Prognostic Impact of Phenotypic and Genetic Features of Pancreatic Malignancies
Abstract
:1. Introduction
2. Materials and Methods
3. Prognostic Impact of Genetic and Immunohistochemical Features
3.1. Histomorphological and Genetic Landscapes of Epithelial Tumors
3.2. Immune Microenvironment and Prognosis of Pancreatic Adenocarcinoma
3.3. Prohibitin
3.4. Genetic Landscape of Neuroendocrine Tumors
3.5. Shared Genetic Features Between Epithelial and Neuroendocrine Tumors
3.6. Immunohistochemical Markers in NENs
4. Prognostic Impact of Serological Markers
5. Prospects for the Development of Individual Therapeutic and Diagnostic Approaches for Pancreatic Cancer Treatment
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- McDonald, O.G. The biology of pancreatic cancer morphology. Pathology 2022, 54, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Cives, M.; Strosberg, J.R. Gastroenteropancreatic Neuroendocrine Tumors. CA A Cancer J. Clin. 2018, 68, 471–487. [Google Scholar] [CrossRef] [PubMed]
- Kaprin, A.D.; Starinsky, V.V.; Shakhzadova, A.O. The State of Cancer Care in Russia in 2021; P. A. Herzen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre, Ministry of Health of the Russian Federation: Moscow, Russia, 2022; 239p, ISBN 978-5-85502-275-9.
- Yang, D.J.; Xiong, J.J.; Lu, H.M.; Wei, Y.; Zhang, L.; Lu, S.; Hu, W.M. The oncological safety in minimally invasive versus open distal pancreatectomy for pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. Sci. Rep. 2019, 9, 1159. [Google Scholar] [CrossRef]
- Bilimoria, K.Y.; Talamonti, M.S.; Tomlinson, J.S.; Stewart, A.K.; Winchester, D.P.; Ko, C.Y.; Bentrem, D.J. Prognostic score predicting survival after resection of pancreatic neuroendocrine tumors: Analysis of 3851 patients. Ann. Surg. 2008, 247, 490–500. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Fischer, L.; Kleeff, J.; Esposito, I.; Hinz, U.; Zimmermann, A.; Friess, H.; Büchler, M.W. Clinical outcome and long-term survival in 118 consecutive patients with neuroendocrine tumours of the pancreas. Br. J. Surg. 2008, 95, 627–635. [Google Scholar] [CrossRef]
- Kaliszewski, K.; Ludwig, M.; Greniuk, M.; Mikuła, A.; Zagórski, K.; Rudnicki, J. Advances in the Diagnosis and Therapeutic Management of Gastroenteropancreatic Neuroendocrine Neoplasms (GEP-NENs). Cancers 2022, 14, 2028. [Google Scholar] [CrossRef]
- Olakowski, M.; Grudzińska, E. Pancreatic head cancer—Current surgery techniques. Asian J. Surg. 2023, 46, 73–81. [Google Scholar] [CrossRef]
- Chintamaneni, P.K.; Pindiprolu, S.K.S.S.; Swain, S.S.; Karri, V.V.S.R.; Nesamony, J.; Chelliah, S.; Bhaskaran, M. Conquering chemoresistance in pancreatic cancer: Exploring novel drug therapies and delivery approaches amidst desmoplasia and hypoxia. Cancer Lett. 2024, 588, 216782. [Google Scholar] [CrossRef]
- Pokataev, I.A. The role of adjuvant radiation therapy in pancreatic cancer–within clinical studies. Malig. Tumors 2017, 7, 17–21. [Google Scholar]
- Ma, Z.Y.; Gong, Y.F.; Zhuang, H.K.; Zhou, Z.X.; Huang, S.Z.; Zou, Y.P.; Huang, B.W.; Sun, Z.H.; Zhang, C.Z.; Tang, Y.Q.; et al. Pancreatic neuroendocrine tumors: A review of serum biomarkers, staging, and management. World J. Gastroenterol. 2020, 26, 2305–2322. [Google Scholar] [CrossRef]
- Yan, J.; Yu, S.; Jia, C.; Li, M.; Chen, J. Molecular subtyping in pancreatic neuroendocrine neoplasms: New insights into clinical, pathological unmet needs and challenges. Biochimica et biophysica acta. Rev. Cancer 2020, 1874, 188367. [Google Scholar] [CrossRef]
- Takakura, K.; Ito, Z.; Suka, M.; Kanai, T.; Matsumoto, Y.; Odahara, S.; Matsudaira, H.; Haruki, K.; Fujiwara, Y.; Saito, R.; et al. Comprehensive assessment of the prognosis of pancreatic cancer: Peripheral blood neutrophil-lymphocyte ratio and immunohistochemical analyses of the tumour site. Scand. J. Gastroenterol. 2016, 51, 610–617. [Google Scholar] [CrossRef]
- Rosenbaum, M.W.; Gonzalez, R.S. Immunohistochemistry as predictive and prognostic markers for gastrointestinal malignancies. Semin. Diagn. Pathol. 2022, 39, 48–57. [Google Scholar] [CrossRef]
- Mattiolo, P.; Scarpa, A.; Luchini, C. Hepatoid tumors of the gastrointestinal/pancreatobiliary district: Morphology, immunohistochemistry, and molecular profiles. Hum. Pathol. 2023, 132, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, G.; Beaty, R.; Hruban, R.H.; Maitra, A. Molecular genetics of pancreatic intraepithelial neoplasia. J. Hepato-Biliary-Pancreat. Surg. 2007, 14, 224–232. [Google Scholar] [CrossRef]
- McGuigan, A.; Kelly, P.; Turkington, R.C.; Jones, C.; Coleman, H.G.; McCain, R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol. 2018, 24, 4846–4861. [Google Scholar] [CrossRef]
- Badheeb, M.; Abdelrahim, A.; Esmail, A.; Umoru, G.; Abboud, K.; Al-Najjar, E.; Rasheed, G.; Alkhulaifawi, M.; Abudayyeh, A.; Abdelrahim, M. Pancreatic Tumorigenesis: Precursors, Genetic Risk Factors and Screening. Curr. Oncol. 2022, 29, 8693–8719. [Google Scholar] [CrossRef]
- Knudsen, E.S.; Vail, P.; Balaji, U.; Ngo, H.; Botros, I.W.; Makarov, V.; Riaz, N.; Balachandran, V.; Leach, S.; Thompson, D.M. Stratification of Pancreatic Ductal Adenocarcinoma: Combinatorial Genetic, Stromal, and Immunologic Markers. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 4429–4440. [Google Scholar] [CrossRef]
- Torres, C.; Grippo, P.J. Pancreatic cancer subtypes: A roadmap for precision medicine. Ann. Med. 2018, 50, 277–287. [Google Scholar] [CrossRef]
- Tang, E.S.; Newell, P.H.; Wolf, R.F.; Hansen, P.D.; Cottam, B.; Ballesteros-Merino, C.; Gough, M.J. Association of Immunologic Markers with Survival in Upfront Resectable Pancreatic Cancer. JAMA Surg. 2018, 153, 1055–1057. [Google Scholar] [CrossRef]
- Nizri, E.; Sternbach, N.; Bar-David, S.; Ben-Yehuda, A.; Gerstenhaber, F.; Ofir, T.; Wolf, I.; Weiner, G.; Lahat, G.; Klausner, J. T-Helper 1 Immune Response in Metastatic Lymph Nodes of Pancreatic Ductal Adenocarcinoma: A Marker for Prolonged Survival. Ann. Surg. Oncol. 2018, 25, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Jaeoh, P.; Pei-Chun, H.; Zhiyu, L.; Ho, P.C. Microenvironment-driven metabolic adaptations guiding CD8+ T cell anti-tumor immunity. Immunity 2023, 56, 32–42. [Google Scholar] [CrossRef]
- Wang, W.; Xu, L.; Yang, Y.; Dong, L.; Zhao, B.; Lu, J.; Zhang, T.; Zhao, Y. A novel prognostic marker and immunogenic membrane antigen: Prohibitin (PHB) in pancreatic cancer. Clin. Transl. Gastroenterol. 2018, 9, e178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, J.; Hua, J.; Liu, J.; Liang, C.; Meng, Q.; Wei, M.; Zhang, B.; Yu, X.; Shi, S. A PD-L2-based immune marker signature helps to predict survival in resected pancreatic ductal adenocarcinoma. J. Immunother. Cancer 2019, 7, 233. [Google Scholar] [CrossRef]
- Belk, J.A.; Daniel, B.; Satpathy, A.T. Epigenetic regulation of T cell exhaustion. Nat. Immunol. 2022, 23, 848–860. [Google Scholar] [CrossRef]
- La Rosa, S.; Adsay, V.; Albarello, L.; Asioli, S.; Casnedi, S.; Franzi, F.; Marando, A.; Notohara, K.; Sessa, F.; Vanoli, A.; et al. Clinicopathologic study of 62 acinar cell carcinomas of the pancreas: Insights into the morphology and immunophenotype and search for prognostic markers. Am. J. Surg. Pathol. 2012, 36, 1782–1795. [Google Scholar] [CrossRef]
- Yang, J.; Li, B.; He, Q.Y. Significance of prohibitin domain family in tumorigenesis and its implication in cancer diagnosis and treatment. Cell Death Disease 2018, 9, 580. [Google Scholar] [CrossRef]
- Gao, Y.; Tang, Y. Emerging roles of prohibitins in cancer: An update. Cancer Gene Ther. 2025, 32, 357–370. [Google Scholar] [CrossRef]
- Capurso, G.; Archibugi, L.; Delle Fave, G. Molecular pathogenesis and targeted therapy of sporadic pancreatic neuroendocrine tumors. J. Hepato-Biliary-Pancreat. Sci. 2015, 22, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Majer, A.D.; Hua, X.; Katona, B.W. Menin in Cancer. Genes 2024, 15, 1231. [Google Scholar] [CrossRef]
- Bloomgarden, Z.T. The potential of β-cell growth promotion, continued. J. Diabetes 2023, 15, 366–367. [Google Scholar] [CrossRef]
- van ’t Veld, B.R.; Hackeng, W.M.; Luchini, C.; Brosens, L.A.A.; Dreijerink, K.M.A. Clinical Relevance of ATRX/DAXX Gene Mutations and ALT in Functioning Pancreatic Neuroendocrine Tumors. Endocr. Pathol. 2025, 36, 3. [Google Scholar] [CrossRef] [PubMed]
- Sorbye, H.; Welin, S.; Langer, S.W.; Vestermark, L.W.; Holt, N.; Osterlund, P.; Dueland, S.; Hofsli, E.; Guren, M.G.; Ohrling, K.; et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): The NORDIC NEC study. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2013, 24, 152–160. [Google Scholar] [CrossRef]
- Stanciu, S.; Ionita-Radu, F.; Stefani, C.; Miricescu, D.; Stanescu-Spinu, I.I.; Greabu, M.; Ripszky Totan, A.; Jinga, M. Targeting PI3K/AKT/mTOR Signaling Pathway in Pancreatic Cancer: From Molecular to Clinical Aspects. Int. J. Mol. Sci. 2022, 23, 10132. [Google Scholar] [CrossRef]
- Brunner, S.M.; Weber, F.; Werner, J.M.; Agha, A.; Farkas, S.A.; Schlitt, H.J.; Hornung, M. Neuroendocrine tumors of the pancreas: A retrospective single-center analysis using the ENETS TNM-classification and immunohistochemical markers for risk stratification. BMC Surg. 2015, 15, 49. [Google Scholar] [CrossRef]
- House, M.G.; Herman, J.G.; Guo, M.Z.; Hooker, C.M.; Schulick, R.D.; Lillemoe, K.D.; Cameron, J.L.; Hruban, R.H.; Maitra, A.; Yeo, C.J. Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms. Ann. Surg. 2003, 238, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Raj, N.; Fazio, N.; Strosberg, J. Biology and Systemic Treatment of Advanced Gastroenteropancreatic Neuroendocrine Tumors; American Society of Clinical Oncology Educational Book; American Society of Clinical Oncology: Alexandria, VA, USA, 2018; Annual Meeting; Volume 38, pp. 292–299. [Google Scholar] [CrossRef]
- Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef]
- Smith, R.A.; Tang, J.; Tudur-Smith, C.; Neoptolemos, J.P.; Ghaneh, P. Meta-analysis of immunohistochemical prognostic markers in resected pancreatic cancer. Br. J. Cancer 2011, 104, 1440–1451. [Google Scholar] [CrossRef]
- Hagen, J.; Muniz, V.P.; Falls, K.C.; Reed, S.M.; Taghiyev, A.F.; Quelle, F.W.; Gourronc, F.A.; Klingelhutz, A.J.; Major, H.J.; Askeland, R.W.; et al. RABL6A promotes G1-S phase progression and pancreatic neuroendocrine tumor cell proliferation in an Rb1-dependent manner. Cancer Res. 2014, 74, 6661–6670. [Google Scholar] [CrossRef] [PubMed]
- Al-Aynati, M.M.; Radulovich, N.; Ho, J.; Tsao, M.S. Overexpression of G1-S cyclins and cyclin-dependent kinases during multistage human pancreatic duct cell carcinogenesis. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2004, 10, 6598–6605. [Google Scholar] [CrossRef]
- Williams, A.B.; Schumacher, B. p53 in the DNA-Damage-Repair Process. Cold Spring Harb. Perspect. Med. 2016, 6, a026070. [Google Scholar] [CrossRef]
- Burns, W.R.; Edil, B.H. Neuroendocrine pancreatic tumors: Guidelines for management and update. Curr. Treat. Options Oncol. 2012, 13, 24–34. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Liu, W. Pancreatic Cancer: A Review of Risk Factors, Diagnosis, and Treatment. Technol. Cancer Res. Treat. 2020, 19, 1533033820962117. [Google Scholar] [CrossRef] [PubMed]
- Scarà, S.; Bottoni, P.; Scatena, R. CA 19-9: Biochemical and Clinical Aspects. Adv. Exp. Med. Biol. 2015, 867, 247–260. [Google Scholar] [CrossRef]
- Shiozawa, S.; Tsuchiya, A.; Kim, D.H.; Ogawa, K. Prognostic significance of CA19-9 levels in patients with pancreatic cancer. Nihon Rinsho 2006, 64, 297–300. [Google Scholar] [PubMed]
- Ermiah, E.; Eddfair, M.; Abdulrahman, O.; Elfagieh, M.; Jebriel, A.; Al-Sharif, M.; Assidi, M.; Buhmeida, A. Prognostic value of serum CEA and CA19-9 levels in pancreatic ductal adenocarcinoma. Mol. Clin. Oncol. 2022, 17, 126. [Google Scholar] [CrossRef]
- Bünger, S.; Laubert, T.; Roblick, U.J.; Habermann, J.K. Serum biomarkers for improved diagnostic of pancreatic cancer: A current overview. J. Cancer Res. Clin. Oncol. 2011, 137, 375–389. [Google Scholar] [CrossRef]
- Balachandran, V.P.; Łuksza, M.; Zhao, J.N.; Makarov, V.; Moral, J.A.; Remark, R.; Herbst, B.; Askan, G.; Bhanot, U.; Senbabaoglu, Y.; et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 2017, 551, S12–S16. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Chen, M.; Chen, J. Prognostic value of carcinoembryonic antigen, alpha fetoprotein, carbohydrate antigen 125 and carbohydrate antigen 19-9 in gastroenteropancreatic neuroendocrine neoplasms. Zhonghua Wei Chang Wai Ke Za Zhi 2017, 20, 1002–1008. [Google Scholar] [PubMed]
- He, M.; Wu, C.; Xu, J.; Guo, H.; Yang, H.; Zhang, X.; Sun, J.; Yu, D.; Zhou, L.; Peng, T.; et al. A genome wide association study of genetic loci that influence tumour biomarkers cancer antigen 19-9, carcinoembryonic antigen and α fetoprotein and their associations with cancer risk. Gut 2014, 63, 143–151. [Google Scholar] [CrossRef]
- Greaves, M.; Maley, C.C. Clonal evolution in cancer. Nature 2012, 481, 306–313. [Google Scholar] [CrossRef]
- Notta, F.; Chan-Seng-Yue, M.; Lemire, M.; Li, Y.; Wilson, G.W.; Connor, A.A.; Denroche, R.E.; Liang, S.B.; Brown, A.M.; Kim, J.C.; et al. A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature 2016, 538, 378–382. [Google Scholar] [CrossRef]
- Potievskii, M.B.; Shegai, P.V.; Kaprin, A.D. Prospects for the Application of Methods of Evolutionary Biology in Oncology. J. Evol. Biochem. Physiol. 2022, 58, 318–330. [Google Scholar] [CrossRef]
- Lee, K.J.; Yi, S.W.; Chung, M.J.; Park, S.W.; Song, S.Y.; Chung, J.B.; Park, J.Y. Serum CA 19-9 and CEA levels as a prognostic factor in pancreatic adenocarcinoma. Yonsei Med. J. 2013, 54, 643–649. [Google Scholar] [CrossRef]
- Makohon-Moore, A.; Iacobuzio-Donahue, C.A. Pancreatic cancer biology and genetics from an evolutionary perspective. Nat. Rev. Cancer 2016, 16, 553–565. [Google Scholar] [CrossRef]
- Gao, H.L.; Wang, W.Q.; Yu, X.J.; Liu, L. Molecular drivers and cells of origin in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine carcinoma. Exp. Hematol. Oncol. 2020, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Modlin, I.M.; Gustafsson, B.I.; Moss, S.F.; Pavel, M.; Tsolakis, A.V.; Kidd, M. Chromogranin A--biological function and clinical utility in neuro endocrine tumor disease. Ann. Surg. Oncol. 2010, 17, 2427–2443. [Google Scholar] [CrossRef]
- Pulvirenti, A.; Rao, D.; Mcintyre, C.A.; Gonen, M.; Tang, L.H.; Klimstra, D.S.; Fleisher, M.; Ramanathan, L.V.; Reidy-Lagunes, D.; Allen, P.J. Limited role of Chromogranin A as clinical biomarker for pancreatic neuroendocrine tumors. HPB Off. J. Int. Hepato Pancreato Biliary Assoc. 2019, 21, 612–618. [Google Scholar] [CrossRef]
- Zerbi, A.; Falconi, M.; Rindi, G.; Delle Fave, G.; Tomassetti, P.; Pasquali, C.; Capitanio, V.; Boninsegna, L.; Di Carlo, V.; AISP-Network Study Group. Clinicopathological features of pancreatic endocrine tumors: A prospective multicenter study in Italy of 297 sporadic cases. Am. J. Gastroenterol. 2010, 105, 1421–1429. [Google Scholar] [CrossRef]
- Boyar Cetinkaya, R.; Vatn, M.; Aabakken, L.; Bergestuen, D.S.; Thiis-Evensen, E. Survival and prognostic factors in well-differentiated pancreatic neuroendocrine tumors. Scand. J. Gastroenterol. 2014, 49, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Khalil, L.; Huang, Z.; Zakka, K.; Jiang, R.; Penley, M.; Alese, O.B.; Shaib, W.L.; Wu, C.; Behera, M.; Reid, M.; et al. Survival and Prognostic Factors in Patients with Pancreatic Colloid Carcinoma Compared with Pancreatic Ductal Adenocarcinoma. Pancreas 2023, 52, E75–E84. [Google Scholar] [CrossRef] [PubMed]
- Zhuge, X.; Guo, C.; Chen, Y.; Feng, L.; Jia, R.; Zhao, Y.; Sun, K.; Wang, Z.; Chen, X. The Levels of Tumor Markers in Pancreatic Neuroendocrine Carcinoma and Their Values in Differentiation Between Pancreatic Neuroendocrine Carcinoma and Pancreatic Ductal Adenocarcinoma. Pancreas 2018, 47, 1290–1295. [Google Scholar] [CrossRef]
- Chan-Seng-Yue, M.; Kim, J.C.; Wilson, G.W.; Ng, K.; Figueroa, E.F.; O’Kane, G.M.; Connor, A.A.; Denroche, R.E.; Grant, R.C.; McLeod, J.; et al. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat. Genet. 2020, 52, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Barrett, M.T.; Deiotte, R.; Lenkiewicz, E.; Malasi, S.; Holley, T.; Evers, L.; Posner, R.G.; Jones, T.; Han, H.; Sausen, M.; et al. Clinical study of genomic drivers in pancreatic ductal adenocarcinoma. Br. J. Cancer 2017, 117, 572–582. [Google Scholar] [CrossRef]
- Trigos, A.S.; Pearson, R.B.; Papenfuss, A.T.; Goode, D.L. How the evolution of multicellularity set the stage for cancer. Br. J. Cancer 2018, 118, 145–152. [Google Scholar] [CrossRef]
- Ren, B.; Cui, M.; Yang, G.; Wang, H.; Feng, M.; You, L.; Zhao, Y. Tumor microenvironment participates in metastasis of pancreatic cancer. Mol. Cancer 2018, 17, 108. [Google Scholar] [CrossRef]
- Cai, J.; Chen, H.; Lu, M.; Zhang, Y.; Lu, B.; You, L.; Zhang, T.; Dai, M.; Zhao, Y. Advances in the epidemiology of pancreatic cancer: Trends, risk factors, screening, and prognosis. Cancer Lett. 2021, 520, 1–11. [Google Scholar] [CrossRef]
- Zhou, X.; Hu, K.; Bailey, P.; Springfeld, C.; Roth, S.; Kurilov, R.; Brors, B.; Gress, T.; Buchholz, M.; An, J.; et al. Clinical Impact of Molecular Subtyping of Pancreatic Cancer. Front. Cell Dev. Biol. 2021, 9, 743908, Erratum in Front. Cell Dev. Biol. 2023, 11, 1179559. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Hu, K.; Bailey, P.; Springfeld, C.; Cai, B.; Miao, Y.; Michalski, C.; Carvalho, C.; Hackert, T.; Büchler, M.W. Personalized treatment in localized pancreatic cancer. Eur. Surg. 2024, 56, 93–109. [Google Scholar] [CrossRef]
- Wang, X.; Mao, K.; Zhang, X.; Zhang, Y.; Yang, Y.G.; Sun, T. Red blood cell derived nanocarrier drug delivery system: A promising strategy for tumor therapy. Interdiscip. Med. 2024, 2, e20240014. [Google Scholar] [CrossRef]
- Wang, J.; Liao, Z.-X. Research progress of microrobots in tumor drug delivery. Food Med. Homol. 2024, 1, 9420025. [Google Scholar] [CrossRef]
Feature | Pathogenesis | Mechanism of Action in Pancreatic Cancer Pathogenesis | Prognostic Impact | References |
---|---|---|---|---|
CD3+ cells | T-cell population | Represents total T-cell infiltration; contributes to anti-tumor immune response via activation of cytotoxic and helper T-cells | Associated with higher 5-year survival | Tang et al., 2018 [23] |
CD8+ cells | Cytotoxic T-cells | Directly kill tumor cells through perforin and granzyme release, key players in adaptive anti-tumor immunity | Linked to improved prognosis and tumor suppression | Nizri et al., 2019 [24] |
CTLA4+ T-lymphocytes | Immune suppression | CTLA-4 inhibits T-cell activation by outcompeting CD28 for B7 ligands on antigen-presenting cells, reducing immune attack on the tumor | Infiltration correlates with decreased survival | Knudsen et al., 2020 [21] |
Prohibitin | Transmembrane protein | Involved in mitochondrial function and cell cycle regulation; overexpression may promote tumor cell survival and metastatic potential | High levels linked to increased metastasis risk and unfavorable prognosis | Wang et al., 2018 [26] |
PD-1, FOX3P expression | Immune regulation | PD-1 inhibits T-cell function upon ligand binding (PD-L1), leading to immune evasion; FOXP3 marks regulatory T-cells that suppress immunity | High PD-1 and low CD3 expression correlates with poor prognosis | Zhang et al., 2019 [27] |
Tumor stroma collagen content | Structural component | Collagen provides a scaffold for immune cell migration; low content may hinder immune cell infiltration and impair anti-tumor immunity | Low collagen content is linked to impaired tumor-suppressor immunity and poorer survival | Knudsen et al., 2020 [21] |
Feature | Pathogenesis | Mechanism of Action in Pancreatic Cancer Pathogenesis | Prognostic Significance | References |
---|---|---|---|---|
MENIN expression | Regulates cell cycle and prevents mitosis | Acts as a tumor suppressor by inhibiting transcription of pro-proliferative genes; loss may lead to endocrine tumor development | High expression associated with favorable prognosis in metastatic neuroendocrine tumors | Capurso et al., 2015 [32]; Majer et al, 2024 [33] |
ATRX/DAXX mutations | Chromatin remodeling | Loss of function leads to alternative lengthening of telomeres (ALT), contributing to genomic instability and tumor progression | Associated with favorable prognosis in combination with high MENIN expression | van’t Veld et al, 2025 [35] |
Ki-67 expression | Cell proliferation marker | Reflects the fraction of actively dividing cells; high expression indicates aggressive tumor behavior | High levels are associated with poor prognosis in poorly differentiated tumors | Sorbye et al, 2013 [36] |
VEGF expression | Vascular endothelial growth factor | Promotes angiogenesis and vascular permeability, enhancing tumor growth and potential for metastasis | Not significantly associated with survival in neuroendocrine tumors | Capruso et al., 2015 [32] |
EGFR expression | Epidermal growth factor receptor | Activates PI3K/AKT/mTOR and MAPK pathways, leading to cell proliferation, survival, and migration | Associated with poor prognosis due to pathway activation | Stanciu S. et al., 2022 [37] |
β-catenin, CK19, CK7, p53 | Tumor cell markers | β-catenin: Wnt signaling and cell adhesion; CK19/CK7: epithelial origin markers; p53: genomic stability via DNA repair and apoptosis (often mutated) | No significant impact on patient survival | La Rosa et al., 2012 [29]; Brunner et al., 2015 [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potievskiy, M.B.; Nekrasova, L.A.; Korobov, I.V.; Bykova, E.A.; Moshurov, R.I.; Sokolov, P.V.; Shatalov, P.A.; Falaleeva, N.A.; Petrov, L.O.; Trifanov, V.S.; et al. Prognostic Impact of Phenotypic and Genetic Features of Pancreatic Malignancies. Life 2025, 15, 635. https://doi.org/10.3390/life15040635
Potievskiy MB, Nekrasova LA, Korobov IV, Bykova EA, Moshurov RI, Sokolov PV, Shatalov PA, Falaleeva NA, Petrov LO, Trifanov VS, et al. Prognostic Impact of Phenotypic and Genetic Features of Pancreatic Malignancies. Life. 2025; 15(4):635. https://doi.org/10.3390/life15040635
Chicago/Turabian StylePotievskiy, Mikhail B., Lidia A. Nekrasova, Ivan V. Korobov, Ekaterina A. Bykova, Ruslan I. Moshurov, Pavel V. Sokolov, Peter A. Shatalov, Natalia A. Falaleeva, Leonid O. Petrov, Vladimir S. Trifanov, and et al. 2025. "Prognostic Impact of Phenotypic and Genetic Features of Pancreatic Malignancies" Life 15, no. 4: 635. https://doi.org/10.3390/life15040635
APA StylePotievskiy, M. B., Nekrasova, L. A., Korobov, I. V., Bykova, E. A., Moshurov, R. I., Sokolov, P. V., Shatalov, P. A., Falaleeva, N. A., Petrov, L. O., Trifanov, V. S., Ivanov, S. A., Shegai, P. V., & Kaprin, A. D. (2025). Prognostic Impact of Phenotypic and Genetic Features of Pancreatic Malignancies. Life, 15(4), 635. https://doi.org/10.3390/life15040635