Effect of Intraoperative Nefopam on Postoperative Analgesia in Living Liver Donors Undergoing Laparoscopic Hepatectomy with Transversus Abdominis Plane Block: A Propensity Score-Matched Study
Abstract
1. Introduction
2. Methods
2.1. Ethical Considerations
2.2. Participant Population
2.3. General Anesthesia and Intravenous Opioid Analgesia
2.4. Surgery
2.5. TAP Block
2.6. Intravenous Nefopam Infusion
2.7. Assessment of Primary and Secondary Outcomes
2.8. Data Collection
2.9. Statistical Analysis
3. Results
3.1. Demographic Features of the Study Population
3.2. Postoperative Pain, Opioid Consumption, and Complications
3.3. Nefopam-Related Side Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, Z. Laparoscopic vs. open surgery: A comparative analysis of wound infection rates and recovery outcomes. Int. Wound J. 2024, 21, e14474. [Google Scholar] [CrossRef] [PubMed]
- Cesur, S.; Hu, Y.R.K.L.; Aksu, C.; Ku, A. Bilateral versus unilateral erector spinae plane block for postoperative analgesia in laparoscopic cholecystectomy: A randomized controlled study. Braz. J. Anesthesiol. 2023, 73, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Cianci, P.; Tartaglia, N.; Fersini, A. Pain control after laparoscopic cholecystectomy. A prospective study. Ann. Ital. Chir. 2020, 91, 611–616. [Google Scholar] [PubMed]
- Kim, Y.J.; Hwang, S.Y.; Kim, H.S. Effect of abdominal binder on shoulder pain after laparoscopic gynecologic surgery: A randomized, controlled trial. Medicine 2023, 102, e34127. [Google Scholar] [CrossRef]
- Cho, C.W.; Choi, G.S.; Kim, J.M.; Rhu, J.; Kwon, C.H.D.; Joh, J.W. Postoperative Health Status and Quality of Life After Pure Laparoscopic Donor Hepatectomy for Living Donor Liver Transplantation. Ann. Transplant. 2022, 27, e935611. [Google Scholar] [CrossRef]
- Bang, Y.J.; Jun, J.H.; Gwak, M.S.; Ko, J.S.; Kim, J.M.; Choi, G.S.; Joh, J.W.; Kim, G.S. Postoperative outcomes of purely laparoscopic donor hepatectomy compared to open living donor hepatectomy: A preliminary observational study. Ann. Surg. Treat. Res. 2021, 100, 235–245. [Google Scholar] [CrossRef]
- Kang, R.A.; Ko, J.S. Living liver donor pain management. Curr. Opin. Organ Transplant. 2023, 28, 391–396. [Google Scholar] [CrossRef]
- Malik, A.; Pal, A. Analgesia for donor hepatectomy: Recent perspectives. Apollo Med. 2024, 21, 369–373. [Google Scholar] [CrossRef]
- Coussens, N.P.; Sittampalam, G.S.; Jonson, S.G.; Hall, M.D.; Gorby, H.E.; Tamiz, A.P.; McManus, O.B.; Felder, C.C.; Rasmussen, K. The opioid crisis and the future of addiction and pain therapeutics. J. Pharmacol. Exp. Ther. 2019, 371, 396–408. [Google Scholar] [CrossRef]
- Hwang, W.-J.; Koo, J.M.; Yang, A.R.; Park, Y.H.; Chae, M.S. Comparison of analgesic effectiveness between nefopam and propacetamol in living kidney donors following rectus sheath block after hand-assisted living donor nephrectomy: A prospective, randomized controlled trial. BMC Anesthesiol. 2024, 24, 219. [Google Scholar] [CrossRef]
- Kutzler, H.L.; Lichvar, A.B.; Quan, D.; Bowman, L.J.; Diamond, A.; Doligalski, C.; Griffin, T.; Melaragno, J.; Sweiss, H.; Fleming, J. A systematic review of opioid use and multimodal strategies in solid organ transplant recipients and living donors. Pharmacotherapy 2023, 43, 514–551. [Google Scholar] [CrossRef] [PubMed]
- Kang, R.; Chin, K.J.; Kim, G.S.; Gwak, M.S.; Kim, J.M.; Choi, G.S.; Choi, S.J.; Lee, S.W.; Ko, J.S. Bilateral continuous erector spinae plane block using a programmed intermittent bolus regimen versus intrathecal morphine for postoperative analgesia in living donor laparoscopic hepatectomy: A randomized controlled trial. J. Clin. Anesth. 2021, 75, 110479. [Google Scholar] [PubMed]
- Kang, R.; Lee, S.; Kim, G.S.; Jeong, J.S.; Gwak, M.S.; Kim, J.M.; Choi, G.S.; Cho, Y.J.; Ko, J.S. Comparison of Analgesic Efficacy of Erector Spinae Plane Block and Posterior Quadratus Lumborum Block in Laparoscopic Liver Resection: A Randomized Controlled Trial. J. Pain Res. 2021, 14, 3791–3800. [Google Scholar] [PubMed]
- Dowell, D.; Haegerich, T.M.; Chou, R. CDC guideline for prescribing opioids for chronic pain—United States, 2016. JAMA 2016, 315, 1624–1645. [Google Scholar] [CrossRef]
- Fuller, R.W.; Snoddy, H.D. Evaluation of nefopam as a monoamine uptake inhibitor in vivo in mice. Neuropharmacology 1993, 32, 995–999. [Google Scholar]
- Kim, S.; Huh, K.; Roh, Y.; Oh, Y.; Park, J.; Choi, Y. Nefopam as an adjunct to intravenous patient-controlled analgesia after renal transplantation: A randomised trial. Acta Anaesthesiol. Scand. 2015, 59, 1068–1075. [Google Scholar]
- Zhao, T.; Shen, Z.; Sheng, S. The efficacy and safety of nefopam for pain relief during laparoscopic cholecystectomy: A meta-analysis. Medicine 2018, 97, e0089. [Google Scholar]
- Association of Anaesthetists of Great Britain & Ireland; Obstetric Anaesthetists’ Association; Regional Anaesthesia UK. Regional anaesthesia and patients with abnormalities of coagulation: The Association of Anaesthetists of Great Britain & Ireland The Obstetric Anaesthetists’ Association Regional Anaesthesia UK. Anaesthesia 2013, 68, 966–972. [Google Scholar]
- Cauchy, F.; Schwarz, L.; Scatton, O.; Soubrane, O. Laparoscopic liver resection for living donation: Where do we stand? World J. Gastroenterol. 2014, 20, 15590–15598. [Google Scholar] [CrossRef]
- Tran, D.Q.; Bravo, D.; Leurcharusmee, P.; Neal, J.M. Transversus Abdominis Plane Block: A Narrative Review. Anesthesiology 2019, 131, 1166–1190. [Google Scholar]
- Girard, P.; Chauvin, M.; Verleye, M. Nefopam analgesia and its role in multimodal analgesia: A review of preclinical and clinical studies. Clin. Exp. Pharmacol. Physiol. 2016, 43, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Novelli, A.; Díaz-Trelles, R.; Groppetti, A.; Fernández-Sánchez, M. Nefopam inhibits calcium influx, cGMP formation, and NMDA receptor-dependent neurotoxicity following activation of voltage sensitive calcium channels. Amino Acids 2005, 28, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Verleye, M.; André, N.; Heulard, I.; Gillardin, J.-M. Nefopam blocks voltage-sensitive sodium channels and modulates glutamatergic transmission in rodents. Brain Res. 2004, 1013, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, D.K.; Lee, M.K.; Lee, M. Median effective dose of nefopam to treat postoperative pain in patients who have undergone laparoscopic cholecystectomy. J. Int. Med. Res. 2018, 46, 3684–3691. [Google Scholar] [CrossRef]
- Jung, K.T.; So, K.Y.; Kim, S.C.; Kim, S.H. Effect of nefopam-based patient-controlled analgesia with and without fentanyl on postoperative pain intensity in patients following laparoscopic cholecystectomy: A prospective, randomized, controlled, double-blind non-inferiority trial. Medicina 2021, 57, 316. [Google Scholar] [CrossRef]
- Soyama, A.; Murakami, S.; Natsuda, K.; Hara, T.; Matsuguma, K.; Matsushima, H.; Imamura, H.; Tanaka, T.; Adachi, T.; Hidaka, M. A comparison of postoperative pain between transumbilical and suprapubic incision in laparoscopic liver resection. Asian J. Endosc. Surg. 2022, 15, 608–612. [Google Scholar] [CrossRef]
- Mimoz, O.; Incagnoli, P.; Josse, C.; Gillon, M.C.; Kuhlman, L.; Mirand, A.; Soilleux, H.; Fletcher, D. Analgesic efficacy and safety of nefopam vs. propacetamol following hepatic resection. Anaesthesia 2001, 56, 520–525. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, D.H.; Park, J.H.; Chae, M.S. Impact of Intraoperative Nefopam on Postoperative Pain, Opioid Use, and Recovery Quality with Parietal Pain Block in Single-Port Robotic Cholecystectomy: A Prospective Randomized Controlled Trial. Medicina 2024, 60, 848. [Google Scholar] [CrossRef]
- Yarwood, J.; Berrill, A. Nerve blocks of the anterior abdominal wall. Contin. Educ. Anaesth. Crit. Care Pain 2010, 10, 182–186. [Google Scholar] [CrossRef]
- Wrighton, L.J.; O’Bosky, K.R.; Namm, J.P.; Senthil, M. Postoperative management after hepatic resection. J. Gastrointest. Oncol. 2012, 3, 41–47. [Google Scholar]
- Al-hussainy, H.A.; AL-Biati, H.A.; Ali, I.S. The effect of nefopam hydrochloride on the liver, heart, and brain of rats: Acute toxicity and mechanisms of nefopam toxicity. J. Pharm. Negat. Results 2022, 13, 393–400. [Google Scholar]
- Aymard, G.; Warot, D.; Démolis, P.; Giudicelli, J.F.; Lechat, P.; Le Guern, M.E.; Alquier, C.; Diquet, B. Comparative pharmacokinetics and pharmacodynamics of intravenous and oral nefopam in healthy volunteers. Pharmacol. Toxicol. 2003, 92, 279–286. [Google Scholar] [PubMed]
- Jai, D.; Handscombe, M.; Brooke, M.; Karena, S.; Arune, S.; Leslie, K. Interpretation of the four risk factors for postoperative nausea and vomiting in the Apfel simplified risk score: An analysis of published studies. Can. J. Anesth. 2021, 68, 1057–1063. [Google Scholar]
- Schlesinger, T.; Meybohm, P.; Kranke, P. Postoperative nausea and vomiting: Risk factors, prediction tools, and algorithms. Curr. Opin. Anesthesiol. 2023, 36, 117–123. [Google Scholar]
- Allen, M.; Leslie, K.; Jansen, N. Validation of the postoperative nausea and vomiting intensity score in gynaecological patients. Anaesth. Intensive Care 2011, 39, 73–78. [Google Scholar]
- Kim, S.H.; Shin, Y.-S.; Oh, Y.J.; Lee, J.R.; Chung, S.C.; Choi, Y.S. Risk assessment of postoperative nausea and vomiting in the intravenous patient-controlled analgesia environment: Predictive values of the Apfel’s simplified risk score for identification of high-risk patients. Yonsei Med. J. 2013, 54, 1273–1287. [Google Scholar]
- Park, S.-K.; Yoo, S.; Kim, W.H.; Lim, Y.-J.; Bahk, J.-H.; Kim, J.-T. Correction: Association of nefopam use with postoperative nausea and vomiting in gynecological patients receiving prophylactic ramosetron: A retrospective study. PLoS ONE 2018, 13, e0201084. [Google Scholar]
- Son, J.-S.; Doo, A.; Kwon, Y.-J.; Han, Y.-J.; Ko, S. A comparison between ketorolac and nefopam as adjuvant analgesics for postoperative patient-controlled analgesia: A randomized, double-blind, prospective study. Korean J. Anesthesiol. 2017, 70, 612–618. [Google Scholar]
- Bellomo, R.; Warrillow, S.J.; Reade, M.C. Why we should be wary of single-center trials. Crit. Care Med. 2009, 37, 3114–3119. [Google Scholar]
- Aveline, C.; Roux, A.L.; Hetet, H.L.; Gautier, J.F.; Vautier, P.; Cognet, F.; Bonnet, F. Pain and recovery after total knee arthroplasty: A 12-month follow-up after a prospective randomized study evaluating Nefopam and Ketamine for early rehabilitation. Clin. J. Pain 2014, 30, 749–754. [Google Scholar]
- Allen, D.B. Limitations of short-term studies in predicting long-term adverse effects of inhaled corticosteroids. Allergy 1999, 54 (Suppl. 49), 29–34. [Google Scholar] [PubMed]
- Jamison, R.N.; Ross, M.J.; Hoopman, P.; Griffin, F.; Levy, J.; Daly, M.; Schaffer, J.L. Assessment of postoperative pain management: Patient satisfaction and perceived helpfulness. Clin. J. Pain 1997, 13, 229–236. [Google Scholar] [PubMed]
- Bowyer, A.; Jakobsson, J.; Ljungqvist, O.; Royse, C. A review of the scope and measurement of postoperative quality of recovery. Anaesthesia 2014, 69, 1266–1278. [Google Scholar] [PubMed]
Before Propensity Score Matching | After Propensity Score Matching | |||||||
---|---|---|---|---|---|---|---|---|
Non-Nepofam (n = 301) | Nefopam (n = 151) | p Value | SD | Non-Nepofam (n = 148) | Nefopam (n = 148) | p Value | SD | |
Preoperative variables | ||||||||
Sex; n (%) | 176 (58.5%) | 99 (65.6%) | 0.145 | −0.149 | 103 (69.6%) | 97 (65.5%) | 0.456 | 0.085 |
Age; years | 34.5 ± 11.3 | 35.6 ± 12.4 | 0.345 | 0.089 | 35.7 ± 12.0 | 35.3 ± 12.2 | 0.803 | −0.028 |
Body mass index; kg/m2 | 23.5 ± 3.0 | 23.8 ± 3.1 | 0.385 | 0.086 | 23.7 ± 3.1 | 23.7 ± 3.1 | 0.902 | 0.014 |
Liver fatty percentage; % | 4.4 ± 5.9 | 4.7 ± 7.9 | 0.618 | 0.042 | 3.9 ± 4.5 | 4.2 ± 5.4 | 0.633 | 0.035 |
Diabetes mellitus; n (%) | 4 (1.3%) | 2 (1.3%) | >0.999 | 0.000 | 2 (1.4%) | 2 (1.4%) | >0.999 | 0.000 |
Hypertension; n (%) | 11 (3.7%) | 8 (5.3%) | 0.411 | 0.073 | 9 (6.1%) | 8 (5.4%) | 0.803 | −0.030 |
History of abdominal surgery; n (%) | 49 (16.3%) | 30 (19.9%) | 0.343 | 0.090 | 26 (17.6%) | 29 (19.6%) | 0.654 | 0.051 |
Mean blood pressure; mmHg | 90.8 ± 10.6 | 91.5 ± 10.5 | 0.512 | 0.066 | 92.4 ± 10.0 | 91.7 ± 10.2 | 0.562 | −0.065 |
Heart rate; beats/min | 76.3 ± 10.7 | 76.9 ± 11.7 | 0.605 | 0.049 | 75.8 ± 9.5 | 76.5 ± 11.2 | 0.521 | 0.067 |
Laboratory values | ||||||||
WBC count; ×109/L | 6.4 ± 1.6 | 6.6 ± 2.0 | 0.192 | 0.112 | 6.5 ± 1.7 | 6.5 ± 1.8 | 0.981 | 0.002 |
Hemoglobin; g/dL | 14.1 ± 1.6 | 14.3 ± 1.5 | 0.244 | 0.125 | 14.5 ± 1.6 | 14.3 ± 1.5 | 0.421 | −0.096 |
Platelet count; ×109/L | 243.6 ± 53.9 | 236.5 ± 53.8 | 0.187 | −0.132 | 234.6 ± 48.5 | 237.6 ± 53.5 | 0.607 | 0.057 |
Urea nitrogen; mg/dL | 13.6 ± 3.5 | 13.6 ± 3.6 | 0.840 | −0.020 | 13.6 ± 3.6 | 13.5 ± 3.4 | 0.790 | −0.030 |
Creatinine; mg/dL | 0.8 ± 0.2 | 0.8 ± 0.2 | 0.111 | 0.139 | 0.8 ± 0.1 | 0.8 ± 0.2 | 0.582 | −0.049 |
Albumin; g/dL | 4.4 ± 0.4 | 4.4 ± 0.4 | 0.643 | 0.045 | 4.4 ± 0.3 | 4.4 ± 0.3 | 0.734 | 0.036 |
AST; U/L | 19.9 ± 6.3 | 21.1 ± 8.6 | 0.009 * | 0.242 | 21.0 ± 7.0 | 21.3 ± 6.8 | 0.719 | 0.034 |
ALT; U/L | 19.4 ± 10.1 | 21.1 ± 9.9 | 0.094 | 0.169 | 20.3 ± 10.4 | 21.0 ± 9.9 | 0.557 | 0.070 |
Total bilirubin; mg/dL | 0.6 ± 0.3 | 0.6 ± 0.3 | 0.142 | −0.151 | 0.6 ± 0.3 | 0.6 ± 0.3 | 0.639 | −0.053 |
Sodium; mmol/L | 140.9 ± 1.8 | 141.2 ± 2.1 | 0.221 | 0.110 | 141.1 ± 1.9 | 141.2 ± 2.1 | 0.640 | 0.052 |
Potassium; mmol/L | 4.2 ± 0.3 | 4.2 ± 0.3 | 0.149 | −0.143 | 4.2 ± 0.3 | 4.2 ± 0.3 | 0.857 | 0.020 |
Chloride; mmol/L | 104.6 ± 2.1 | 104.6 ± 2.4 | 0.933 | −0.008 | 104.5 ± 2.0 | 104.6 ± 2.4 | 0.696 | 0.042 |
INR | 1.02 ± 0.07 | 1.02 ± 0.09 | 0.778 | 0.025 | 1.02 ± 0.06 | 1.02 ± 0.07 | 0.677 | −0.036 |
PT; sec | 11.4 ± 0.8 | 11.3 ± 1.0 | 0.878 | −0.013 | 11.3 ± 0.8 | 11.3 ± 0.8 | 0.741 | −0.030 |
aPTT; sec | 27.9 ± 4.1 | 28.0 ± 5.0 | 0.929 | 0.008 | 27.7 ± 3.9 | 27.8 ± 4.2 | 0.99 | 0.001 |
Intraoperative variables | ||||||||
Operation duration; min | 253.5 ± 58.8 | 261.6 ± 54.0 | 0.157 | 0.150 | 261.0 ± 62.1 | 260.8 ± 54.1 | 0.972 | −0.004 |
PRBC transfusion; units | 0.3 ± 0.7 | 0.4 ± 1.0 | 0.157 | 0.130 | 0.3 ± 0.8 | 0.4 ± 1.0 | 0.651 | 0.048 |
FFP transfusion; units | 1.3 ± 1.1 | 1.3 ± 1.0 | 0.956 | 0.006 | 1.4 ± 1.1 | 1.3 ± 1.0 | 0.506 | −0.079 |
Hourly fluid infusion; mL/kg/hr | 8.7 ± 3.4 | 8.6 ± 3.3 | 0.764 | −0.031 | 8.3 ± 3.2 | 8.6 ± 3.3 | 0.418 | 0.094 |
Hourly urine output; mL/kg/h | 1.4 ± 0.9 | 1.4 ± 1.0 | 0.984 | 0.002 | 1.3 ± 1.0 | 1.4 ± 1.0 | 0.647 | 0.055 |
Blood loss; mL | 587.5 ± 367.2 | 637.8 ± 493.9 | 0.224 | 0.102 | 646.3 ± 410.0 | 637.2 ± 497.8 | 0.863 | −0.018 |
Average vital signs | ||||||||
Mean blood pressure; mmHg | 84.2 ± 9.8 | 84.4 ± 9.7 | 0.766 | 0.030 | 85.4 ± 9.6 | 84.5 ± 9.7 | 0.430 | −0.092 |
Heart rate; beats/min | 76.0 ± 10.3 | 75.7 ± 9.3 | 0.707 | −0.040 | 74.9 ± 9.5 | 75.4 ± 8.7 | 0.640 | 0.054 |
Parameters | Non-Nefopam (n = 148) | Nefopam (n = 148) | p Value |
---|---|---|---|
Numeric rating scale (NRS) | |||
1 h after surgery | 5.9 ± 1.7 | 4.0 ± 1.2 | <0.001 ** |
4 h after surgery | 5.9 ± 2.5 | 4.3 ± 1.5 | <0.001 ** |
8 h after surgery | 3.5 ± 2.0 | 2.3 ± 1.8 | <0.001 ** |
12 h after surgery | 3.7 ± 2.7 | 3.5 ± 2.3 | 0.514 |
24 h after surgery | 2.1 ± 1.2 | 2.3 ± 0.8 | 0.082 |
Fentanyl dose; μg | |||
In the PACU | 60.5 ± 37.9 | 26.0 ± 32.2 | <0.001 ** |
In the ward | 29.4 ± 24.7 | 25.3 ± 25.1 | 0.162 |
IV-PCA; mL | 71.8 ± 28.9 | 44.0 ± 19.2 | <0.001 ** |
PONV; % | 29 (19.6%) | 19 (12.8%) | 0.115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chae, M.S.; Jeong, J.-O.; Lee, K.K.; Jeong, W.; Moon, Y.W.; Min, J.Y. Effect of Intraoperative Nefopam on Postoperative Analgesia in Living Liver Donors Undergoing Laparoscopic Hepatectomy with Transversus Abdominis Plane Block: A Propensity Score-Matched Study. Life 2025, 15, 590. https://doi.org/10.3390/life15040590
Chae MS, Jeong J-O, Lee KK, Jeong W, Moon YW, Min JY. Effect of Intraoperative Nefopam on Postoperative Analgesia in Living Liver Donors Undergoing Laparoscopic Hepatectomy with Transversus Abdominis Plane Block: A Propensity Score-Matched Study. Life. 2025; 15(4):590. https://doi.org/10.3390/life15040590
Chicago/Turabian StyleChae, Min Suk, Jin-Oh Jeong, Kyung Kwan Lee, Wonwoo Jeong, Young Wook Moon, and Ji Young Min. 2025. "Effect of Intraoperative Nefopam on Postoperative Analgesia in Living Liver Donors Undergoing Laparoscopic Hepatectomy with Transversus Abdominis Plane Block: A Propensity Score-Matched Study" Life 15, no. 4: 590. https://doi.org/10.3390/life15040590
APA StyleChae, M. S., Jeong, J.-O., Lee, K. K., Jeong, W., Moon, Y. W., & Min, J. Y. (2025). Effect of Intraoperative Nefopam on Postoperative Analgesia in Living Liver Donors Undergoing Laparoscopic Hepatectomy with Transversus Abdominis Plane Block: A Propensity Score-Matched Study. Life, 15(4), 590. https://doi.org/10.3390/life15040590