoclonus. Neurology 2023, 100, 672–673. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Langley, E.; Farach, L.S.; Koenig, M.K.; Northrup, H.; Rodriguez-Buritica, D.F.; Mowrey, K. NEXMIF pathogenic variants in individuals of Korean, Vietnamese, and Mexican descent. Am. J. Med. Genet. A 2022, 188, 1688–1692. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.; Huang, Y.; Liu, X. NEXMIF pathogenic variant in a female child with epilepsy and multiple organ failure: A case report. Transl. Pediatr. 2023, 12, 1278–1287. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aygün, T.; Yener, S.; Yücel, N.; Hekimoğlu, G.; Eser, M.; İlce, Z. X-Linked Intellectual Disability with NEXMIF Gene Mutation and Developmental Delay with GNAO1 Gene Mutation: Case Report. MRR 2024, 7, 177–182. [Google Scholar] [CrossRef]
- Qi, H.; Pan, D.; Zhang, Y.; Zhu, Y.; Zhang, X.; Fu, T. NEXMIF Combined with KIDINS220 Gene Mutation Caused Neurodevelopmental Disorder and Epilepsy: One Case Report. Actas Esp. Psiquiatr. 2024, 52, 588–594. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Webster, R.; Cho, M.T.; Retterer, K.; Millan, F.; Nowak, C.; Douglas, J.; Ahmad, A.; Raymond, G.V.; Johnson, M.R.; Pujol, A.; et al. De novo loss of function mutations in KIAA2022 are associated with epilepsy and neurodevelopmental delay in females. Clin. Genet. 2017, 91, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Brand, B.A.; Blesson, A.E.; Smith-Hicks, C.L. The Impact of X-Chromosome Inactivation on Phenotypic Expression of X-Linked Neurodevelopmental Disorders. Brain Sci. 2021, 11, 904. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Panda, P.K.; Sharawat, I.K.; Joshi, K.; Dawman, L.; Bolia, R. Clinical spectrum of KIAA2022/NEXMIF pathogenic variants in males and females: Report of three patients from Indian kindred with a review of published patients. Brain Dev. 2020, 42, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Migeon, B.R. X-linked diseases: Susceptible females. Genet. Med. 2020, 22, 1156–1174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Liu, X.; Guo, R.; Xu, W.; Guo, Q.; Hao, C.; Ni, X.; Li, W. Biological implications of genetic variations in autism spectrum disorders from genomics studies. Biosci. Rep. 2021, 41, BSR20210593. [Google Scholar] [CrossRef]
- Shvetsova, E.; Sofronova, A.; Monajemi, R.; Gagalova, K.; Draisma, H.H.M.; White, S.J.; Santen, G.W.E.; Chuva de Sousa Lopes, S.M.; Heijmans, B.T.; van Meurs, J.; et al. Skewed X-inactivation is common in the general female population. Eur. J. Hum. Genet. 2019, 27, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Ørstavik, K.H. Skewed X inactivation in healthy individuals and in different diseases. Acta Paediatr. Suppl. 2006, 95, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.; O’Connor, M.; Templet, S.; Moghaddam, M.; Di Via Ioschpe, A.; Sinclair, A.; Zhu, L.Q.; Xu, W.; Man, H.Y. NEXMIF/KIDLIA Knock-out Mouse Demonstrates Autism-Like Behaviors, Memory Deficits, and Impairments in Synapse Formation and Function. J. Neurosci. 2020, 40, 237–254. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Variant ID | Source | HGVS Consequence | Allele Count | Allele Number | Allele Frequency |
---|---|---|---|---|---|
X-74742674-C-CA | Exome | p.Arg628Leu | 1 | 1210952 | 8.26 × 10−7 |
X-74742674-C-T | Exome and genome | p.Arg628 Gln | 15 | 1209439 | 1.24 × 10−5 |
X-74742675-G-T | Exome | p.Arg628Arg | 1 | 1211109 | 8.26 × 10−7 |
Reference | Gender, Age (Years) | Pathogenic Variant | Variant of Uncertain Significance | Benign Variant | Clinical Symptoms | Phenotype | Family History |
---|---|---|---|---|---|---|---|
De Lange et al., 2016 [42] | Female 2.3 | c.1882C>T p.Arg628* | N/A | N/A | Motor delay, hypotonia, joint laxity speech delay, Mild Intellectual Disability, age of first notice delay—7, no additional medical problems, normal MRI brain | No dysmorphic features described | N/A |
Athanasakis E. et al., 2013 [43] | Female 13 | c.1882C>T, p.Arg628* | N/A | N/A | XCI—65:35, Mild Intellectual Disability, no data regarding autistic behavior or other neurodevelopmental problems | N/A | Negative for ID |
Reference | Sex | Age (Years) | Method | Genetic Testing | Symptoms |
---|---|---|---|---|---|
Kozhanova T.V. et al., 2017 [44] | F | 5 | targeted sequencing | KIAA2022 gene, exon 3 p.Asp451fs | epilepsy, psychomotor, speech and intellectual development delay, behavioral disorders and autistic symptoms. |
Lambert N. et al., 2018 [45] | - | - | NEXMIF de novo variant c.3470C>A p.Ser1157* | ||
Lorenzo M. et al., 2018 [46] | M | 19 | KIAA2022 variant c.652C > T p.Arg218* | long ears, anteverted nares, keratoconus, strabismus, a narrow forehead, thick vermilion of the upper and lower lips, macroglossia, prognathism, café-au-lait spots, gastroesophageal reflux, gastrointestinal problems, difficulty regulating temperature, musculoskeletal impairments, one grand mal seizure. | |
M | 10 | novel nonsense de novo variant c.2707G > T p.Glu903* | mild dysmorphic features, axial hypotonia, gastrointestinal problems, visual impairment, strabismus, difficulty regulating temperature, cutaneous mastocytosis. | ||
Meyers C. et al., 2018 [47] | - | - | KIAA2022 p.R322* | epilepsy with myoclonic–atonic seizures. | |
Kholin A.A., Kholina E.A., 2020 [48] | M | 21 | DNA sequencing | de novo microdeletion of four nucleotides in KIAA2022 gene: c.1713_1716del p.Ser571ArgfsTer13 | muscular dystonia/hypotonia, motor delay, polymorphic seizures, modified MRI: predominant frontal cortical atrophy, ventriculomegaly. |
Cioclu M.C. et al., 2021 [49] | F | 28 | NGS exome sequencing on genomic DNA | NEXMIF c.2171delG p.S724MfsTer5 | absences with eyelid myoclonia seizures, modified MRI: thinning middle frontal gyrus of the prefrontal cortex, temporal lobe cortex, pericalcarine visual cortex. |
Ogasawara M. et al., 2020 [50] | F | 46 | trio whole-exome | heterozygous de novo pathogenic variant, NEXMIF c.1123del p.Glu375Argfs*21 | prognathism, thick lower lip, open mouth, depressed nasal bridge, speech delay, Mild Intellectual Disability, generalized tonic–clonic seizures, obesity. |
Chorny L.E. et al., 2022 [51] | M | 8 | NEXMIF c.2478_2479dup | generalized myoclonic epilepsy, progressive cognitive decline. | |
Langley E. et al., 2022 [52] | M | 13 | proband exome sequencing | NEXMIF c.788delC p.T2631fsX41 | motor delay, nonverbal, autism, intellectual disability, constipation, proteinuria, allergy, hypothyroidism, tonic–clonic seizures. |
M | 20 months | trio, whole exome sequencing + mitochondrial sequencing | NEXMIF c.846_849delTGTC p.V283TfsX20 | left eye strabismus, hyperpigmentation spots, axial hypotonia, obesity, motor delay, speech delay, intellectual delay, autism symptoms. | |
F | 6 | epilepsy panel | possibly mosaic, de novo pathogenic variant NEXMIF Arg333* | square face, long palpebral fissures, a short philtrum, thin upper lip, learning disability, speech delay, agitation, aggression, anxiety, Attention Deficit/Hyperactive Disorder absence seizures. | |
Wang L. et al., 2023 [53] | F | 3 | whole exome sequencing | heterozygous de novo variant NEXMIF c.937C>T p.R313* | Epileptic seizures, MOF, disseminated intravascular coagulation, hemophagocytic syndrome. |
Aygün et al., 2024 [54] | F | 5 | next generation sequencing technology (NGS) | NEXMIF c.45512_4513del p. Phe1505* | facial dysmorphism, cutaneous malformations, ocular malformations, anal atresia, distal hypotonia, scoliosis. |
Qi H. et al., 2024 [55] | M | 8 months | whole exome sequencing (WES) | NEXMIF c.1042C > T p. Arg348 | strabismus, motor delay, language delay, intellectual delay, seizures, pulmonary anomalies, obesity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasescu, C.M.; Gheorman, V.; Godeanu, S.V.; Cojocaru, A.; Iliuta, F.P.; Stepan, M.D.; Gheorman, V. KIAA2022/NEXMIF c.1882C>T (p.Arg628*) Variant in a Romanian Patient with Neurodevelopmental Disorders and Epilepsy: A Case Report and Systematic Review. Life 2025, 15, 497. https://doi.org/10.3390/life15030497
Anastasescu CM, Gheorman V, Godeanu SV, Cojocaru A, Iliuta FP, Stepan MD, Gheorman V. KIAA2022/NEXMIF c.1882C>T (p.Arg628*) Variant in a Romanian Patient with Neurodevelopmental Disorders and Epilepsy: A Case Report and Systematic Review. Life. 2025; 15(3):497. https://doi.org/10.3390/life15030497
Chicago/Turabian StyleAnastasescu, Catalina Mihaela, Veronica Gheorman, Simona Viorica Godeanu, Adriana Cojocaru, Floris Petru Iliuta, Mioara Desdemona Stepan, and Victor Gheorman. 2025. "KIAA2022/NEXMIF c.1882C>T (p.Arg628*) Variant in a Romanian Patient with Neurodevelopmental Disorders and Epilepsy: A Case Report and Systematic Review" Life 15, no. 3: 497. https://doi.org/10.3390/life15030497
APA StyleAnastasescu, C. M., Gheorman, V., Godeanu, S. V., Cojocaru, A., Iliuta, F. P., Stepan, M. D., & Gheorman, V. (2025). KIAA2022/NEXMIF c.1882C>T (p.Arg628*) Variant in a Romanian Patient with Neurodevelopmental Disorders and Epilepsy: A Case Report and Systematic Review. Life, 15(3), 497. https://doi.org/10.3390/life15030497