Effectiveness of Electrical Muscle Elongation and Proprioceptive Neuromuscular Facilitation Programs on Muscle Flexibility and Stiffness in Young Adults with Functional Hamstring Disorder: A Randomized Clinical Trial with 4-Week Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Randomization and Blinding
2.4. Procedure
2.5. Outcome Measures
2.5.1. Hamstring Flexibility Assessment
2.5.2. Quadricep Flexibility Assessment
2.5.3. Muscle Stiffness Assessment
2.6. Interventions
2.6.1. Proprioceptive Neuromuscular Facilitation Technique
2.6.2. Electrical Muscle Elongation Technique
2.6.3. No Intervention
2.7. Statistical Analysis
3. Results
3.1. Hamstring Flexibility
3.2. Quadricep Flexibility
3.3. Hamstring Muscle Stiffness
3.4. Quadriceps Muscle Stiffness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maniar, N.; Carmichael, D.S.; Hickey, J.T.; Timmins, R.G.; San Jose, A.J.; Dickson, J.; Opar, D. Incidence and prevalence of hamstring injuries in field-based team sports: A systematic review and meta-analysis of 5952 injuries from over 7 million exposure hours. Br. J. Sports Med. 2023, 57, 109–116. [Google Scholar] [CrossRef]
- Danielsson, A.; Horvath, A.; Senorski, C.; Alentorn-Geli, E.; Garrett, W.E.; Cugat, R.; Samuelsson, K.; Hamrin Senorski, E. The mechanism of hamstring injuries—A systematic review. BMC Musculoskelet. Disord. 2020, 21, 641. [Google Scholar] [CrossRef]
- Chavarro-Nieto, C.; Beaven, M.; Gill, N.; Hébert-Losier, K. Hamstrings injury incidence, risk factors, and prevention in Rugby Union players: A systematic review. Physician Sportsmed. 2023, 51, 1–19. [Google Scholar] [CrossRef]
- Ekstrand, J.; Bengtsson, H.; Waldén, M.; Davison, M.; Khan, K.M.; Hägglund, M. Hamstring injury rates have increased during recent seasons and now constitute 24% of all injuries in men’s professional football: The UEFA Elite Club Injury Study from 2001/02 to 2021/22. Br. J. Sports Med. 2022, 57, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Al Attar, W.S.A.; Soomro, N.; Sinclair, P.J.; Pappas, E.; Sanders, R.H. Effect of Injury Prevention Programs that Include the Nordic Hamstring Exercise on Hamstring Injury Rates in Soccer Players: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 907–916. [Google Scholar] [CrossRef]
- Opar, D.A.; Williams, M.D.; Shield, A.J. Hamstring strain injuries: Factors that lead to injury and re-injury. Sports Med. 2012, 42, 209–226. [Google Scholar] [CrossRef]
- Wolski, L.; Pappas, E.; Hiller, C.; Halaki, M.; Fong Yan, A. Is there an association between high-speed running biomechanics and hamstring strain injury? A systematic review. Sports Biomech. 2024, 23, 1313–1339. [Google Scholar] [CrossRef]
- Mueller-Wohlfahrt, H.W.; Haensel, L.; Mithoefer, K.; Ekstrand, J.; English, B.; McNally, S.; Orchard, J.; van Dijk, C.N.; Kerkhoffs, G.M.; Schamasch, P.; et al. Terminology and classification of muscle injuries in sport: The Munich consensus statement. Br. J. Sports Med. 2013, 47, 342–350. [Google Scholar] [CrossRef]
- Witvrouw, E.; Danneels, L.; Asselman, P.; D’Have, T.; Cambier, D. Muscle flexibility as a risk factor for developing muscle injuries in male professional soccer players. A prospective study. Am. J. Sports Med. 2003, 31, 41–46. [Google Scholar] [CrossRef]
- Erol, E.; Bulut, B.N. Acute effect of instrument-assisted soft tissue mobilization on hamstring flexibility via fascial chain. BMC Musculoskelet. Disord. 2024, 25, 1046. [Google Scholar] [CrossRef]
- O’Sullivan, K.; Murray, E.; Sainsbury, D. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects. BMC Musculoskelet. Disord. 2009, 10, 37. [Google Scholar] [CrossRef]
- Sadler, S.G.; Spink, M.J.; Ho, A.; De Jonge, X.J.; Chuter, V.H. Restriction in lateral bending range of motion, lumbar lordosis, and hamstring flexibility predicts the development of low back pain: A systematic review of prospective cohort studies. BMC Musculoskelet. Disord. 2017, 18, 179. [Google Scholar] [CrossRef]
- Hori, M.; Hasegawa, H.; Takasaki, H. Comparisons of hamstring flexibility between individuals with and without low back pain: Systematic review with meta-analysis. Physiother. Theory Pract. 2021, 37, 559–582. [Google Scholar] [CrossRef]
- Jankaew, A.; Chen, J.C.; Chamnongkich, S.; Lin, C.F. Therapeutic Exercises and Modalities in Athletes With Acute Hamstring Injuries: A Systematic Review and Meta-analysis. Sports Health 2023, 15, 497–511. [Google Scholar] [CrossRef] [PubMed]
- Rudisill, S.S.; Varady, N.H.; Kucharik, M.P.; Eberlin, C.T.; Martin, S.D. Evidence-Based Hamstring Injury Prevention and Risk Factor Management: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Am. J. Sports Med. 2023, 51, 1927–1942. [Google Scholar] [CrossRef]
- Poursalehian, M.; Lotfi, M.; Zafarmandi, S.; Arabzadeh Bahri, R.; Halabchi, F. Hamstring Injury Treatments and Management in Athletes: A Systematic Review of the Current Literature. JBJS Rev. 2023, 11, e23.00161. [Google Scholar] [CrossRef]
- Medeiros, D.M.; Cini, A.; Sbruzzi, G.; Lima, C.S. Influence of static stretching on hamstring flexibility in healthy young adults: Systematic review and meta-analysis. Physiother. Theory Pract. 2016, 32, 438–445. [Google Scholar] [CrossRef]
- Cai, P.; Liu, L.; Li, H. Dynamic and static stretching on hamstring flexibility and stiffness: A systematic review and meta-analysis. Heliyon 2023, 9, e18795. [Google Scholar] [CrossRef]
- Castellote-Caballero, Y.; Valenza, M.C.; Martín-Martín, L.; Cabrera-Martos, I.; Puentedura, E.J.; Fernández-de-Las-Peñas, C. Effects of a neurodynamic sliding technique on hamstring flexibility in healthy male soccer players. A pilot study. Phys. Ther. Sport Off. J. Assoc. Chart. Physiother. Sports Med. 2013, 14, 156–162. [Google Scholar] [CrossRef]
- Espejo-Antúnez, L.; López-Miñarro, P.A.; Garrido-Ardila, E.M.; Castillo-Lozano, R.; Domínguez-Vera, P.; Maya-Martín, J. Acute Effect of Electrical Muscle Elongation and Static Stretching in Hamstring Muscle Extensibility. Sci. Sports 2015, 31, e1–e7. [Google Scholar] [CrossRef]
- Puentedura, E.J.; Huijbregts, P.A.; Celeste, S.; Edwards, D.; In, A.; Landers, M.R.; Fernandez-de-Las-Penas, C. Immediate effects of quantified hamstring stretching: Hold-relax proprioceptive neuromuscular facilitation versus static stretching. Phys. Ther. Sport Off. J. Assoc. Chart. Physiother. Sports Med. 2011, 12, 122–126. [Google Scholar] [CrossRef]
- Freitas, S.R.; Mendes, B.; Firmino, T.; Correia, J.P.; Witvrouw, E.; Oliveira, R.; Vaz, J.R. Semitendinosus and biceps femoris long head active stiffness response until failure in professional footballers with vs. without previous hamstring injury. Eur. J. Sport Sci. 2022, 22, 1132–1140. [Google Scholar] [CrossRef]
- Espejo-Antúnez, L.; López-Miñarro, P.A.; Garrido-Ardila, E.M.; Castillo-Lozano, R.; Domínguez-Vera, P.; Maya-Martín, J.; Albornoz-Cabello, M. A comparison of acute effects between Kinesio tape and electrical muscle elongation in hamstring extensibility. J. Back Musculoskelet. Rehabil. 2015, 28, 93–100. [Google Scholar] [CrossRef]
- Espejo-Antúnez, L.; Cardero-Durán, M.A.; Albornoz-Cabello, M. Elongación Muscular Eléctrica. In Electroestimulación Transcutánea y Neuromuscular y Neuromodulación, 2nd ed.; Albornoz-Cabello, M., Maya-Martín, J., Eds.; Elsevier: Madrid, Spain, 2021. [Google Scholar]
- Espejo-Antúnez, L.; Cardero-Durán, M.A.; Albornoz-Cabello, M. Elongación Muscular Eléctrica. In Electroterapia Práctica. Avances en Investigación Clínica, 2nd ed.; Elsevier: Madrid, Spain, 2022. [Google Scholar]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomized trials. Ann. Intern. Med. 2010, 152, 726–732. [Google Scholar] [CrossRef]
- Bandy, W.D.; Irion, J.M.; Briggler, M. The effect of time and frequency of static stretching on flexibility of the hamstring muscles. Phys. Ther. 1997, 77, 1090–1096. [Google Scholar] [CrossRef]
- Hoffmann, T.C.; Glasziou, P.P.; Boutron, I.; Milne, R.; Perera, R.; Moher, D.; Altman, D.G.; Barbour, V.; Macdonald, H.; Johnston, M.; et al. Better reporting of interventions: Template for intervention description and replication (TIDieR) checklist and guide. BMJ 2014, 348, g1687. [Google Scholar] [CrossRef]
- Hamid, M.S.; Ali, M.R.; Yusof, A. Interrater and Intrarater Reliability of the Active Knee Extension (AKE) Test among Healthy Adults. J. Phys. Ther. Sci. 2013, 25, 957–961. [Google Scholar] [CrossRef]
- Medeiros, D.M.; Miranda, L.L.P.; Marques, V.B.; de Araujo Ribeiro-Alvares, J.B.; Baroni, B.M. Accuracy of the functional movement screen (FMS(TM)) active straight leg raise test to evaluate hamstring flexibility in soccer players. Int. J. Sports Phys. Ther. 2019, 14, 877–884. [Google Scholar]
- Neto, T.; Jacobsohn, L.; Carita, A.I.; Oliveira, R. Reliability of the Active-Knee-Extension and Straight-Leg-Raise Tests in Subjects With Flexibility Deficits. J. Sport Rehabil. 2015, 24, 2014-0220. [Google Scholar] [CrossRef]
- Iglesias-Caamaño, M.; Carballo-López, J.; Álvarez-Yates, T.; Cuba-Dorado, A.; García-García, O. Intrasession Reliability of the Tests to Determine Lateral Asymmetry and Performance in Volleyball Players. Symmetry 2018, 10, 416. [Google Scholar] [CrossRef]
- Mason, M.; Keays, S.L.; Newcombe, P.A. The effect of taping, quadriceps strengthening and stretching prescribed separately or combined on patellofemoral pain. Physiother. Res. Int. J. Res. Clin. Phys. Ther. 2011, 16, 109–119. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, C.; Ortiz-Lucas, M.; Bravo-Esteban, E.; Mayoral-Del Moral, O.; Herrero-Gállego, P.; Gómez-Soriano, J. Myotonometry as a measure to detect myofascial trigger points: An inter-rater reliability study. Physiol. Meas. 2018, 39, 115004. [Google Scholar] [CrossRef] [PubMed]
- Agyapong-Badu, S.; Warner, M.; Samuel, D.; Stokes, M. Measurement of ageing effects on muscle tone and mechanical properties of rectus femoris and biceps brachii in healthy males and females using a novel hand-held myometric device. Arch. Gerontol. Geriatr. 2016, 62, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Lettner, J.; Królikowska, A.; Ramadanov, N.; Oleksy, Ł.; Hakam, H.T.; Becker, R.; Prill, R. Evaluating the Reliability of MyotonPro in Assessing Muscle Properties: A Systematic Review of Diagnostic Test Accuracy. Medicina 2024, 60, 851. [Google Scholar] [CrossRef] [PubMed]
- Sharman, M.J.; Cresswell, A.G.; Riek, S. Proprioceptive neuromuscular facilitation stretching: Mechanisms and clinical implications. Sports Med. 2006, 36, 929–939. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Science, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NY, USA, 1988. [Google Scholar]
- Labata-Lezaun, N.; González-Rueda, V.; Llurda-Almuzara, L.; López-de-Celis, C.; Rodríguez-Sanz, J.; Cadellans-Arróniz, A.; Bosch, J.; Pérez-Bellmunt, A. Correlation between Physical Performance and Tensiomyographic and Myotonometric Parameters in Older Adults. Healthcare 2023, 11, 2169. [Google Scholar] [CrossRef]
- Gosselin, L.E.; Adams, C.; Cotter, T.A.; McCormick, R.J.; Thomas, D.P. Effect of exercise training on passive stiffness in locomotor skeletal muscle: Role of extracellular matrix. J. Appl. Physiol. 1998, 85, 1011–1016. [Google Scholar] [CrossRef]
- Mullix, J.; Warner, M.; Stokes, M. Testing Muscle Tone and Mechanical Properties of Rectus Femoris and Biceps Femoris Using a Novel Hand Held MyotonPRO Device: Relative Ratios and Reliability. J. Back Musculoskelet. Rehabil. 2015, 28, 93–100. [Google Scholar] [CrossRef]
- Pérez-Bellmunt, A.; Casasayas, O.; Navarro, R.; Simon, M.; Martin, J.C.; Pérez-Corbella, C.; Blasi, M.; Ortiz, S.; Álvarez, P.; Pacheco, L. Effectiveness of low-frequency electrical stimulation in proprioceptive neuromuscular facilitation techniques in healthy males: A randomized controlled trial. J. Sports Med. Phys. Fit. 2019, 59, 469–475. [Google Scholar] [CrossRef]
- Espejo-Antúnez, L.; Carracedo-Rodríguez, M.; Ribeiro, F.; Venâncio, J.; De la Cruz-Torres, B.; Albornoz-Cabello, M. Immediate effects and one-week follow-up after neuromuscular electric stimulation alone or combined with stretching on hamstrings extensibility in healthy football players with hamstring shortening. J. Bodyw. Mov. Ther. 2019, 23, 16–22. [Google Scholar] [CrossRef]
- Adhitya, I.; Yu, W.Y.; Bass, P.; Kinandana, G.P.; Lin, M.R. Effects of Kinesio Taping and Transcutaneous Electrical Nerve Stimulation Combined With Active Stretching on Hamstring Flexibility. J. Strength Cond. Res. 2022, 36, 3087–3092. [Google Scholar] [CrossRef] [PubMed]
- Karasuno, H.; Ogihara, H.; Morishita, K.; Yokoi, Y.; Fujiwara, T.; Ogoma, Y.; Abe, K. The combined effects of transcutaneous electrical nerve stimulation (TENS) and stretching on muscle hardness and pressure pain threshold. J. Phys. Ther. Sci. 2016, 28, 1124–1130. [Google Scholar] [CrossRef]
- Rocha, C.S.; Lanferdini, F.J.; Kolberg, C.; Silva, M.F.; Vaz, M.A.; Partata, W.A.; Zaro, M.A. Interferential therapy effect on mechanical pain threshold and isometric torque after delayed onset muscle soreness induction in human hamstrings. J. Sports Sci. 2012, 30, 733–742. [Google Scholar] [CrossRef]
- Wanderley, D.; Lemos, A.; Moretti, E.; Barros, M.; Valença, M.M.; de Oliveira, D.A. Efficacy of proprioceptive neuromuscular facilitation compared to other stretching modalities in range of motion gain in young healthy adults: A systematic review. Physiother. Theory Pract. 2019, 35, 109–129. [Google Scholar] [CrossRef]
- Behm, D.G.; Alizadeh, S.; Daneshjoo, A.; Anvar, S.H.; Graham, A.; Zahiri, A.; Goudini, R.; Edwards, C.; Culleton, R.; Scharf, C.; et al. Acute Effects of Various Stretching Techniques on Range of Motion: A Systematic Review with Meta-Analysis. Sports Med.-Open 2023, 9, 107. [Google Scholar] [CrossRef]
- Zaidi, S.; Ahamad, A.; Fatima, A.; Ahmad, I.; Malhotra, D.; Al Muslem, W.H.; Abdulaziz, S.; Nuhmani, S. Immediate and Long-Term Effectiveness of Proprioceptive Neuromuscular Facilitation and Static Stretching on Joint Range of Motion, Flexibility, and Electromyographic Activity of Knee Muscles in Older Adults. J. Clin. Med. 2023, 12, 2610. [Google Scholar] [CrossRef] [PubMed]
- Mani, E.; Kirmizigil, B.; Tüzün, E.H. Effects of two different stretching techniques on proprioception and hamstring flexibility: A pilot study. J. Comp. Eff. Res. 2021, 10, 987–999. [Google Scholar] [CrossRef] [PubMed]
- Yıldırım, M.S.; Ozyurek, S.; Tosun, O.; Uzer, S.; Gelecek, N. Comparison of effects of static, proprioceptive neuromuscular facilitation and Mulligan stretching on hip flexion range of motion: A randomized controlled trial. Biol. Sport 2016, 33, 89–94. [Google Scholar] [CrossRef]
- Hindle, K.B.; Whitcomb, T.J.; Briggs, W.O.; Hong, J. Proprioceptive Neuromuscular Facilitation (PNF): Its Mechanisms and Effects on Range of Motion and Muscular Function. J. Hum. Kinet. 2012, 31, 105–113. [Google Scholar] [CrossRef]
- Scrivener, K.; Dorsch, S.; McCluskey, A.; Schurr, K.; Graham, P.L.; Cao, Z.; Shepherd, R.; Tyson, S. Bobath therapy is inferior to task-specific training and not superior to other interventions in improving lower limb activities after stroke: A systematic review. J. Physiother. 2020, 66, 225–235. [Google Scholar] [CrossRef]
- Hart, J.M.; Kerrigan, D.C.; Fritz, J.M.; Saliba, E.N.; Gansneder, B.; Ingersoll, C.D. Contribution of hamstring fatigue to quadriceps inhibition following lumbar extension exercise. J. Sports Sci. Med. 2006, 5, 70–79. [Google Scholar]
- Madić, D.; Obradović, B.; Golik-Perić, D.; Marinković, D.; Trajković, N.; Gojković, Z. The isokinetic strength profile of semi-professional soccer players according to low back pain. J. Back Musculoskelet. Rehabil. 2020, 33, 501–506. [Google Scholar] [CrossRef]
- Afonso, J.; Clemente, F.M.; Nakamura, F.Y.; Morouço, P.; Sarmento, H.; Inman, R.A.; Ramirez-Campillo, R. The Effectiveness of Post-exercise Stretching in Short-Term and Delayed Recovery of Strength, Range of Motion and Delayed Onset Muscle Soreness: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Physiol. 2021, 12, 677581. [Google Scholar] [CrossRef]
- Freitas, S.R.; Mendes, B.; Le Sant, G.; Andrade, R.J.; Nordez, A.; Milanovic, Z. Can chronic stretching change the muscle-tendon mechanical properties? A review. Scand. J. Med. Sci. Sports 2018, 28, 794–806. [Google Scholar] [PubMed]
- Miyamoto, N.; Kimura, N.; Hirata, K. Non-uniform distribution of passive muscle stiffness within hamstring. Scand. J. Med. Sci. Sports 2020, 30, 1729–1738. [Google Scholar] [CrossRef]
- Russell, A.; Choi, B.; Robinson, D.; Penailillo, L.; Earp, J.E. Acute and Chronic Effects of Static Stretching on Intramuscular Hamstring Stiffness. Scand. J. Med. Sci. Sports 2024, 34, e14670. [Google Scholar] [CrossRef] [PubMed]
- Hatano, G.; Suzuki, S.; Matsuo, S.; Kataura, S.; Yokoi, K.; Fukaya, T.; Fujiwara, M.; Asai, Y.; Iwata, M. Hamstring Stiffness Returns More Rapidly After Static Stretching Than Range of Motion, Stretch Tolerance, and Isometric Peak Torque. J. Sport Rehabil. 2019, 28, 325–331. [Google Scholar] [CrossRef]
- Reid, D.A.; McNair, P.J. Passive force, angle, and stiffness changes after stretching of hamstring muscles. Med. Sci. Sports Exerc. 2004, 36, 1944–1948. [Google Scholar] [CrossRef]
- Miranda, H.; De Freitas, F.H.; De Oliveira, A.A.; Dos Santos Ribeiro, J.S.; De Castro, J.B.P.; Alvarenga, R.L.; Willardson, J.M. Effect of Different Numbers of Interset Antagonist Proprioceptive Neuromuscular Facilitation Stretching on the Total Number of Repetitions for the Agonists. Int. J. Exerc. Sci. 2022, 15, 498–506. [Google Scholar] [CrossRef]
- Vanderthommen, M.; Triffaux, M.; Demoulin, C.; Crielaard, J.M.; Croisier, J.L. Alteration of muscle function after electrical stimulation bout of knee extensors and flexors. J. Sports Sci. Med. 2012, 11, 592–599. [Google Scholar]
EME Group (n = 21) | PNF Group (n = 22) | CT Group (n = 22) | p Value | |
---|---|---|---|---|
Age (years) | 23.45 ± 3.92 | 21.89 ± 3.58 | 23.71 ± 5.44 | 0.338 ‡ |
Gender (male) | 16 (76.19%) | 16 (72.72%) | 13 (59.09%) | 0.435 ƶ |
Height (m) | 1.77 ± 0.09 | 1.77 ± 0.10 | 1.74 ± 0.09 | 0.647 * |
Weight (kg) | 71.95 ± 14.59 | 72.33 ± 15.58 | 68.74 ± 8.10 | 0.614 * |
Body Mass Index (BMI) (kg/m2) | 22.77 ± 2.91 | 22.22 ± 3.07 | 23.64 ± 2.33 | 0.257 * |
Dominance (right) | 16 (76.19%) | 20 (90.90%) | 22 (100%) | 0.040 ƶ |
IPAQ | ||||
Moderate | 11 (52.38%) | 5 (22.73%) | 6 (27.27%) | 0.013 ƶ |
High | 10 (47.62%) | 17 (77.27%) | 16 (72.73%) |
Descriptive Data | Within-Groups Effect | Between-Groups Effect | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Pre-Test Mean ± SD Median [Interquartile Range] | Post-Test Mean ± SD Median [Interquartile Range] | Follow-Up Mean ± SD Median [Interquartile Range] | Post-Test vs. Pre-Test | Follow-Up vs. Pre-Test | Post-Test | Follow-Up | ||||||
p Value | Effect Size | p Value | Effect Size | p Value | p Value (Only If Significant)–Effect Size | p Value | p Value (Only If Significant)–Effect Size | ||||||
AKE test [°] | R | EME | 46.85 ± 8.53 | 62.89 ± 9.47 | 59.74 ± 8.89 | <0.001 § | 1.527 | 0.002 § | 1.234 | 0.305 ‡ | EME-CT 0.622 | 0.429 ‡ | EME-CT 0.394 |
50 [30–60] | 65 [50–80] | 60 [50–80] | |||||||||||
PNF | 51.11 ± 8.14 | 57.50 ± 8.45 | 62.78 ± 10.74 | 0.067 § | 0.817 | <0.001 § | 1.561 | PNF-CT 0.015 | PNF-CT 0.687 | ||||
50 [40–70] | 60 [40–70] | 62.5 [40–80] | |||||||||||
CT | 53.10 ± 7.15 | 57.62 ± 7.35 | 56.66 ± 6.58 | 0.135 § | 0.552 | 0.244 § | 0.541 | EME-PNF 0.601 | EME-PNF 0.308 | ||||
55 [40–65] | 55 [50–80] | 56 [50–80] | |||||||||||
L | EME | 47.10 ± 8.71 | 63.16 ± 10.03 | 62.63 ± 6.32 | <0.001 § | 1.326 | <0.001 § | 1.704 | 0.032 ‡ | EME-CT 0.016 #–0.809 | 0.456 ‡ | EME-CT 0.785 | |
50 [30–60] | 65 [40–80] | 60 [50–75] | |||||||||||
PNF | 50.56 ± 7.05 | 59.44 ± 7.83 | 63.89 ± 8.67 | 0.003 § | 1.083 | <0.001 § | 1.444 | PNF-CT 0.067 #–0.481 | PNF-CT 0.835 | ||||
50 [40–70] | 60 [40–70] | 62.5 [50–80] | |||||||||||
CT | 49.05 ± 7.68 | 55.24 ± 9.55 | 56.29 ± 9.52 | 0.651 § | 0.524 | 0.124 § | 0.76 | EME-PNF 0.248 #–0.413 | EME-PNF 0.166 | ||||
50 [30–60] | 50 [40–80] | 55 [30–70] | |||||||||||
SLR test [°] | R | EME | 61.32 ± 7.23 | 80.26 ± 6.97 | 80.26 ± 7.35 | <0.001 § | 1.92 | <0.001 § | 2.09 | 0.243 ‡ | EME-CT 1.316 | 0.151 ‡ | EME-CT 1.336 |
60 [50–75] | 80 [70–90] | 80 [70–90] | |||||||||||
PNF | 61.94 ± 9.87 | 75.83 ± 9.89 | 76.67 ± 9.24 | 0.008 § | 1.123 | 0.001 § | 1.185 | PNF-CT 0.661 | PNF-CT 0.729 | ||||
60 [40–80] | 77.5 [50–90] | 80 [50–90] | |||||||||||
CT | 64.29 ± 6.57 | 69.52 ± 9.20 | 70.71 ± 6.94 | 0.180 § | 0.568 | 0.102 § | 0.925 | EME-PNF 0.518 | EME-PNF 0.430 | ||||
65 [45–70] | 70 [50–85] | 70 [55–85] | |||||||||||
L | EME | 57.90 ± 9.33 | 78.95 ± 7.37 | 78.95 ± 7.37 | <0.001 § | 1.983 | <0.001 § | 2.658 | 0.098 ‡ | EME-CT 0.732 | 0.821 ‡ | EME-CT 0.787 | |
60 [40–75] | 80 [70–95] | 80 [70–90] | |||||||||||
PNF | 61.94 ± 8.07 | 78.61 ± 9.82 | 77.22 ± 8.26 | <0.001 § | 2.028 | 0.001 § | 1.436 | PNF-CT 0.629 | PNF-CT 0.568 | ||||
60 [50–85] | 80 [60–90] | 80 [60–90] | |||||||||||
CT | 63.57 ± 5.04 | 71.90 ± 11.45 | 71.90 ± 10.30 | 0.092 § | 0.728 | 0.080 § | 0.809 | EME-PNF 0.039 | EME-PNF 0.221 | ||||
65 [50–70] | 70 [50–90] | 70 [60–90] |
Descriptive Data | Within-Groups Effect | Between-Groups Effect | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Pre-Test Mean ± SD Median [Interquartile Range] | Post-Test Mean ± SD Median [Interquartile Range] | Follow-Up Mean ± SD Median [Interquartile Range] | Post-Test vs. Pre-Test | Follow-Up vs. Pre-Test | Post-Test | Follow-Up | ||||||
p Value | Effect Size | p Value | Effect Size | p Value | p Value (Only If Significant) Effect Size | p Value | p Value (Only If Significant) Effect Size | ||||||
Maximum flexion of the knee [°] | R | EME | 139.21 ± 13.87 | 143.68 ± 9.40 | 143.16 ± 10.17 | 0.069 § | 0.397 | 0.186 § | 0.468 | 0.302 ‡ | EME-CT 0.375 | 0.777 ‡ | EME-CT 0.044 |
140 [105–165] | 145 [125–160] | 140 [125–160] | |||||||||||
PNF | 141.67 ± 9.39 | 142.11 ± 7.95 | 142.78 ± 6.69 | 0.803 § | 0.057 | 0.453 § | 0.164 | PNF-CT 0.210 | PNF-CT 0.167 | ||||
142.5 [125–160] | 140 [130–160] | 142.5 [130–155] | |||||||||||
CT | 145.00 ± 9.22 | 140.48 ± 7.57 | 141.67 ± 6.58 | 0.076 § | 0.449 | 0.054 § | 0.427 | EME-PNF 0.180 | EME-PNF 0.174 | ||||
150 [120–160] | 140 [130–160] | 130 [130–155] | |||||||||||
L | EME | 135.79 ± 11.93 | 140.53 ± 10.12 | 140.53 ± 9.70 | 0.045 § | 0.774 | 0.086 § | 0.382 | 0.327 ‡ | EME-CT 0.382 | 0.673 ‡ | EME-CT 0.227 | |
135 [115–155] | 140 [120–160] | 140 [125–160] | |||||||||||
PNF | 139.72 ± 11.04 | 139.72 ± 9.15 | 140.28 ± 7.37 | 0.617 § | 0.026 | 0.617 § | 0.073 | PNF-CT 0.309 | PNF-CT 0.231 | ||||
140 [115–160] | 140 [125–160] | 140 [125–155] | |||||||||||
CT | 140.48 ± 9.86 | 137.14 ± 7.35 | 138.57 ± 7.44 | 0.076 § | 0.427 | 0.316 § | 0.297 | EME-PNF 0.084 | EME-PNF 0.029 | ||||
140 [115–165] | 135 [125–155] | 140 [125–155] | |||||||||||
Distance buttock–heel [cm] | R | EME | 13.59 ± 7.96 | 9.74 ± 6.94 | 9.68 ± 7.09 | <0.001 † | 0.779 | <0.001 † | 0.958 | 0.604 * | EME-CT 0.224 | 0.882 * | EME-CT 0.115 |
11.5 [0–33] | 9.5 [0–22] | 11 [0–23] | |||||||||||
PNF | 11.40 ± 6.52 | 9.89 ± 5.81 | 9.42 ± 6.60 | 0.287 † | 0.470 | 0.043 † | 0.666 | PNF-CT 0.222 | PNF-CT 0.168 | ||||
11.5 [0–23] | 10 [0–19.5] | 10 [0–23] | |||||||||||
CT | 10.58 ± 4.67 | 11.14 ± 5.45 | 10.36 ± 4.39 | 0.188 † | 0.436 | 0.862 † | 0.275 | EME-PNF 0.023 | EME-PNF 0.038 | ||||
10 [0–19] | 11 [0–21.5] | 11 [0–18] | |||||||||||
L | EME | 15.08 ± 7.71 | 12.03 ± 7.29 | 11.13 ± 7.02 | <0.001 † | 0.831 | <0.001 † | 0.982 | 0.555 * | EME-CT 0.113 | 0.817 * | EME-CT 0.074 | |
14 [0–29] | 10 [0–24] | 11 [0–26] | |||||||||||
PNF | 12.22 ± 7.57 | 11.39 ± 6.91 | 10.28 ± 7.05 | 0.999 † | 0.245 | 0.089 † | 0.613 | PNF-CT 0.228 | PNF-CT 0.205 | ||||
13.75 [0–28] | 11.5 [0–25] | 11 [0–26] | |||||||||||
CT | 11.79 ± 5.70 | 12.71 ± 5.69 | 11.60 ± 5.41] | 0.922 † | 0.226 | 0.999 † | 0.051 | EME-PNF 0.090 | EME-PNF 0.121 | ||||
12 [0–24] | 13 [0–23] | 13 [0–21] |
Descriptive Data | Within-Groups Effect | Between-Groups Effect | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Pre-Test Mean ± SD Median [Interquartile Range] | Post-Test Mean ± SD Median [Interquartile Range] | Follow-Up Mean ± SD Median [Interquartile Range] | Post-Test vs. Pre-Test | Follow-Up vs. Pre-Test | Post-Test | Follow-Up | ||||||
p Value | Effect Size | p Value | Effect Size | p Value | p Value (Only If Significant) Effect Size | p Value | p Value (Only If Significant) Effect Size | ||||||
Oscillation frequency [Hz] | R | EME | 17.48 ± 1.59 | 18.63 ± 1.58 | 18.18 ± 1.48 | 0.001 † | 0.728 | 0.084 † | 0.285 | 0.172 * | EME-CT 0.597 | 0.163 * | EME-CT 0.401 |
17.4 [14.6–21.1] | 18.7 [16.2–22.5] | 18.5 [15.4–20.9] | |||||||||||
PNF | 17.02 ± 1.90 | 17.39 ± 2.04 | 17.12 ± 2.27 | 0.483 † | 0.181 | 0.999 † | 0.119 | PNF-CT 0.047 | PNF-CT 0.122 | ||||
16.9 [13.4–21.5] | 17.5 [13.5–20.8] | 17.2 [12.6–20.4] | |||||||||||
CT | 16.93 ± 2.14 | 17.49 ± 2.19 | 17.40 ± 2.32 | 0.095 † | 0.256 | 0.290 † | 0.203 | EME-PNF 0.680 | EME-PNF 0.553 | ||||
17.1 [13.0–20.9] | 17.9 [13.1–20.9] | 17.5 [13.4–21.9] | |||||||||||
L | EME | 17.34 ± 1.40 | 18.19 ± 1.54 | 17.17 ± 1.40 | 0.005 † | 0.552 | 0.999 † | 0.121 | 0.177 * | EME-CT 0.916 | 0.346 * | EME-CT 0.369 | |
17.6 [15.3–20.1] | 17.3 [15.2–20.3] | 17.2 [14.4–19.9] | |||||||||||
PNF | 16.64 ± 2.16 | 16.86 ± 1.65 | 16.52 ± 2.20 | 0.999 † | 0.133 | 0.999 † | 0.055 | PNF-CT 0.160 | PNF-CT 0.009 | ||||
16.6 [12.4–20.6] | 16.9 [13.1–19.9] | 16.6 [12.1–19.9] | |||||||||||
CT | 16.96 ± 2.07 | 16.57 ± 1.97 | 16.50 ± 2.15 | 0.560 † | 0.198 | 0.231 † | 0.214 | EME-PNF 0.833 | EME-PNF 0.353 | ||||
16.5 [12.8–21.2] | 16.6 [12.9–20.2] | 16.7 [12.4–20.5] | |||||||||||
Decrement [arbitrary unit] | R | EME | 1.29 ± 0.14 | 1.28 ± 0.17 | 1.29 ± 0.16 | 0.702 † | 0.059 | 0.999 † | 0.000 | 0.159 * | EME-CT 0.166 | 0.473 * | EME-CT 0.352 |
1.26 [1.1–1.6] | 1.29 [1.0–1.6] | 1.21 [1.1–1.5] | |||||||||||
PNF | 1.24 ± 0.17 | 1.23 ± 0.18 | 1.27 ± 0.15 | 0.921 † | 0.056 | 0.300 † | 0.200 | PNF-CT 0.108 | PNF-CT 0.241 | ||||
1.29 [1.0–1.6] | 1.21 [1.0–1.7] | 1.20 [1.1–1.5] | |||||||||||
CT | 1.24 ± 0.18 | 1.25 ± 0.19 | 1.23 ± 0.18 | 0.999 † | 0.053 | 0.999 † | 0.056 | EME-PNF 0.286 | EME-PNF 0.129 | ||||
1.25 [0.9–1.6] | 1.28 [0.8–1.6] | 1.20 [0.9–1.7] | |||||||||||
L | EME | 1.28 ± 0.17 | 1.30 ± 0.17 | 1.30 ± 0.16 | 0.900 † | 0.118 | 0.882 † | 0.125 | 0.428 * | EME-CT 0.431 | 0.514 * | EME-CT 0.399 | |
1.29 [1.0–1.6] | 1.24 [1.1–1.7] | 1.24 [1.0–1.6] | |||||||||||
PNF | 1.23 ± 0.18 | 1.24 ± 0.17 | 1.27 ± 0.19 | 0.999 † | 0.056 | 0.594 † | 0.211 | PNF-CT 0.108 | PNF-CT 0.211 | ||||
1.21 [1.0–1.7] | 1.24 [1.0–1.6] | 1.29 [0.9–1.7] | |||||||||||
CT | 1.25 ± 0.19 | 1.22 ± 0.20 | 1.23 ± 0.19 | 0.892 † | 0.150 | 0.900 † | 0.105 | EME-PNF 0.353 | EME-PNF 0.171 | ||||
1.28 [0.8–1.6] | 1.21 [1.0–1.7] | 1.19 [1.0–1.7] | |||||||||||
Stiffness [N/m] | R | EME | 328.88 ± 36.57 | 354.24 ± 37.10 | 342.76 ± 43.46 | 0.002 † | 0.684 | 0.207 † | 0.319 | 0.062 * | EME-CT 0.811 | 0.102 * | EME-CT 0.628 |
333 [261–399] | 349 [292–449] | 341 [264–434] | |||||||||||
PNF | 314.56 ± 54.05 | 320.74 ± 53.11 | 317.95 ± 54.55 | 0.899 † | 0.116 | 0.914 † | 0.062 | PNF-CT 0.058 | PNF-CT 0.110 | ||||
307 [229–452] | 311 [227–440] | 311 [198–422] | |||||||||||
CT | 314.57 ± 44.27 | 317.71 ± 51.74 | 311.95 ± 54.06 | 0.921 † | 0.061 | 0.834 † | 0.048 | EME-PNF 0.731 | EME-PNF 0.503 | ||||
314 [219–386] | 332 [291–394] | 330 [199–414] | |||||||||||
L | EME | 324.71 ± 34.33 | 345.53 ± 35.17 | 326.29 ± 41.10 | 0.005 † | 0.592 | 0.999 † | 0.038 | 0.102 * | EME-CT 1.169 | 0.153 * | EME-CT 0.629 | |
320 [278–396] | 341 [263–404] | 327 [252–445] | |||||||||||
PNF | 307.32 ± 52.62 | 312.42 ± 41.62 | 307.42 ± 53.76 | 0.899 † | 0.123 | 0.999 † | 0.002 | PNF-CT 0.359 | PNF-CT 0.186 | ||||
300 [195–401] | 314 [214–410] | 316 [191–414] | |||||||||||
CT | 305.10 ± 48.03 | 296.29 ± 48.10 | 297.87 ± 48.86 | 0.587 † | 0.183 | 0.900 † | 0.148 | EME-PNF 0.859 | EME-PNF 0.394 | ||||
318 [213–420] | 296 [199–376] | 305 [187–371] |
Descriptive Data | Within-Groups Effect | Between-Groups Effect | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Pre-Test Mean ± SD Median [Interquartile Range] | Post-Test Mean ± SD Median [Interquartile Range] | Follow-Up Mean ± SD Median [Interquartile Range] | Post-Test vs. Pre-test | Follow-Up vs. Pre-test | Post-Test | Follow-Up | ||||||
p Value | Effect Size | p Value | Effect Size | p Value | p Value (Only If Significant)–Effect Size | p Value | p Value (Only If Significant)–Effect Size | ||||||
Oscillation frequency [Hz] | R | EME | 15.68 ± 0.89 | 15.53 ± 1.12 | 15.28 ± 1.48 | 0.999 † | 0.134 | 0.268 † | 0.27 | 0.135 * | EME-CT 0.704 | 0.205 * | EME-CT 0.409 |
15.8 [14.0–17.3] | 15.6 [13.5–17.5] | 15.4 [12.9–17.5] | |||||||||||
PNF | 14.75 ± 1.60 | 14.60 ± 1.55 | 14.64 ± 1.71 | 0.999 † | 0.097 | 0.999 † | 0.064 | PNF-CT 0.007 | PNF-CT 0.018 | ||||
14.4 [12.8–19.4] | 14.3 [12.4–18.4] | 17.4 [11.9–18.2] | |||||||||||
CT | 14.86 ± 1.61 | 14.59 ± 1.52 | 14.63 ± 1.69 | 0.582 † | 0.178 | 0.810 † | 0.136 | EME-PNF 0.688 | EME-PNF 0.425 | ||||
15.1 [11.8–17.4] | 14.6 [12.3–17.3] | 15.6 [11.9–17.3] | |||||||||||
L | EME | 15.10 ± 0.94 | 14.85 ± 1.22 | 14.59 ± 1.03 | 0.472 † | 0.205 | 0.059 † | 0.495 | 0.302 * | EME-CT 0.492 | 0.421 * | EME-CT 0.363 | |
15.3 [13.3–16.3] | 14.0 [13.5–17.1] | 14.4 [12.8–16.6] | |||||||||||
PNF | 14.65 ± 1.24 | 14.27 ± 1.44 | 14.33 ± 1.39 | 0.322 † | 0.264 | 0.229 † | 0.23 | PNF-CT 0.008 | PNF-CT 0.135 | ||||
14.6 [12.7–17.1] | 13.9 [12.3–17.3] | 14.3 [12.3–17.3] | |||||||||||
CT | 14.45 ± 1.63 | 14.26 ± 1.18 | 14.14 ± 1.42 | 0.999 † | 0.161 | 0.232 † | 0.218 | EME-PNF 0.485 | EME-PNF 0.218 | ||||
14.3 [11.5–17.1] | 14.2 [12.2–16.8] | 14.4 [12.0–16.9] | |||||||||||
Decrement [arbitrary unit] | R | EME | 1.33 ± 0.19 | 1.43 ± 0.20 | 1.35 ± 0.16 | 0.095 † | 0.5 | 0.999 † | 0.125 | 0.016 * | EME-CT 0.005 *–0.923 | 0.424 * | EME-CT 0 0.399 |
1.32 [1.1–1.7] | 1.45 [1.0–1.7] | 1.36 [1.0–1.6] | |||||||||||
PNF | 1.30 ± 0.17 | 1.27 ± 0.20 | 1.32 ± 0.19 | 0.999 † | 0.15 | 0.999 † | 0.105 | PNF-CT 0.513 *–0.103 | PNF-CT 0.211 | ||||
1.24 [1.1–1.6] | 1.21 [0.8–1.6] | 1.28 [1.0–1.6] | |||||||||||
CT | 1.28 ± 0.23 | 1.25 ± 0.19 | 1.28 ± 0.22 | 0.939 † | 0.158 | 0.999 † | 0.136 | EME-PNF 0.038 *–0.800 | EME-PNF 0.171 | ||||
1.30 [0.7–1.6] | 1.26 [1.0–1.6] | 1.27 [0.8–1.7] | |||||||||||
L | EME | 1.38 ± 0.14 | 1.45 ± 0.17 | 1.43 ± 0.19 | 0.069 † | 0.412 | 0.388 † | 0.263 | 0.088 * | EME-CT 0.433 | 0.488 * | EME-CT 0.370 | |
1.35 [1.2–1.8] | 1.48 [1.0–1.7] | 1.39 [1.1–1.9] | |||||||||||
PNF | 1.34 ± 0.19 | 1.34 ± 0.22 | 1.39 ± 0.24 | 0.999 † | 0 | 0.538 † | 0.208 | PNF-CT 0.087 | PNF-CT 0.167 | ||||
1.33 [1.0–1.7] | 1.37 [0.8–1.8] | 1.42 [0.9–1.9] | |||||||||||
CT | 1.36 ± 0.28 | 1.36 ± 0.24 | 1.35 ± 0.24 | 0.999 † | 0 | 0.999 † | 0.042 | EME-PNF 0.560 | EME-PNF 0.185 | ||||
1.34 [0.8–2.0] | 1.37 [1.0–1.9] | 1.27 [1.0–2.1] | |||||||||||
Stiffness [N/m] | R | EME | 280.94 ± 21.68 | 279.77 ± 30.34 | 282.76 ± 31.25 | 0.999 § | 0.039 | 0.899 § | 0.058 | 0.011 ‡ | EME-CT 0.008 #–0.742 | 0.032 ‡ | EME-CT 0.009 #–0.638 |
277 [248–334] | 280 [239–340] | 282 [234–334] | |||||||||||
PNF | 267.90 ± 38.29 | 261.21 ± 35.40 | 263.32 ± 37.45 | 0.999 § | 0.189 | 0.999 § | 0.122 | PNF-CT 0.782 #–0.135 | PNF-CT 0.999 #–0.034 | ||||
265 [224–394] | 263 [205–356] | 259 [204–341] | |||||||||||
CT | 259.81 ± 36.27 | 256.67 ± 31.91 | 262.10 ± 33.43 | 0.999 § | 0.098 | 0.999 § | 0.069 | EME-PNF 0.010 #–0.563 | EME-PNF 0.053 #–0.564 | ||||
266 [175–311] | 259 [184–313] | 330 [189–322] | |||||||||||
L | EME | 279.82 ± 25.42 | 276.53 ± 31.91 | 268.12 ± 29.25 | 0.999 † | 0.103 | 0.240 † | 0.4 | 0.040 * | EME-CT 0.049 *–0.636 | 0.173 * | EME-CT 0.556 | |
288 [226–317] | 274 [222–333] | 265 [214–316] | |||||||||||
PNF | 263.26 ± 22.96 | 253.10 ± 32.93 | 256.16 ± 33.12 | 0.177 † | 0.309 | 0.318 † | 0.214 | PNF-CT 0.575 *–0.169 | PNF-CT 0.140 | ||||
264 [228–305] | 252 [207–313] | 265 [201–321] | |||||||||||
CT | 253.95 ± 32.85 | 258.10 ± 25.73 | 251.76 ± 29.63 | 0.999 † | 0.226 | 0.999 † | 0.074 | EME-PNF 0.024 *–0.723 | EME-PNF 0.383 | ||||
253 [191–308] | 258 [206–330] | 255 [203–314] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Sánchez, C.; Fortún-Rabadán, R.; Carpallo-Porcar, B.; Cordova-Alegre, P.; Espejo-Antúnez, L.; Ortiz-Lucas, M. Effectiveness of Electrical Muscle Elongation and Proprioceptive Neuromuscular Facilitation Programs on Muscle Flexibility and Stiffness in Young Adults with Functional Hamstring Disorder: A Randomized Clinical Trial with 4-Week Follow-Up. Life 2025, 15, 523. https://doi.org/10.3390/life15040523
Jiménez-Sánchez C, Fortún-Rabadán R, Carpallo-Porcar B, Cordova-Alegre P, Espejo-Antúnez L, Ortiz-Lucas M. Effectiveness of Electrical Muscle Elongation and Proprioceptive Neuromuscular Facilitation Programs on Muscle Flexibility and Stiffness in Young Adults with Functional Hamstring Disorder: A Randomized Clinical Trial with 4-Week Follow-Up. Life. 2025; 15(4):523. https://doi.org/10.3390/life15040523
Chicago/Turabian StyleJiménez-Sánchez, Carolina, Rocío Fortún-Rabadán, Beatriz Carpallo-Porcar, Paula Cordova-Alegre, Luis Espejo-Antúnez, and María Ortiz-Lucas. 2025. "Effectiveness of Electrical Muscle Elongation and Proprioceptive Neuromuscular Facilitation Programs on Muscle Flexibility and Stiffness in Young Adults with Functional Hamstring Disorder: A Randomized Clinical Trial with 4-Week Follow-Up" Life 15, no. 4: 523. https://doi.org/10.3390/life15040523
APA StyleJiménez-Sánchez, C., Fortún-Rabadán, R., Carpallo-Porcar, B., Cordova-Alegre, P., Espejo-Antúnez, L., & Ortiz-Lucas, M. (2025). Effectiveness of Electrical Muscle Elongation and Proprioceptive Neuromuscular Facilitation Programs on Muscle Flexibility and Stiffness in Young Adults with Functional Hamstring Disorder: A Randomized Clinical Trial with 4-Week Follow-Up. Life, 15(4), 523. https://doi.org/10.3390/life15040523