An Examination of the Ethnobotanical, Phytochemical, Antimicrobial, and Biological Properties of Zygophyllum coccineum, Emphasizing Its Potential as a Valuable Forage Shrub
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Employed the Following Materials and Reagents:
2.2. Bacterial and Fungal Strains
2.3. Plant Material Collection and Preparation
2.3.1. Collection of Shrub
2.3.2. Ethnobotanical Verification
2.4. Extraction Processes
2.4.1. Water Extraction
2.4.2. Organic-Solvent Extraction
2.5. Phytochemical Analysis
2.5.1. Evaluation of Phenolic Compounds
2.5.2. Determination of Total Flavonoid Content
2.5.3. GC-MS Analysis
2.6. Biological Assays (Antioxidant, Antimicrobial, and Anticancer Evaluations)
2.6.1. Antioxidant Activity Evaluation
2.6.2. Cell Viability Assay
2.6.3. Antimicrobial Activity Evaluation
2.6.4. Determination of Minimum Inhibitory Concentration (MIC)
2.6.5. Determination of Minimum Bactericidal/Fungicidal Concentration (MBC/MFC)
2.7. Statistical Analysis
3. Results
3.1. Determination of Phenolic and Flavonoid Content of Zygophyllum coccineum
3.2. GC-MS Profile of Zygophyllum coccineum
- Undecane (RT = 5.927 min): A volatile, low-molecular-weight hydrocarbon detected with moderate abundance (Area = 249,400 Ab*s). Its early elution suggests its volatile nature.
- n-Hexadecanoic acid (RT = 12.338 min): A commonly occurring fatty acid in plant extracts with known biological properties. It was relatively abundant (Area = 979,229 Ab*s), and was identified with a high confidence score of 99.
- Cyclopentane-3′-spirotricyclo [3.1.0.0(2,4)] hexane-6′-spirocyclopentane (RT = 13.552 min): The most abundant compound in the extract, accounting for the majority of the phytochemical content (Area = 22,662,616 Ab*s).
- Bergamotol, Z-α-trans- (RT = 14.828 min): Another significant compound, detected with moderate abundance (Area = 1,715,991 Ab*s).
3.3. Antioxidant Scavenging Activity
3.4. Cytotoxic Activity
3.5. Antimicrobial Activity
3.6. Antimicrobial Assay: MIC and MBC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. P T A Peer-Rev. J. Formul. Manag. 2015, 40, 277–283. [Google Scholar]
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Antibiotic resistance is the quintessential One Health issue. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 1981 to 2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.A.; Khan, A.A.; Al-Qahtani, M.F.; Alameen, N.M. Exploration of medicinal plants native to the Arabian Peninsula. Saudi Pharm. J. 2022, 30, 194–204. [Google Scholar]
- Saleh, A.M.; Abdallah, S.M.; Haroun, S.A. Phytochemical investigation of desert plants: A review. Curr. Top. Med. Chem. 2021, 21, 1864–1881. [Google Scholar]
- Al-Kahtani, M.D. Ethnobotanical uses of native plants in Saudi Arabia. J. Ethnopharmacol. 2014, 155, 54–64. [Google Scholar]
- Mansour, E.A.; Ameen, M.S.; Al-Shammari, A.R. Phytochemical and ethnomedicinal relevance of Zygophyllaceae plants. J. Nat. Med. 2019, 73, 247–267. [Google Scholar]
- Khare, C.P. Indian Medicinal Plants: An Illustrated Dictionary; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Bishr, M.; Ateya, A.; Ali, S. Antidiabetic and anti-inflammatory effects of Zygophyllum coccineum extracts. BMC Complement. Med. Ther. 2018, 18, 123. [Google Scholar]
- Elsharkawy, M.M.; Al-Sodany, Y.M.; Zayed, E.M. Antimicrobial properties of desert plants in arid ecosystems. Saudi J. Biol. Sci. 2020, 27, 741–749. [Google Scholar]
- Abdel-Ghani, S.; Ezzat, S.M.; Youssef, F.S. Genetic diversity and ecological adaptation of halophytic species in the Middle East. Environ. Sci. Pollut. Res. 2020, 27, 26273–26284. [Google Scholar]
- Thakur, R.; Jain, N.; Pathak, R.; Sandhu, S.S. Practices in wound healing studies of plants. Evid.-Based Complement. Altern. Med. 2011, 2011, 438056. [Google Scholar] [CrossRef] [PubMed]
- Noman, O.M.; El-Sayed, M.F.; Al-Said, M.S.; Khaled, J.M.; Alqasoumi, S.I.; Al-Dosari, M.S. Phytochemical analysis, microbial evaluation, and molecular interaction of major compounds of Centaurea bruguieriana using HPLC-spectrophotometric analysis and molecular docking. Appl. Sci. 2022, 12, 3227. [Google Scholar] [CrossRef]
- Nasr, F.A.; Sayed, A.A.; Alqahtani, A.S.; Alqahtani, F. Phytochemical constituents and anticancer activities of Tarchonanthus camphoratus essential oils grown in Saudi Arabia. Saudi Pharm. J. 2020, 28, 1474–1480. [Google Scholar] [CrossRef]
- Alqahtani, A.S.; Herqash, R.N.; Ahamad, S.R.; Noman, O.M. GC-MS method for quantification and pharmacokinetic study of four volatile compounds in rat plasma after oral administration of Commiphora myrrh (Nees) Engl. Resin and in vitro cytotoxic evaluation. Separations 2021, 8, 239. [Google Scholar] [CrossRef]
- AlZain, M.N.; Albarakaty, F.M.; El-Desoukey, R.M.A. Ethnobotanical, phytochemical analysis, antimicrobial, and biological studies of Pulicaria crispa as a promising grazing shrub. Life 2023, 13, 2197. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Middleton, E.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000, 52, 673–751. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef]
- El-Ghazaly, M.A.; Salama, A.M.; El-Wakil, E.A. Antioxidant properties of Zygophyllum album extracts. J. Ethnopharmacol. 2020, 247, 112–127. [Google Scholar]
- Abd El-Razek, M.H.; El-Mohandes, E.M.; Hafez, S.E. Phenolic content and antioxidant activity of Zygophyllum simplex. Food Chemistry 2017, 218, 66–72. [Google Scholar]
- Fulda, S.; Galluzzi, L.; Kroemer, G.; Debatin, K.M. Molecular mechanisms of apoptosis induced by anticancer drugs in melanoma. Biochim. Biophys. Acta (BBA)—Mol. Cell Res. 2010, 1797, 129–141. [Google Scholar]
- Kandaswami, C.; Lee, L.T.; Lee, P.P.; Hwang, J.J.; Ke, F.C.; Huang, Y.T.; Lee, M.T. Flavonoids as antioxidants and anticancer agents. Antioxid. Redox Signal. 2005, 7, 806–823. [Google Scholar]
- Ali, M.; Al-Dosari, M.S.; Noman, O.M.; Alqahtani, A.S. Cytotoxic activity of polar fractions of Zygophyllum coccineum. Planta Medica 2015, 81, 936–944. [Google Scholar]
- CLSI Document M07-A9; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2012.
- Al-Snafi, A.E. The pharmacological activities of Zygophyllum species: A review. Int. J. Pharm. Sci. Res. 2018, 9, 98–107. [Google Scholar]
- Niero, R.; Machado-Santelli, G.M. Apoptosis: A therapeutic target for cancer treatment. J. Biomed. Sci. 2013, 20, 1–13. [Google Scholar]
Shrub | Total Phenol mg GAE/g of Dry Extract | Total Flavonoid mg QE/g of Dry Extract |
---|---|---|
Zygophyllum coccineum | 156.15 ± 0.018 | 18.5 ± 0.013 |
Compound | RT (min) | Putative Compound Name | Mol Weight (amu) | Area (Ab*s) | % Abundance | Confidence Score |
---|---|---|---|---|---|---|
1 | 5.927 | Undecane | 156.188 | 249,400 | 0.47% | 87 |
2 | 6.583 | 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- | 144.042 | 585,141 | 1.10% | 72 |
3 | 7.835 | 5-Acetoxymethyl-2-furaldehyde | 168.042 | 301,778 | 0.57% | 35 |
4 | 9.642 | 6,8-Dioxa-3-thiabicyclo(3,2,1)octane 3,3-dioxide | 164.014 | 3,184,450 | 5.99% | 47 |
5 | 10.556 | Bicyclo[4.4.0]dec-1-ene, 2-isopropyl-5-methyl-9-methylene- | 204.188 | 302,011 | 0.57% | 90 |
6 | 10.881 | Bicyclo[3.1.1]heptane-2-carboxaldehyde, 6,6-dimethyl- | 152.12 | 541,087 | 1.02% | 38 |
7 | 11.225 | Glutaconic acid | 130.027 | 379,218 | 0.71% | 43 |
8 | 11.613 | Cyclooctene, 3-methyl- | 124.125 | 956,690 | 1.80% | 41 |
9 | 11.894 | 2-Propenoic acid, 2-methyl-, 1,2-ethanediylbis(oxy-2,1-ethanediyl) ester | 286.142 | 519,131 | 0.98% | 80 |
10 | 12.094 | 1,3-Dithiane, 2,2-dimethyl- | 148.038 | 496,420 | 0.93% | 41 |
11 | 12.338 | n-Hexadecanoic acid | 256.24 | 979,229 | 1.84% | 99 |
12 | 12.551 | Diazoprogesterone | 338.247 | 535,236 | 1.01% | 38 |
13 | 12.745 | 1,5-Cyclooctadiene, 3,4-dimethyl- | 136.125 | 3,108,471 | 5.85% | 58 |
14 | 12.883 | cis-α-Bisabolene | 204.188 | 285,721 | 0.54% | 58 |
15 | 13.152 | Propanoic acid, 2-methyl-, 2-[3-[(acetyloxy)methyl]oxiranyl]-5-methylphenyl ester | 292.131 | 2,741,721 | 5.17% | 27 |
16 | 13.552 | Putative Cyclopentane-3′-spirotricyclo[3.1.0.0(2,4)]hexane-6′-spirocyclopentane | 188.157 | 22,662,616 | 42.60% | 64 |
17 | 13.790 | Spiro[2.4]heptane, 4-methylene- | 108.094 | 3,161,261 | 5.95% | 58 |
18 | 14.202 | Hexanoic acid, but-3-yn-2-yl ester | 168.115 | 775,810 | 1.46% | 43 |
19 | 14.609 | Cyclohexene, 1-methyl-4-(5-methyl-1-methylene-4-hexenyl)-, (S)- | 204.188 | 682,688 | 1.28% | 49 |
20 | 14.828 | Bergamotol, Z-α-trans- | 220.183 | 1,715,991 | 3.23% | 50 |
Cell Lines | ZC Fractions IC50 (µg/mL) | |||||
---|---|---|---|---|---|---|
Crude | Hex | CHCl3 | EtoAc | ButOH | Doxorubicin | |
A549 | 252.1 ± 4.2 | 389.6 ± 3.6 | 315.3 ± 4.5 | 190.7 ± 2.1 | 211.8 ± 0.8 | 3.52 ± 0.05 |
MCF-7 | 250 ± 2.4 | 418.5 ± 2.5 | 331.9 ± 2.5 | 119.3 ± 1.2 | 204.4 ± 3.6 | 2.5 ± 0.03 |
Pathogens | S. aureus ATCC 29213 | E. faecalis ATCC 29212 | E. coli ATCC 25922 | S. typhimurium ATCC 14028 | C. albicans ATCC 60193 | C. tropicalis ATCC 66029 |
---|---|---|---|---|---|---|
Extracts | ||||||
But | 0 | 0 | 11.26 ± 0.25 | 0 | 0 | 0 |
EtOAC | 17.23 ± 0.25 | 14.3 ± 0.26 | 14.23 ± 0.25 | 12.23 ± 0.20 | 23.23 ± 0.25 | 19.23 ± 0.25 |
CHCL3 | 11.13 ± 0.15 | 0 | 0 | 0 | 0 | 0 |
Hex | 10.23 ± 0.25 | 11.26 ± 0.25 | 12.26 ± 0.25 | 11.23 ± 0.30 | 0 | 0 |
CM | 16.2 ± 0.26 | 0 | 15.03 ± 0.25 | 13.1 ± 0.2 | 13.2 ± 0.2 | 11.36 ± 0.32 |
E | 0 | 10.16 ± 0.15 | 14.2 ± 0.2 | 11.16 ± 0.35 | 14.3 ± 0.20 | 13.2 ± 0.26 |
A | 11.26 ± 0.25 | 0 | 17.33 ± 0.35 | 0 | 20.23 ± 0.32 | 14.46 ± 0.30 |
HA | 11.5 ± 0.2 | 0 | 19.3 ± 0.26 | 12.33 ± 0.35 | 16.4 ± 0.2 | 13.5 ± 0.2 |
CA | 0 | 0 | 0 | 0 | 0 | 0 |
C-VE (D.W.) | 0 | 0 | 0 | 0 | 0 | 0 |
C+VE/Cipro | 21.5 ± 0.5 | 18.3 ± 0.2 | 19.83 ± 0.76 | 18.37 ± 0.35 | U | U |
C+VE/Ny | U | U | U | U | 18.17 ± 0.15 | 19.87 ± 0.15 |
Extracts | EtOAC | Hex | CHCL3 | CM | E | A | But | HA | CA | C-VE (D.W) | C+VE/Cipro | C+VE/Ny |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pathogens | ||||||||||||
Ps. aeruginosa | 22.3 ± 0.26 | 0 | 0 | 0 | 0 | 0 | 0 | 12.23 ± 0.25 | 0 | 0 | 31.23 ± 0.25 | U |
E coli | 14.26 ± 0.25 | 11.16 ± 0.15 | 16.26 ± 0.25 | 15.46 ± 0.45 | 13.16 ± 0.30 | 11.4 ± 0.4 | 10.4 ± 0.26 | 18.4 ± 0.3 | 0 | 0 | 19.23 ± 0.21 | U |
E. faecium | 12.26 ± 0.25 | 0 | 10.16 ± 0.30 | 13.16 ± 0.15 | 0 | 0 | 11.4 ± 0.03 | 0 | 0 | 0 | 35.3 ± 0.3 | U |
S. typhimurium | 11.4 ± 0.26 | 10.26 ± 0.25 | 0 | 12.46 ± 0.45 | 10.16 ± 0.15 | 0 | 0 | 11.16 ± 0.30 | 0 | 0 | 30.13 ± 0.32 | U |
K. pneumoniae | 18.26 ± 0.25 | 0 | 0 | 15.23 ± 0.22 | 14.4 ± 0.26 | 13.16 ± 0.20 | 0 | 14.16 ± 0.15 | 0 | 0 | 34.2 ± 0.2 | U |
B. cereus | 15.4 ± 0.4 | 0 | 11.16 ± 0.15 | 17.4 ± 0.03 | 13.26 ± 0.25 | 19.4 ± 0.26 | 0 | 19.46 ± 0.45 | 0 | 0 | 34.1 ± 0.2 | U |
Streptococcus pyogenes | 13.26 ± 0.25 | 0 | 0 | 0 | 11.46 ± 0.45 | 0 | 12.16 ± 0.30 | 10.26 ± 0.25 | 0 | 0 | R | U |
S. aureus | 16.26 ± 0.25 | 11.23 ± 0.22 | 0 | 0 | 0 | 12.4 ± 0.26 | 0 | 13.3 ± 0.26 | 0 | 0 | 25.37 ± 0.40 | U |
C albicans | 22.4 ± 0.26 | 0 | 0 | 13.4 ± 0.03 | 14.46 ± 0.45 | 20.16 ± 0.15 | 0 | 15.16 ± 0.20 | 0 | 0 | U | 16.33 ± 0.31 |
Examined Strains | Concentrations of Ethyl acetate Extract (mg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
5 | 25 | 50 | 75 | 100 | 150 | MIC | MBC/MFC | |
Ps. aeruginosa | _ | _ | _ | _ | _ | _ | 5 mg/mL | 25 mg/mL |
E coli | + | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
E. faecium | ++ | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
S. typhimurium | ++ | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
K. pneumoniae | _ | _ | _ | _ | _ | _ | 5 mg/mL | 25 mg/mL |
B. cereus | + | _ | _ | _ | _ | _ | 25 mg/mL | 50 mg/mL |
Streptococcus pyogenes | + | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
S. aureus | + | _ | _ | _ | _ | _ | 25 mg/mL | 50 mg/mL |
C. albicans | _ | _ | _ | _ | _ | _ | 5 mg/mL | 25 mg/mL |
S. aureus ATCC 29213 | _ | _ | _ | _ | _ | _ | 5 mg/mL | 25 mg/mL |
E. faecalis ATCC 29212 | + | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
E. coli ATCC 25922 | + | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
S. typhimurium ATCC 14028 | ++ | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
C. albicans ATCC 60193 | _ | _ | _ | _ | _ | _ | 5 mg/mL | 25 mg/mL |
C. tropicalis ATCC 6602 | + | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albarakaty, F.M.; AlZain, M.N.; El-Desoukey, R.M.A. An Examination of the Ethnobotanical, Phytochemical, Antimicrobial, and Biological Properties of Zygophyllum coccineum, Emphasizing Its Potential as a Valuable Forage Shrub. Life 2025, 15, 661. https://doi.org/10.3390/life15040661
Albarakaty FM, AlZain MN, El-Desoukey RMA. An Examination of the Ethnobotanical, Phytochemical, Antimicrobial, and Biological Properties of Zygophyllum coccineum, Emphasizing Its Potential as a Valuable Forage Shrub. Life. 2025; 15(4):661. https://doi.org/10.3390/life15040661
Chicago/Turabian StyleAlbarakaty, Fawziah M., Mashail N. AlZain, and Rehab M. A. El-Desoukey. 2025. "An Examination of the Ethnobotanical, Phytochemical, Antimicrobial, and Biological Properties of Zygophyllum coccineum, Emphasizing Its Potential as a Valuable Forage Shrub" Life 15, no. 4: 661. https://doi.org/10.3390/life15040661
APA StyleAlbarakaty, F. M., AlZain, M. N., & El-Desoukey, R. M. A. (2025). An Examination of the Ethnobotanical, Phytochemical, Antimicrobial, and Biological Properties of Zygophyllum coccineum, Emphasizing Its Potential as a Valuable Forage Shrub. Life, 15(4), 661. https://doi.org/10.3390/life15040661