Investigation of Cytotoxic, Antioxidant, Apoptotic/Necrotic Activity of Aquilaria agallocha Root Extract and Determination of Gene Expression Levels in HepG2, MCF-7 Cancer Cell Lines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Herbal Material
2.2. Extract Preparation
2.3. Identification of the Components of Phytochemicals
2.4. Cell Culture and MTT Assay
2.5. Determination of Apoptotic/Necrotic Activity
2.6. Determination of Antioxidant Activity by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Capacity
2.7. RNA Isolation and cDNA Synthesis
2.8. Quantitative Real-Time Polymerase Chain Reaction
2.9. Statistical Analysis
3. Results
3.1. Quantitative Analysis of Individual Bioactive Components
3.2. Cytotoxic Activity
3.3. Double Staining (Hoechst 33342 and Propidium Iodide) Method
3.4. Antioxidant Activity
3.5. Expressions of Bcl-2, p53 and Bax Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yokuş, B.; Çakır, D.Ü. Kanser Biyokimyası. Dicle Üniversitesi Vet. Fakültesi Derg. 2012, 1, 7–18. [Google Scholar]
- Roy, N.K.; Deka, A.; Bordoloi, D.; Mishra, S.; Kumar, A.P.; Sethi, G.; Kunnumakkara, A.B. The potential role of boswellic acids in cancer prevention and treatment. Cancer Lett. 2016, 377, 74–86. [Google Scholar] [CrossRef]
- Purut, H.P.; Köse, B.G.; Akbal, Y.; Özdemir, V.A.; Çol, B.K. Kemoterapi Alan Kanser Hastalarında Görülen Semptomlar ve Tamamlayıcı Terapi Uygulamaları Kullanımları. Sağlık Akad. Derg. 2022, 9, 211–219. [Google Scholar] [CrossRef]
- Akyolcu, N.; Özhanlı, Y.; Kandemir, D. Meme Kanserinde Güncel Gelişmeler. Sağlık Bilim. Ve Meslekleri Derg. 2019, 6, 583–594. [Google Scholar] [CrossRef]
- Gençtürk, N. MEME KANSERİNDE KORUNMA. J. Anatolia Nurs. Health Sci. 2010, 10, 72–82. [Google Scholar]
- Khan, M.I.; Bouyahya, A.; Hachlafi, N.E.L.; Menyiy, N.E.; Akram, M.; Sultana, S.; Zengin, G.; Ponomareva, L.; Shariati, M.A.; Ojo, O.A.; et al. Anticancer properties of medicinal plants and their bioactive compounds against breast cancer: A review on recent investigations. Environ. Sci. Pollut. Res. 2022, 29, 24411–24444. [Google Scholar] [CrossRef] [PubMed]
- London, W.T.; Petrick, J.L.; McGlynn, K.A. Liver Cancer. In Cancer Epidemiology and Prevention, 4th ed.; Thun, M.J., Linet, M.S., Cerhan, J.R., Haiman, C.A., Schottenfeld, D., Eds.; Oxford University Press: New York, NY, USA, 2018; pp. 635–660. [Google Scholar]
- Weyergang, A.; Berstad, M.E.B.; Bull-Hansen, B.; Olsen, C.E.; Selbo, P.K.; Berg, K. Photochemical activation of drugs for the treatment of therapy-resistant cancers. Photochem. Photobiol. Sci. Off. J. Eur. Photochem. Assoc. Eur. Soc. Photobiol. 2015, 14, 1465–1475. [Google Scholar] [CrossRef]
- Stubblefield, M.D. The Underutilization of Rehabilitation to Treat Physical Impairments in Breast Cancer Survivors. PM R 2017, 9, S317–S323. [Google Scholar] [CrossRef]
- Stöcker, A.; Mehnert-Theuerkauf, A.; Hinz, A.; Ernst, J. Utilization of complementary and alternative medicine (CAM) by women with breast cancer or gynecological cancer. PloS One 2023, 18, e0285718. [Google Scholar] [CrossRef] [PubMed]
- Ramawat, K.G.; Goyal, S. The Indian Herbal Drugs Scenario in Global Perspectives. In Bioactive Molecules and Medicinal Plants; Ramawat, K.G., Merillon, J.M., Eds.; Springer: Berlin, Heidelberg, 2008; pp. 325–347. ISBN 978-3-540-74603-4. [Google Scholar]
- Korinek, M.; Wagh, V.D.; Lo, I.-W.; Hsu, Y.-M.; Hsu, H.-Y.; Hwang, T.-L.; Wu, Y.-C.; Cheng, Y.-B.; Chen, B.-H.; Chang, F.-R. Antiallergic Phorbol Ester from the Seeds of Aquilaria malaccensis. Int. J. Mol. Sci. 2016, 17, 398. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.N.; Maulidiani, M.; Akhtar, M.T.; Abas, F.; Ismail, I.S.; Khatib, A.; Ali, N.A.M.; Shaari, K. Discriminative Analysis of Different Grades of Gaharu (Aquilaria malaccensis Lamk.) via 1H-NMR-Based Metabolomics Using PLS-DA and Random Forests Classification Models. Mol. Basel Switz. 2017, 22, E1612. [Google Scholar] [CrossRef] [PubMed]
- Dyary, H.O.; Arifah, A.K.; Sharma, R.S.; Rasedee, A.; Mohd-Aspollah, M.S.; Zakaria, Z.A.; Zuraini, A.; Somchit, M.N. Antitrypanosomal screening and cytotoxic effects of selected medicinal plants. Trop. Biomed. 2014, 31, 89–96. [Google Scholar] [PubMed]
- Devi, T.B.; Ahmaruzzaman, M. Bioinspired Green and Facile Fabrication of Au@Ag@AgCl Hybrid Nanoparticles and Their Catalytic and Antimicrobial Properties. ChemistrySelect 2017, 2, 5950–5957. [Google Scholar] [CrossRef]
- Ingle, K.P.; Deshmukh, A.G.; Padole, D.A.; Dudhare, M.S.; Moharil, M.P.; Khelurkar, V.C. Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. J. Pharmacogn. Phytochem. 2017, 6, 32–36. [Google Scholar]
- Stockert, J.C.; Blázquez-Castro, A.; Cañete, M.; Horobin, R.W.; Villanueva, A. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012, 114, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Vanden Berghe, T.; Grootjans, S.; Goossens, V.; Dondelinger, Y.; Krysko, D.V.; Takahashi, N.; Vandenabeele, P. Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods 2013, 61, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Abed, S.N.; Bibi, S.; Jan, M.; Talha, M.; Islam, N.U.; Zahoor, M.; Al-Joufi, F.A. Phytochemical Composition, Antibacterial, Antioxidant and Antidiabetic Potentials of Cydonia oblonga Bark. Molecules 2022, 27, 6360. [Google Scholar] [CrossRef] [PubMed]
- Jamovi—Open Statistical Software for the Desktop and Cloud. Available online: https://www.jamovi.org/ (accessed on 14 January 2025).
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 14 January 2025).
- Fox, J.; Weisberg, S.; Price, B.; Adler, D.; Bates, D.; Baud-Bovy, G.; Bolker, B.; Ellison, S.; Firth, D.; Friendly, M.; et al. car: Companion to Applied Regression 2024. Available online: https://r-forge.r-universe.dev/car (accessed on 12 December 2024).
- Wickham, H.; Chang, W.; Henry, L.; Pedersen, T.L.; Takahashi, K.; Wilke, C.; Woo, K.; Yutani, H.; Dunnington, D.; van den Brand, T.; et al. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics 2024. Available online: https://ggplot2.tidyverse.org/reference/ggplot2-package.html (accessed on 15 December 2024).
- Patil, I.; Powell, C. ggstatsplot: “ggplot2” Based Plots with Statistical Details 2024. Available online: https://indrajeetpatil.r-universe.dev/ggstatsplot (accessed on 1 December 2024).
- Güveli, H.; Uzsoy, A.; Özlü, T.; Kenger, E.; Ergün, C. Onkoloji Hastalarında Tamamlayıcı ve Alternatif Tıp Kullanım Sıklığının ve Diyet Yaklaşımlarının Belirlenmesi. Avrupa Bilim Ve Teknol. Derg. 2021, 21, 307–312. [Google Scholar] [CrossRef]
- Nahar, J.; Boopathi, V.; Rupa, E.J.; Awais, M.; Valappil, A.K.; Morshed, M.N.; Murugesan, M.; Akter, R.; Yang, D.U.; Mathiyalagan, R.; et al. Protective Effects of Aquilaria agallocha and Aquilaria malaccensis Edible Plant Extracts against Lung Cancer, Inflammation, and Oxidative Stress—In Silico and In Vitro Study. Appl. Sci. 2023, 13, 6321. [Google Scholar] [CrossRef]
- Bhuiyan, M.N.I.; Begum, J.; Bhuiyan, M.N.H. Analysis of essential oil of eaglewood tree (Aquilaria agallocha Roxb.) by gas chromatography mass spectrometry. Bangladesh J. Pharmacol. 2009, 4, 24–28. [Google Scholar] [CrossRef]
- Alam, J.; Mujahid, M.; Badruddeen; Jahan, Y.; Bagga, P.; Rahman, M.A. Hepatoprotective potential of ethanolic extract of Aquilaria agallocha leaves against paracetamol induced hepatotoxicity in SD rats. J. Tradit. Complement. Med. 2017, 7, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Miniyar, P.B.; Chitre, T.S.; Deuskar, H.J.; Karve, S.S.; Jain, K.S. Antioxidant activity of ethyl acetate extract of Aquilaria agallocha on nitrite-induced methaemoglobin formation P. Int. J. Green Pharm. IJGP 2008, 2, 5–7. [Google Scholar] [CrossRef]
- Karkar, B.; Şahin, S.; Bekiz, D.; Akça, B.; Özakın, C. Evaluation of antioxidant films of chitosan with Aquilaria agallocha extract as packaging material. J. Food Sci. 2023, 88, 2571–2582. [Google Scholar] [CrossRef]
- Batubara, R.; Surjanto; Hanum, T.I.; Handika, A.; Affandi, O. The screening of phytochemical and antioxidant activity of agarwood leaves (Aquilaria malaccensis) from two sites in North Sumatra, Indonesia. Biodiversitas J. Biol. Divers. 2020, 21, 4. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.K.; Ezzat, M.O.; Majid, A.S.A.; Majid, A.M.S.A. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Shishodia, S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. 2006, 71, 1397–1421. [Google Scholar] [CrossRef] [PubMed]
- Miles, A.M.; Grisham, M.B. [57] Antioxidant properties of aminosalicylates. In Methods in Enzymology; Oxygen Radicals in Biological Systems Part D; Academic Press: Cambridge, MA, USA, 1994; Volume 234, pp. 555–572. [Google Scholar]
- Lee, H.Y.; Lee, I.-C.; Kwak, J.H.; Kim, T.H. Evaluation of free radical scavenging and pancreatic lipase inhibitory effects of Aquilaria agallocha extracts. Food Sci. Preserv. 2015, 22, 437–442. [Google Scholar] [CrossRef]
- Canlı, K.; Yetgin, A.; Akata, I.; Altuner, E.M. In vitro antimicrobial screening of Aquilaria agallocha roots. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.C.; Manohar, S.M.; Katchi, V.I.; Rao, A.J.; Moghe, A. (PDF) Ethanolic Stem Extract of Excoecaria agallocha Induces G1 Arrest or Apoptosis in Human Lung Cancer Cells Depending on Their P53 Status. Taiwania 2012, 52, 89–92. [Google Scholar] [CrossRef]
- Patra, J.; Mohapatra, A.; Rath, S.; Dhal, N.K.; Thatoi, H. Screening of antioxidant and antifilarial activity of leaf extracts of Excoecaria agallocha L. Int. J. Integr. Biol. 2009, 7, 9–15. [Google Scholar]
- Wang, S.; Yu, Z.; Wang, C.; Wu, C.; Guo, P.; Wei, J. Chemical Constituents and Pharmacological Activity of Agarwood and Aquilaria Plants. Molecules 2018, 23, 342. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, S.; Cai, Q.; Miao, J.; Li, J. Antioxidant Capacity and Protective Effects on H2O2-Induced Oxidative Damage in PC12 Cells of the Active Fraction of Brassica rapa L. Available online: http://ouci.dntb.gov.ua/en/works/9jA6MAVl/ (accessed on 3 December 2024).
- Kim, Y.C.; Lee, E.H.; Lee, Y.M.; Kim, H.K.; Song, B.K.; Lee, E.J.; Kim, H.M. Effect of the aqueous extract of Aquilaria agallocha stems on the immediate hypersensitivity reactions. J. Ethnopharmacol. 1997, 58, 31–38. [Google Scholar] [CrossRef] [PubMed]
Primer | Base Sequence (5′-3′) |
---|---|
GAPDH R | GAA GAT GGT GAT GGG ATT TC |
GAPDH F | GAA GGT GAA GGT CGG AGT C |
Bax R | GAG CTA GGG TCA GAG GGT CA |
Bax F | CCA CGA TTC ATC TAC CCT GC |
Bcl-2 R | CTG TGT TGA ACA GGC CAC G |
Bcl-2 F | GAA GGT TTC CTC GTC CCT GG |
p53 R | CAT CCA AAT ACT CCA CAC GCA A |
p53 F | GCT GCT CAG ATA GCG ATG GTC T |
Compound | Amount (µg) |
---|---|
Gallic Acid | 12.67 |
Vanillic Acid + Caffeic Acid | 5 |
Rosmarinic Acid | 435.67 |
Catechin | 10.48 |
Naringin | 134 |
Rutin | 21.67 |
Myricetin | 6 |
Naringenin | 28 |
Kaempferol | 3.33 |
MCF-7 Cell Line | |||
Agent | A. agallocha hexane extract | A. agallocha methanol extract | A. agallocha acetone extract |
IC50 | 467.6715 μg/mL | 719.8459 μg/mL | 734.9562 μg/mL |
HepG2 Cell Line | |||
Agent | A. agallocha hexane extract | A. agallocha methanol extract | A. agallocha acetone extract |
IC50 | 753.9799 μg/mL | 733.3376 μg/mL | 1102.999 μg/mL |
Concentrations | Solution %DPPH Reduction | |||
---|---|---|---|---|
Methanol | Hexane | Acetone | dH2O | |
12.5 µg/mL | 0.4 ± 1.3 | 0.50 ± 0.121 | 0.5 ± 7 | 0.0005 ± 0.0013 |
25 µg/mL | 0.95 ± 0.75 | 1.01 ± 0.631 | 1 ± 6.5 | 0.001 ± 0.0008 |
50 µg/mL | 1.9 ± 0.2 | 0.002 ± 0.377 | 2 ± 5.5 | 0.002 ± 0.0002 |
100 µg/mL | 3.8 ± 2.1 | 0.004 ± 0.375 | 4 ± 3.5 | 0.004 ± 0.0022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalkılıç, S.; Kadıoğlu Dalkılıç, L.; İsbenov, E.; Uygur, L.; Taşdemir, C. Investigation of Cytotoxic, Antioxidant, Apoptotic/Necrotic Activity of Aquilaria agallocha Root Extract and Determination of Gene Expression Levels in HepG2, MCF-7 Cancer Cell Lines. Life 2025, 15, 651. https://doi.org/10.3390/life15040651
Dalkılıç S, Kadıoğlu Dalkılıç L, İsbenov E, Uygur L, Taşdemir C. Investigation of Cytotoxic, Antioxidant, Apoptotic/Necrotic Activity of Aquilaria agallocha Root Extract and Determination of Gene Expression Levels in HepG2, MCF-7 Cancer Cell Lines. Life. 2025; 15(4):651. https://doi.org/10.3390/life15040651
Chicago/Turabian StyleDalkılıç, Semih, Lütfiye Kadıoğlu Dalkılıç, Elgun İsbenov, Lütfü Uygur, and Ceydanur Taşdemir. 2025. "Investigation of Cytotoxic, Antioxidant, Apoptotic/Necrotic Activity of Aquilaria agallocha Root Extract and Determination of Gene Expression Levels in HepG2, MCF-7 Cancer Cell Lines" Life 15, no. 4: 651. https://doi.org/10.3390/life15040651
APA StyleDalkılıç, S., Kadıoğlu Dalkılıç, L., İsbenov, E., Uygur, L., & Taşdemir, C. (2025). Investigation of Cytotoxic, Antioxidant, Apoptotic/Necrotic Activity of Aquilaria agallocha Root Extract and Determination of Gene Expression Levels in HepG2, MCF-7 Cancer Cell Lines. Life, 15(4), 651. https://doi.org/10.3390/life15040651