Applications and Benefits of Dietary Supplements in Taekwondo: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Selection of Studies
2.2. Data Extraction
2.3. Quality Assessment
2.4. Data Analysis and Synthesis
3. Results
3.1. Included Studies and Study Characteristics
3.2. Risk of Bias
3.3. Caffeine
3.4. Vitamin
3.5. Creatine and Sodium Bicarbonate
3.6. Herbal Supplements
3.7. Amino Acids, Nucleotide, Octacosanol, and Yogurt
4. Discussion
4.1. Impact of Dietary Supplements on Taekwondo Performance
4.2. Role of Dietary Supplements in Recovery for Taekwondo Sports
4.3. Adverse Reactions of Dietary Supplements
4.4. Interactions Between Different Dietary Supplements
4.5. Methodological Considerations
4.6. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahul, J. Introduction of Technology in the Olympic Sport of Taekwondo: Cementing or Sabotaging the Image of Taekwondo from South Koreas Prospective. Ph.D. Thesis, Seoul National University, Seoul, Republic of Korea, 2012. [Google Scholar]
- Bartel, C.; Coswig, V.S.; Protzen, G.V.; Del Vecchio, F.B. Energy Demands in High-Intensity Intermittent Taekwondo Specific Exercises. PeerJ 2022, 10, e13654. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.-C.; Sung, Y.-C.; Davison, G.; Chen, C.-Y.; Liao, Y.-H. Short-Term High-Dose Vitamin C and E Supplementation Attenuates Muscle Damage and Inflammatory Responses to Repeated Taekwondo Competitions: A Randomized Placebo-Controlled Trial. Int. J. Med. Sci. 2018, 15, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Depiesse, F.; Geyer, H. The Use of Dietary Supplements by Athletes. J. Sports Sci. 2007, 25, S103–S113. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Salar, N.; Santos-Sánchez, G.; Roche, E. Nutritional Ergogenic Aids in Racquet Sports: A Systematic Review. Nutrients 2020, 12, 2842. [Google Scholar] [CrossRef]
- Luo, H.; Tengku Kamalden, T.F.; Zhu, X.; Xiang, C.; Nasharuddin, N.A. Advantages of Different Dietary Supplements for Elite Combat Sports Athletes: A Systematic Review and Bayesian Network Meta-Analysis. Sci. Rep. 2025, 15, 271. [Google Scholar] [CrossRef]
- Merlo, R.; Rodríguez-Chávez, Á.; Gómez-Castañeda, P.E.; Rojas-Jaramillo, A.; Petro, J.L.; Kreider, R.B.; Bonilla, D.A. Profiling the Physical Performance of Young Boxers with Unsupervised Machine Learning: A Cross-Sectional Study. Sports 2023, 11, 131. [Google Scholar] [CrossRef]
- Rinaldi, M.; Nasr, Y.; Atef, G.; Bini, F.; Varrecchia, T.; Conte, C.; Chini, G.; Ranavolo, A.; Draicchio, F.; Pierelli, F.; et al. Biomechanical Characterization of the Junzuki Karate Punch: Indexes of Performance. Eur. J. Sport Sci. 2018, 18, 796–805. [Google Scholar] [CrossRef]
- Fong, S.S.M.; Tsang, W.W.N. Relationship between the Duration of Taekwondo Training and Lower Limb Muscle Strength in Adolescents. Hong Kong Physiother. J. 2012, 30, 25–28. [Google Scholar] [CrossRef]
- Ferrada-Contreras, E.; Bonomini-Gnutzmann, R.; Jorquera-Aguilera, C.; MacmiIlan Kuthe, N.; Peña-Jorquera, H.; Rodríguez-Rodríguez, F. Does Co-Supplementation with Beetroot Juice and Other Nutritional Supplements Positively Impact Sports Performance?: A Systematic Review. Nutrients 2023, 15, 4838. [Google Scholar] [CrossRef]
- Campbell, B.I.; La Bounty, P.M.; Wilborn, C.D. Dietary Supplements Used in Combat Sports. Strength Cond. J. 2011, 33, 50–59. [Google Scholar] [CrossRef]
- Reale, R.; Slater, G.; Burke, L.M. Acute-Weight-Loss Strategies for Combat Sports and Applications to Olympic Success. Int. J. Sports Physiol. Perform. 2017, 12, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Ouergui, I.; Delleli, S.; Bridge, C.A.; Messaoudi, H.; Chtourou, H.; Ballmann, C.G.; Ardigò, L.P.; Franchini, E. Acute Effects of Caffeine Supplementation on Taekwondo Performance: The Influence of Competition Level and Sex. Sci. Rep. 2023, 13, 13795. [Google Scholar] [CrossRef] [PubMed]
- Peeling, P.; Castell, L.M.; Derave, W.; De Hon, O.; Burke, L.M. Sports Foods and Dietary Supplements for Optimal Function and Performance Enhancement in Track-and-Field Athletes. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Santos, V.; Santos, V.; Felippe, L.; Almeida Jr., J.; Bertuzzi, R.; Kiss, M.; Lima-Silva, A. Caffeine Reduces Reaction Time and Improves Performance in Simulated-Contest of Taekwondo. Nutrients 2014, 6, 637–649. [Google Scholar] [CrossRef]
- Lopes-Silva, J.P.; Silva Santos, J.F.D.; Branco, B.H.M.; Abad, C.C.C.; Oliveira, L.F.D.; Loturco, I.; Franchini, E. Caffeine Ingestion Increases Estimated Glycolytic Metabolism during Taekwondo Combat Simulation but Does Not Improve Performance or Parasympathetic Reactivation. PLoS ONE 2015, 10, e0142078. [Google Scholar] [CrossRef]
- Ouergui, I.; Mahdi, N.; Delleli, S.; Messaoudi, H.; Chtourou, H.; Sahnoun, Z.; Bouassida, A.; Bouhlel, E.; Nobari, H.; Ardigò, L.P.; et al. Acute Effects of Low Dose of Caffeine Ingestion Combined with Conditioning Activity on Psychological and Physical Performances of Male and Female Taekwondo Athletes. Nutrients 2022, 14, 571. [Google Scholar] [CrossRef]
- Sun, F.; Siu, A.Y.-S.; Wang, K.; Zhang, B.; Chan, M.-H.; Chan, K.-H.; Kong, P.-S.; Man, K.-Y.; Chow, G.C.-C. Effects of Caffeine on Performances of Simulated Match, Wingate Anaerobic Test, and Cognitive Function Test of Elite Taekwondo Athletes in Hong Kong. Nutrients 2022, 14, 3398. [Google Scholar] [CrossRef]
- Delleli, S.; Ouergui, I.; Messaoudi, H.; Ballmann, C.G.; Ardigò, L.P.; Chtourou, H. Effects of Caffeine Consumption Combined with Listening to Music during Warm-up on Taekwondo Physical Performance, Perceived Exertion and Psychological Aspects. PLoS ONE 2023, 18, e0292498. [Google Scholar] [CrossRef]
- Delleli, S.; Ouergui, I.; Messaoudi, H.; Bridge, C.; Ardigò, L.P.; Chtourou, H. Warm-up Music and Low-Dose Caffeine Enhance the Activity Profile and Psychophysiological Responses during Simulated Combat in Female Taekwondo Athletes. Sci. Rep. 2024, 14, 14302. [Google Scholar] [CrossRef]
- Delleli, S.; Ouergui, I.; Messaoudi, H.; Bridge, C.A.; Ardigò, L.P.; Chtourou, H. Synergetic Effects of a Low Caffeine Dose and Pre-Exercise Music on Psychophysical Performance in Female Taekwondo Athletes. Rev. Artes Marciales Asiát. 2024, 19, 55–70. [Google Scholar] [CrossRef]
- Jung, H.C.; Seo, M.W.; Lee, S.; Jung, S.W.; Song, J.K. Correcting Vitamin D Insufficiency Improves Some but Not All Aspects of Physical Performance During Winter Training in Taekwondo Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.C.; Seo, M.-W.; Lee, S.; Kim, S.W.; Song, J.K. Vitamin D3 Supplementation Reduces the Symptoms of Upper Respiratory Tract Infection during Winter Training in Vitamin D-Insufficient Taekwondo Athletes: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2018, 15, 2003. [Google Scholar] [CrossRef]
- Ribeiro Antonietto, N.; dos Santos, D.A.; Ferreira Costa, K.; Fernandes, J.R.; Carrenho Queiroz, A.C.; Valenzuela Perez, D.I.; Aedo Munoz, E.A.; Miarka, B.; Brito, C.J. Beetroot Extract Improves Specific Performance and Oxygen Uptake in Taekwondo Athletes: A Double-Blind Crossover Study. Ido Mov. Culture. J. Martial Arts Anthropol. 2021, 21, 12–19. [Google Scholar] [CrossRef]
- Khosravi, S.; Ahmadizad, S.; Yekaninejad, M.S.; Karami, M.R.; Djafarian, K. The Effect of Beetroot Juice Supplementation on Muscle Performance during Isokinetic Knee Extensions in Male Taekwondo Athletes. Sci. Sports 2021, 36, e1-483.e7. [Google Scholar] [CrossRef]
- Miraftabi, H.; Avazpoor, Z.; Berjisian, E.; Sarshin, A.; Rezaei, S.; Domínguez, R.; Reale, R.; Franchini, E.; Samanipour, M.H.; Koozehchian, M.S.; et al. Effects of Beetroot Juice Supplementation on Cognitive Function, Aerobic and Anaerobic Performances of Trained Male Taekwondo Athletes: A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 10202. [Google Scholar] [CrossRef]
- Chen, I.-F.; Wu, H.-J.; Chen, C.-Y.; Chou, K.-M.; Chang, C.-K. Branched-Chain Amino Acids, Arginine, Citrulline Alleviate Central Fatigue after 3 Simulated Matches in Taekwondo Athletes: A Randomized Controlled Trial. J. Int. Soc. Sports Nutr. 2016, 13, 28. [Google Scholar] [CrossRef]
- Gaamouri, N.; Zouhal, H.; Hammami, M.; Hackney, A.C.; Abderrahman, A.B.; Saeidi, A.; El Hage, R.; Ounis, O.B. Effects of Polyphenol (Carob) Supplementation on Body Composition and Aerobic Capacity in Taekwondo Athletes. Physiol. Behav. 2019, 205, 22–28. [Google Scholar] [CrossRef]
- Manjarrez-Montes de Oca, R.; Farfán-González, F.; Camarillo-Romero, S.; Tlatempa-Sotelo, P.; Francisco-Argüelles, C.; Kormanowski, A.; González-Gallego, J.; Alvear-Ordenes, I. Effects of Creatine Supplementation in Taekwondo Practitioners. Nutr. Hosp. 2013, 28, 391–399. [Google Scholar] [CrossRef]
- Ghojazadeh, M.; Memarzadeh, A.; Nikniaz, L.; Sohrabnavi, A.; Hoseini, M.; Pourmanaf, H. Effect of Curcumin Supplementation on Muscle Damage, Antioxidant Status and Inflammatory Factors after Successive Simulated Taekwondo Competitions. Sci. Sports 2022, 37, 200–208. [Google Scholar] [CrossRef]
- Wang, T.; Song, J. Fufang Ejiaojiang Improves Taekwondo Athletes’ Antioxidant Capacity. Int. J. Clin. Exp. Med. 2020, 13, 8517–8525. [Google Scholar]
- Karizak, S.Z.; Shahnehzad, M.; Zar, A. Impact of Ginger Supplementation on Serum PGE2, COX2, and IL-6 in Response to Exhaustive Exercise in Female Taekwondo Athletes. Comp. Exerc. 2024, 20, 193–198. [Google Scholar] [CrossRef]
- Riera, J.; Pons, V.; Martinez-Puig, D.; Chetrit, C.; Tur, J.A.; Pons, A.; Drobnic, F. Dietary Nucleotide Improves Markers of Immune Response to Strenuous Exercise under a Cold Environment. J. Int. Soc. Sports Nutr. 2013, 10, 20. [Google Scholar] [CrossRef]
- Lee, S.-H.; Scott, S.D.; Pekas, E.J.; Lee, J.-G.; Park, S.-Y. Improvement of Lipids and Reduction of Oxidative Stress with Octacosanol After Taekwondo Training. Int. J. Sports Physiol. Perform. 2019, 14, 1297–1303. [Google Scholar] [CrossRef]
- Lopes-Silva, J.P.; Da Silva Santos, J.F.; Artioli, G.G.; Loturco, I.; Abbiss, C.; Franchini, E. Sodium Bicarbonate Ingestion Increases Glycolytic Contribution and Improves Performance during Simulated Taekwondo Combat. Eur. J. Sport Sci. 2018, 18, 431–440. [Google Scholar] [CrossRef]
- Kashani, A.; Keshavarz, S.A.; Jafari-Vayghan, H.; Azam, K.; Hozoori, M.; Alinavaz, M.; Djafarian, K. Preventive Effects of Spirulina Platensis on Exercise-Induced Muscle Damage, Oxidative Stress and Inflammation in Taekwondo Athletes: A Randomized Cross-over Trial. Pharm. Sci. 2022, 28, 589–595. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, Y.; Song, G. Effect of Probiotic Yogurt Supplementation (Bifidobacterium animalis ssp. Lactis BB-12) on Gut Microbiota of Female Taekwondo Athletes and Its Relationship with Exercise-Related Psychological Fatigue. Microorganisms 2023, 11, 1403. [Google Scholar] [CrossRef]
- Sarshin, A.; Fallahi, V.; Forbes, S.C.; Rahimi, A.; Koozehchian, M.S.; Candow, D.G.; Kaviani, M.; Khalifeh, S.N.; Abdollahi, V.; Naderi, A. Short-Term Co-Ingestion of Creatine and Sodium Bicarbonate Improves Anaerobic Performance in Trained Taekwondo Athletes. J. Int. Soc. Sports Nutr. 2021, 18, 10. [Google Scholar] [CrossRef]
- Yeon, K.Y.; Kim, S.A.; Kim, Y.H.; Lee, M.K.; Ahn, D.K.; Kim, H.J.; Kim, J.S.; Jung, S.J.; Oh, S.B. Curcumin Produces an Antihyperalgesic Effect via Antagonism of TRPV1. J Dent Res 2010, 89, 170–174. [Google Scholar] [CrossRef]
- Zhao, M.; Xiao, M.; Ying, J.; Qiu, P.; Wu, H.; Tan, Q.; Chen, S.; Zhang, L.; Shi, S.; Li, G.; et al. Efficacy of Fufang E’jiao Jiang in the Treatment of Patients with Qi and Blood Deficiency Syndrome: A Real-World Prospective Multicenter Study with a Patient Registry. Evid.-Based Complement. Altern. Med. 2023, 2023, 3179489. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, M.D.; Zavorsky, G.S.; Smoliga, J.M. The Effects of Pre-Exercise Ginger Supplementation on Muscle Damage and Delayed Onset Muscle Soreness. Phytother. Res. 2015, 29, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Chaouachi, M.; Vincent, S.; Groussard, C. A Review of the Health-Promoting Properties of Spirulina with a Focus on Athletes’ Performance and Recovery. J. Diet. Suppl. 2024, 21, 210–241. [Google Scholar] [CrossRef]
- Blomstrand, E. A Role for Branched-Chain Amino Acids in Reducing Central Fatigue. J. Nutr. 2006, 136, 544S–547S. [Google Scholar] [CrossRef]
- Gil, A. Modulation of the Immune Response Mediated by Dietary Nucleotides. Eur. J. Clin. Nutr. Vol. 2002, 56, S1–S4. [Google Scholar] [CrossRef]
- Zhou, Y.; Cao, F.; Luo, F.; Lin, Q. Octacosanol and Health Benefits: Biological Functions and Mechanisms of Action. Food Biosci. 2022, 47, 101632. [Google Scholar] [CrossRef]
- Alvaro, E.; Andrieux, C.; Rochet, V.; Rigottier-Gois, L.; Lepercq, P.; Sutren, M.; Galan, P.; Duval, Y.; Juste, C.; Doré, J. Composition and Metabolism of the Intestinal Microbiota in Consumers and Non-Consumers of Yogurt. Br. J. Nutr. 2007, 97, 126–133. [Google Scholar] [CrossRef]
- Cooke, M.B.; Catchlove, S.; Tooley, K.L. Examining the Influence of the Human Gut Microbiota on Cognition and Stress: A Systematic Review of the Literature. Nutrients 2022, 14, 4623. [Google Scholar] [CrossRef]
- Lee, S.-H.; Yoon, S.-H.; Jung, Y.; Kim, N.; Min, U.; Chun, J.; Choi, I. Emotional Well-Being and Gut Microbiome Profiles by Enterotype. Sci. Rep. 2020, 10, 20736. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Marques-Jiménez, D.; Refoyo, I.; Del Coso, J.; León-Guereño, P.; Calleja-González, J. Effect of Caffeine Supplementation on Sports Performance Based on Differences Between Sexes: A Systematic Review. Nutrients 2019, 11, 2313. [Google Scholar] [CrossRef]
- Shaw, K.A.; Zello, G.A.; Bandy, B.; Ko, J.; Bertrand, L.; Chilibeck, P.D. Dietary Supplementation for Para-Athletes: A Systematic Review. Nutrients 2021, 13, 2016. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central Nervous System Effects of Caffeine and Adenosine on Fatigue. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2003, 284, R399–R404. [Google Scholar] [CrossRef] [PubMed]
- Barcelos, R.P.; Lima, F.D.; Carvalho, N.R.; Bresciani, G.; Royes, L.F. Caffeine Effects on Systemic Metabolism, Oxidative-Inflammatory Pathways, and Exercise Performance. Nutr. Res. 2020, 80, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Grgic, J. Caffeine and Exercise: What Next? Sports Med. 2019, 49, 1007–1030. [Google Scholar] [CrossRef]
- Wohlgemuth, K.J.; Arieta, L.R.; Brewer, G.J.; Hoselton, A.L.; Gould, L.M.; Smith-Ryan, A.E. Sex Differences and Considerations for Female Specific Nutritional Strategies: A Narrative Review. J. Int. Soc. Sports Nutr. 2021, 18, 27. [Google Scholar] [CrossRef]
- McMahon, N.F.; Leveritt, M.D.; Pavey, T.G. The Effect of Dietary Nitrate Supplementation on Endurance Exercise Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 735–756. [Google Scholar] [CrossRef]
- Thompson, K.G.; Turner, L.; Prichard, J.; Dodd, F.; Kennedy, D.O.; Haskell, C.; Blackwell, J.R.; Jones, A.M. Influence of Dietary Nitrate Supplementation on Physiological and Cognitive Responses to Incremental Cycle Exercise. Respir. Physiol. Neurobiol. 2014, 193, 11–20. [Google Scholar] [CrossRef]
- Fulford, J.; Winyard, P.G.; Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; Jones, A.M. Influence of Dietary Nitrate Supplementation on Human Skeletal Muscle Metabolism and Force Production during Maximum Voluntary Contractions. Pflug. Arch.-Eur. J. Physiol. 2013, 465, 517–528. [Google Scholar] [CrossRef]
- Domínguez, R.; Cuenca, E.; Maté-Muñoz, J.; García-Fernández, P.; Serra-Paya, N.; Estevan, M.; Herreros, P.; Garnacho-Castaño, M. Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Syst. Review. Nutr. 2017, 9, 43. [Google Scholar] [CrossRef]
- Bedrač, L.; Deutsch, L.; Terzić, S.; Červek, M.; Šelb, J.; Ašič, U.; Verstraeten, L.M.G.; Kuščer, E.; Cvetko, F. Towards Precision Sports Nutrition for Endurance Athletes: A Scoping Review of Application of Omics and Wearables Technologies. Nutrients 2024, 16, 3943. [Google Scholar] [CrossRef]
- Jonvik, K.L.; Nyakayiru, J.; Van Loon, L.J.C.; Verdijk, L.B. Can Elite Athletes Benefit from Dietary Nitrate Supplementation? J. Appl. Physiol. 2015, 119, 759–761. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Huai, Y.; Miao, Z.; Qian, A.; Wang, Y. Systems Pharmacology for Investigation of the Mechanisms of Action of Traditional Chinese Medicine in Drug Discovery. Front. Pharmacol. 2019, 10, 743. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, C.; Shen, X.; Liu, Y. The Use of Traditional Chinese Medicines in Relieving Exercise-Induced Fatigue. Front. Pharmacol. 2022, 13, 969827. [Google Scholar] [CrossRef]
- Gołda, J.; Mężyk, J.; Snopkowska, A.; Gacka, P.; Dołęga, M.; Dróżdż, O.; Musialska, D. The Impact of Oral Collagen Supplementation on Joint Function, Muscle Recovery, and Musculoskeletal Health in Athletes: A Narrative Review. J. Educ. Health Sport 2024, 67, 55035. [Google Scholar] [CrossRef]
- Kim, J. Effects of Combined Creatine and Sodium Bicarbonate Supplementation on Soccer-Specific Performance in Elite Soccer Players: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2021, 18, 6919. [Google Scholar] [CrossRef]
- Barber, J.J.; McDermott, A.Y.; McGaughey, K.J.; Olmstead, J.D.; Hagobian, T.A. Effects of Combined Creatine and Sodium Bicarbonate Supplementation on Repeated Sprint Performance in Trained Men. J. Strength Cond. Res. 2013, 27, 252–258. [Google Scholar] [CrossRef]
- Książek, A.; Zagrodna, A.; Słowińska-Lisowska, M. Vitamin D, Skeletal Muscle Function and Athletic Performance in Athletes—A Narrative Review. Nutrients 2019, 11, 1800. [Google Scholar] [CrossRef]
- Constantini, N.W.; Arieli, R.; Chodick, G.; Dubnov-Raz, G. High Prevalence of Vitamin D Insufficiency in Athletes and Dancers. Clin. J. Sport Med. 2010, 20, 368–371. [Google Scholar] [CrossRef]
- Moumou, M.; Mokhtari, I.; Milenkovic, D.; Amrani, S.; Harnafi, H. Carob (Ceratonia siliqua): A Comprehensive Review on Traditional Uses, Chemical Composition, Pharmacological Effects and Toxicology (2002–2022). J. Biol. Act. Prod. Nat. 2023, 13, 179–223. [Google Scholar] [CrossRef]
- Bojarczuk, A.; Dzitkowska-Zabielska, M. Polyphenol Supplementation and Antioxidant Status in Athletes: A Narrative Review. Nutrients 2022, 15, 158. [Google Scholar] [CrossRef]
- Chen, Y.; Michalak, M.; Agellon, L.B. Importance of Nutrients and Nutrient Metabolism on Human Health. Yale J. Biol. Med. 2018, 91, 95–103. [Google Scholar] [PubMed]
- Cicchella, A.; Stefanelli, C.; Massaro, M. Upper Respiratory Tract Infections in Sport and the Immune System Response. A Review. Biol. 2021, 10, 362. [Google Scholar] [CrossRef]
- Higgins, M.; Izadi, A.; Kaviani, M. Antioxidants and Exercise Performance: With a Focus on Vitamin E and C Supplementation. Int. J. Environ. Res. Public Health 2020, 17, 8452. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Jeon, Y.; Lim, J.-Y.; Kim, Y.; Cha, B.; Kim, W. Emerging Regulatory Mechanisms and Functions of Biomolecular Condensates: Implications for Therapeutic Targets. Sig. Transduct. Target Ther. 2025, 10, 4. [Google Scholar] [CrossRef]
- Meeusen, R.; Watson, P. Amino Acids and the Brain: Do They Play a Role in “Central Fatigue”? Int. J. Sport Nutr. Exerc. Metab. 2007, 17, S37–S46. [Google Scholar] [CrossRef]
- Hess, J.R.; Greenberg, N.A. The Role of Nucleotides in the Immune and Gastrointestinal Systems: Potential Clinical Applications. Nutr. Clin. Pract. 2012, 27, 281–294. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Effect of Probiotics Supplementations on Health Status of Athletes. Int. J. Environ. Res. Public Health 2019, 16, 4469. [Google Scholar] [CrossRef]
- Wierzejska, R.E. Dietary Supplements—For Whom? The Current State of Knowledge about the Health Effects of Selected Supplement Use. Int. J. Environ. Res. Public Health 2021, 18, 8897. [Google Scholar] [CrossRef]
- De Souza, J.G.; Del Coso, J.; Fonseca, F.D.S.; Silva, B.V.C.; De Souza, D.B.; Da Silva Gianoni, R.L.; Filip-Stachnik, A.; Serrão, J.C.; Claudino, J.G. Risk or Benefit? Side Effects of Caffeine Supplementation in Sport: A Systematic Review. Eur. J. Nutr. 2022, 61, 3823–3834. [Google Scholar] [CrossRef]
- Golder, S.; Loke, Y.K.; Wright, K.; Norman, G. Reporting of Adverse Events in Published and Unpublished Studies of Health Care Interventions: A Systematic Review. PLoS Med. 2016, 13, e1002127. [Google Scholar] [CrossRef]
- Westergren, T.; Narum, S.; Klemp, M. Biases in Reporting of Adverse Effects in Clinical Trials, and Potential Impact on Safety Assessments in Systematic Reviews and Therapy Guidelines. Basic Clin. Pharma Tox. 2022, 131, 465–473. [Google Scholar] [CrossRef]
- Stahl, W.; Sies, H. Antioxidant Defense: Vitamins E and C and Carotenoids. Diabetes 1997, 46, S14–S18. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Tengku Kamalden, T.F.; Zhu, X.; Xiang, C.; Nasharuddin, N.A. Effects of Different Dietary Supplements on Athletic Performance in Soccer Players: A Systematic Review and Network Meta-Analysis. Journal of the International Society of Sports. Nutrition 2025, 22, 2467890. [Google Scholar] [CrossRef]
- Georgiou, G.D.; Antoniou, K.; Antoniou, S.; Michelekaki, E.A.; Zare, R.; Ali Redha, A.; Prokopidis, K.; Christodoulides, E.; Clifford, T. Effect of Beta-Alanine Supplementation on Maximal Intensity Exercise in Trained Young Male Individuals: A Systematic Review and Meta-Analysis. Int. J. Sport Nutr. Exerc. Metab. 2024, 34, 397–412. [Google Scholar] [CrossRef]
- Elosegui, S.; López-Seoane, J.; Martínez-Ferrán, M.; Pareja-Galeano, H. Interaction Between Caffeine and Creatine When Used as Concurrent Ergogenic Supplements: A Systematic Review. Int. J. Sport Nutr. Exerc. Metab. 2022, 32, 285–295. [Google Scholar] [CrossRef]
- Davis, J.M.; Alderson, N.L.; Welsh, R.S. Serotonin and Central Nervous System Fatigue: Nutritional Considerations. Am. J. Clin. Nutr. 2000, 72, 573S–578S. [Google Scholar] [CrossRef]
- Levy, I.; Attias, S.; Ben Arye, E.; Goldstein, L.; Schiff, E. Interactions between Dietary Supplements in Hospitalized Patients. Intern. Emerg. Med. 2016, 11, 917–927. [Google Scholar] [CrossRef]
- Reichenbach, S.; Sterchi, R.; Scherer, M.; Trelle, S.; Bürgi, E.; Bürgi, U.; Dieppe, P.A.; Jüni, P. Meta-Analysis: Chondroitin for Osteoarthritis of the Knee or Hip. Ann. Intern. Med. 2007, 146, 580–590. [Google Scholar] [CrossRef]
- Ayorinde, A.A.; Williams, I.; Mannion, R.; Song, F.; Skrybant, M.; Lilford, R.J.; Chen, Y.-F. Assessment of Publication Bias and Outcome Reporting Bias in Systematic Reviews of Health Services and Delivery Research: A Meta-Epidemiological Study. PLoS ONE 2020, 15, e0227580. [Google Scholar] [CrossRef]
Study | Dietary Supplement | Dosage | Duration | Participants (Sex) | Physical Characteristics | Level | Results |
---|---|---|---|---|---|---|---|
de Oca et al. (2013) [31] | Creatine | 3.5 g/day | 6 weeks | 10 (men) | 20.0 ± 2.0 years | Amateur | Increased fat mass (p < 0.028) and elevated serum triglyceride concentration (p < 0.037) |
169.0 ± 6.0 cm | |||||||
67.0 ± 9.8 kg | |||||||
Riera et al. (2013) [35] | Nucleotide | 480 mg/day | 30 days | 20 (men) | 21.4 ± 6.3 years | - | Lymphocyte levels were higher (p < 0.0028) |
178.1 ± 8.5 cm | |||||||
73.86 ± 12.6 kg | |||||||
Santos et al. (2014) [17] | Caffeine | 5 mg/kg | Once | 10 (men) | 24.9 ± 7.3 years | - | Improved reaction time (p = 0.004), elevated plasma lactate concentration (p = 0.029 and p = 0.014), and no significant change in combat intensity (p > 0.05) |
175.0 ± 6.0 cm | |||||||
77.2 ± 12.3 kg | |||||||
Lopes-Silva et al. (2015) [18] | Caffeine | 5 mg/kg | Once | 10 (men) | 21.0 ± 4.0 years | International and national levels | Increased estimated glycolytic energy contribution (p = 0.04) |
180.0 ± 8.0 cm | |||||||
71.0 ± 12.9 kg | |||||||
Chen et al. (2016) [29] | Branched-chain amino acids | 0.17 g/kg branched-chain amino acids, 0.05 g/kg arginine and 0.05 g/kg citrulline | Once | 12 (men) | 20.0 ± 0.8 years | International and national levels | Mitigated central fatigue in exercise |
177.0 ± 4.0 cm | |||||||
66.9 ± 5.0 kg | |||||||
Chou et al. (2018) [3] | Vitamin | 2000 mg/day Vitamin C and 1400 U/day Vitamin E | 4 days | 18 (men) | Supplement group: 21.0 ± 0.3 years | International and national levels | Myoglobin levels (p = 0.021), plasma creatine kinase activity (p = 0.017), and hemolysis (p = 0.034) were observed to be lower. |
175.8 ± 2.1 cm | |||||||
67.9 ± 3.0 kg | |||||||
Placebo group: | |||||||
21.3 ± 0.6 years | |||||||
178.1 ± 2.7 cm | |||||||
71.5 ± 3.1 kg | |||||||
Jung et al. (2018a) [24] | Vitamin | 5000 IU/day Vitamin D | 4 weeks | 44 (men = 26, women= 18) | 20.1 ± 0.15 years | - | Anaerobic peak power (p = 0) and isokinetic knee extension strength were improved (p = 0.01). |
177.4 ± 1.36 cm | |||||||
71.0 ± 2.07 kg | |||||||
Jung et al. (2018b) [25] | Vitamin | 5000 IU/day Vitamin D3 | 4 weeks | 25 (men) | 19.9 ± 1.85 years | - | Reducing the symptoms of upper respiratory tract infection during winter training |
181.7 ± 1.17 cm | |||||||
Lopes-Silva et al., 2018 [37] | Sodium bicarbonate | 300 mg/kg | - | 9 (women) | 19.4 ± 2.20 years | National level | Lactate concentration significantly increased (p = 0.04), glycolytic energy system contribution was enhanced (p = 0.01), and total attack time was extended (p = 0.05) |
179.3 ± 3.50 cm | |||||||
70.4 ± 8.9 kg | |||||||
Gaamouri et al. (2019) [30] | Carob | 40 g/day | 6 weeks | 23 (men = 12, women = 11) | 21.9 ± 1.20 years | National level | Body weight was reduced (p < 0.001), and aerobic capacity was improved |
164.0 ± 3.00 cm | |||||||
67.4 ± 17.3 kg | |||||||
Lee et al. (2019) [36] | Octacosanol | 40 mg/day | 6 days | 26 (men) | Supplement group: | National level | Improved lipid profiles and mitigated oxidative stress |
18 ± 1.0 years | |||||||
174.7 ± 1.4 cm | |||||||
66.9 ± 6.7 kg | |||||||
Placebo group: | |||||||
18 ± 1.0 years | |||||||
173.9 ± 6.3 cm | |||||||
66.7 ± 5.7 kg | |||||||
Wang and Song (2020) [33] | Fufang Ejiaojiang | 60 mL/day | 2 months | 90 (men and women) | Supplement group: | - | Enhanced antioxidant capacity, improved blood oxygen transport ability, boosted aerobic exercise performance and overall athletic capability, and alleviated exercise-induced fatigue |
21.13 ± 1.65 years | |||||||
179.65 ± 1.65 cm | |||||||
70.45 ± 2.69 kg | |||||||
Placebo group: | |||||||
21.25 ± 1.71 years | |||||||
177.91 ± 6.34 cm | |||||||
71.43 ± 2.78 kg | |||||||
Antoniett et al., 2021 [26] | Beetroot | 1 g beetroot extract | Once | 12 (men) | 26.8 ± 8.80 years | - | Absolute VO2Peak (p = 0.048) and absolute VO2max (p = 0.044) were higher |
180.0 ± 10.00 cm | |||||||
77.8 ± 11.7 kg | |||||||
Khosravi et al. (2021) [27] | Beetroot | 140 mL/day beetroot juice | 6 days | 12 (men) | 19.2 ± 1.60 years | National level | It enhances bilateral muscle strength during isokinetic contractions and reduces fatigue during knee extensor contractions |
181.5 ± 9.20 cm | |||||||
66.4 ± 9.20 kg | |||||||
Miraftabi et al. (2021) [28] | Beetroot | 60 mL or 120 mL beetroot juice | - | 8 (men) | 20 ± 4 years | - | Improved cognitive function with 60 mL beetroot juice (p < 0.05) |
180 ± 2 cm | |||||||
64.8 ± 4.0 kg | |||||||
Sarshin et al. (2021) [40] | Creatine and sodium bicarbonate | 20 g/day creatine or 0.5 g/kg/day sodium bicarbonate or 20 g/day creatine and 0.5 g/kg/day sodium bicarbonate | 5 days | 40 (men) | 21 ± 1 years | National level | Both creatine and sodium bicarbonate alone improved performance in the Taekwondo Anaerobic Intermittent Kick Test. However, co-ingestion of CR and SB further enhanced mean power compared to either supplement alone |
180.5 ± 7.3 cm | |||||||
72.7 ± 8.6 kg | |||||||
Ghojazadeh et al. (2022) [32] | Curcumin | 4 g/day | 5 days | 18 (men) | 22.27 ± 0.94 years | Provincial level | Reduced levels of creatine kinase, lactate dehydrogenase, and malondialdehyde, along with an increase in total antioxidant capacity (p < 0.05) |
180.05 ± 4.87 cm | |||||||
74.10 ± 8.67 kg | |||||||
Kashani et al. (2022) [38] | Spirulina | 8 g/day | 3 weeks | 18 (men) | - | Reduced plasma levels of lactate dehydrogenase, creatine kinase, and interleukin-6 while significantly increasing plasma total antioxidant capacity, superoxide dismutase, and glutathione peroxidase levels (p < 0.05) | |
Ouergui et al. (2022) [19] | Caffeine | 3 mg/kg | - | 20 (men = 10, women = 10) | 17.5 ± 0.7 years | - | The combination of caffeine ingestion (3 mg·kg−1) and conditioning activity significantly improved agility (p < 0.001), kicking speed (p < 0.001), and psychological states (p < 0.05) |
168 ± 9 cm | |||||||
59.2 ± 10.0 kg | |||||||
Sun et al. (2022) [20] | Caffeine | 200 mg | - | 10 (men = 6, women = 4) | Male: | National level | The reaction time in the Eriksen Flanker Test decreased (p = 0.035), and the peak power and mean power per unit of body weight increased during the Wingate Anaerobic Test (p = 0.018 and 0.042) |
27 ± 2 years | |||||||
174 ± 7 cm | |||||||
71 ± 11 kg | |||||||
Female: | |||||||
25 ± 3 years | |||||||
162 ± 6 cm | |||||||
58 ± 1 kg | |||||||
Delleli et al. (2023) [21] | Caffeine | 3 mg/kg | - | 16 (men) | 18.25 ± 0.75 years | National level | In the taekwondo-specific agility test, 10 s frequency speed of kick test, and multiple frequency speed of kick test, the performance under the caffeine combined with music condition was significantly better than that under the other conditions (p < 0.05) |
182 ± 6.84 cm | |||||||
60.92 ± 8.96 kg | |||||||
Ouergui et al. (2023) [13] | Caffeine | 3 mg/kg | - | 52 (men = 26, women = 26) | - | Elite female athletes demonstrated significantly better performance in the taekwondo-specific agility test, 10 s frequency speed of kick test, and multiple frequency speed of kick test compared to sub-elite female athletes (p < 0.001). Elite male athletes showed significantly better performance in the 10 s frequency speed of the kick test (p = 0.003) and multiple frequency speed of the kick test (p < 0.01) compared to sub-elite male athletes | |
Zhu et al., (2023) [39] | Yogurt | Up to 250 mL/day | 8 weeks | 51 (women) | Supplement group: | International level | The Athlete Burnout Questionnaire scores were higher (p < 0.05) |
22.10 ± 0.88 years | |||||||
Placebo group: | |||||||
22.50 ± 0.83 years | |||||||
Delleli et al. (2024a) [22] | Caffeine | 3 mg/kg | - | 16 (women) | 17–19 years | - | The caffeine with music condition significantly reduced skip and pause times while increasing attack time (p < 0.05). It also led to a significant increase in the number of single attacks, combined attacks, counter-attacks (p < 0.001), and defensive actions (p < 0.05). The mean and peak heart rates were also lower under the CAF + M conditions (p < 0.05). Post-combat, the CAF + M condition resulted in higher levels of felt arousal, emotional ratings, and physical enjoyment, while perceived exertion was lower (p < 0.05) |
152–187 cm | |||||||
43–59 kg | |||||||
Delleli et al. (2024b) [23] | Caffeine | 3 mg/kg | - | 16 (women) | 17.69 ± 0.60 years | - | The condition combining caffeine with music showed the most superior performance in the 10 s frequency speed of the kick test and its multiple versions. Additionally, it elicited the most favorable psychophysiological responses, including perceived exertion, physical enjoyment, feeling scale, and felt arousal scale (p < 0.05) |
166.81 ± 10.12 cm | |||||||
49.75 ± 5.36 kg | |||||||
Karizak, et al., (2024) [34] | Ginger | 2000 mg/day | 24 days | 24 (women) | 19.75 ± 2.03 years | Semi-professional | Serum levels of prostaglandin E2 (p < 0.001), cyclooxygenase-2 (p = 0.003), and interleukin-6 (p = 0.006) demonstrated a significant reduction |
160 ± 6 cm | |||||||
53.99 ± 7.49 kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, M.-Y.; Liang, J.; Jo, Y.-J.; Eom, S.-H.; Kim, C.-H. Applications and Benefits of Dietary Supplements in Taekwondo: A Systematic Review. Life 2025, 15, 559. https://doi.org/10.3390/life15040559
Shu M-Y, Liang J, Jo Y-J, Eom S-H, Kim C-H. Applications and Benefits of Dietary Supplements in Taekwondo: A Systematic Review. Life. 2025; 15(4):559. https://doi.org/10.3390/life15040559
Chicago/Turabian StyleShu, Meng-Yuan, Jian Liang, Young-Jin Jo, Seon-Ho Eom, and Chul-Hyun Kim. 2025. "Applications and Benefits of Dietary Supplements in Taekwondo: A Systematic Review" Life 15, no. 4: 559. https://doi.org/10.3390/life15040559
APA StyleShu, M.-Y., Liang, J., Jo, Y.-J., Eom, S.-H., & Kim, C.-H. (2025). Applications and Benefits of Dietary Supplements in Taekwondo: A Systematic Review. Life, 15(4), 559. https://doi.org/10.3390/life15040559