Primary Hyperparathyroidism: An Analysis Amid the Co-Occurrence of Type 2 Diabetes Mellitus
Abstract
:1. Introduction
Objective
2. Methods
3. Results
3.1. Sample-Focused Analysis
3.2. Analysis of T2DM Prevalence/Incidence in Primary Hyperparathyroidism
3.3. Prediabetes and Insulin Resistance in Patients with Primary Hyperparathyroidism
3.4. Glucose Profile Assays (Fasting Glycaemia, Insulin and HBA1c) in Primary Hyperparathyroidism
3.5. 75-g Oral Glucose Tolerance Testing in Individuals with Primary Hyperparathyroidism
3.6. Primary Hyperparathyroidism: Specific Considerations in the Field of Insulin Resistance and Insulin Sensitivity
3.7. Identifying Metabolic Syndrome in Individuals with Primary Hyperparathyroidism
3.8. Impact of Parathyroidectomy on Glucose Metabolism
4. Discussion
4.1. The Interplay Between PTH and the Metabolic Profile, Including Hormonal Glucose Regulation
4.2. Should Parathyroidectomy Be Indicated Based on the Presence of T2DM?
4.3. Glucose-Related Insights into Novel Forms of PHPT (Normocalcemic Variant)
4.4. Limits and Further Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADA | American Diabetes Association |
AUC | aria under curve |
BMI | body mass index |
CI | confidence interval |
EGIR | European Group for the Study of Insulin Resistance |
F | female |
F:M | female-to-male ratio |
GLP-1 | glucagon-like peptide 1 |
GIP | gastric inhibitory polypeptide |
iCa | ionized serum calcium |
IQR | interquartile range |
IGT | impaired glucose tolerance |
IR | incidence rate |
IDF | International Diabetes Federation |
IFG | impaired fasting glycaemia |
IGT | impaired glucose tolerance |
M | male |
HCPHPT | hypercalcaemic primary hyperparathyroidism |
HOMA-IR | Homeostatic Model Assessment for Insulin Resistance |
HOMA-B% | Homeostasis Model Assessment of Beta-cell function |
HOMA-S% | Homeostatic Model Assessment for Insulin Sensitivity |
HbA1c | glycated haemoglobin A1c |
HR | hazard ratio |
25OHD | 25-hydroxyvitamin D |
MetS | metabolic syndrome |
NCPHPT | normocalcemic primary hyperparathyroidism |
N | number of patients |
n | number of studies |
NA | not available |
OGTT | 75-g oral glucose tolerance test |
QUICKI | Quantitative Insulin Sensitivity Check Index |
PHPT | primary hyperparathyroidism |
PTH | parathyroid hormone |
PTx | parathyroidectomy |
P | serum phosphorus |
PO4 | serum phosphate |
SD | standard deviation |
T2DM | type 2 diabetes mellitus |
tCa | total serum calcium |
vs. | versus |
y | years |
WHO | World Health Organisation |
Appendix A
Reference | Main Findings |
---|---|
[26] | Median (IQR) for HbA1c (%) in N2 vs. N3: 5.4 (5.3–5.8) vs. 6.3 (5.8–7.9); p = 0.008 |
[28] | Preoperative vs. 3 mo vs. 6 mo vs. 1 y: Prevalence of prediabetes:32% vs. 39% vs. 35% vs. 35%, p = 0.555 Fasting glucose: 0.98 ± 0.11 vs. 0.98 ± 0.12 vs. 0.97 ± 0.12 vs. 0.98 ± 0.15 g/L, p = 0.573 Fasting insulin: 13.2 ± 9.9 vs. 13.2 ± 11 vs. 12.5 ± 8.7 vs. 12.3 ± 7.5 mUI/L, p = 0.0.82 HOMA-IR: Overall: 3.29 ± 2.79 vs. 3.28 ± 2.86 vs. 3.12 ± 2.49 vs. 3.07 ± 2.13, p = 0.514 N with prediabetes: 4.79 ± 3.49 vs. 4.51 ± 3.54 vs. 4.20 ± 2.56 vs. 4.10 ± 2.38, p = 0.040 N without prediabetes: 2.57 ± 2.03 vs. 2.66 ± 2.21 vs. 2.61 ± 2.29 vs. 2.58 ± 1.80, p = 0.933 N with IR: 5.16 ± 3.14 vs. 4.83 ± 3.43 vs. 4.39 ± 2.77 vs. 4.31 ± 2.33, p = 0.002 N without IR: 1.65 ± 0.48 vs. 1.91 ± 1.02 vs. 1.96 ± 1.45 vs. 1.99 ± 1.11, p = 0.001 N with IR according to EGIR: 4.25 ± 2.97 vs. 4.06 ± 3.16 vs. 3.80 ± 2.60 vs. 3.76 ± 2.24, p = 0.016 N without IR according to EGIR: 1.36 ± 0.34 vs. 1.76 ± 1.11 vs. 1.71 ± 1.44 vs. 1.69 ± 0.82, p = 0.001 HOMA-B% Preoperative vs. 3 mo vs. 6 mo vs. 1 y: 140 ± 96 vs. 143 ± 117 vs. 135 ± 85 vs. 133 ± 74, p = 0.202 Correlations between change in HOMA-IR (preoperative vs. post-operative) and Ca: r = −0.173, p = 0.008 No correlation with the following: PTH: r = −0.006, p = 0.927 25OHD: r = −0.034, p = 0.607 |
[30] | N1 preoperative vs. post-operative Fasting plasma glucose: 5.10 (4.81–5.24) vs. 4.69 (4.48–5.00) mmol/L, p = 0.031 HbA1c (%): 5.30 (5.10–5.50) vs. 5.60 (5.30–5.80), p = 0.001 AUC Insulin phase 1:657 (426–862) vs. 501 (339–768), p = 0.163 AUC Insulin phase 2: 1121 (917–1320) vs. 982 (806–1375) p = 0.044 Peptide C: AUC phase 1: 63.2 (47.5–73.5) vs. 53.9 (44.2–71.0) p = 0.679 AUC phase 2: 161 (149–193) vs. 169 (139–196), p = 0.737 |
[38] | Preoperative vs. 1 y post-operative Fasting glucose: N: 5.4 ± 0.6 vs. 5.2 ± 0.7 mmol/L, p < 0.001 N1: 5.5 ± 0.7 vs. 5.2 ± 0.9 mmol/L, p > 0.05 N2: 5.4 ± 0.6 vs. 5.2 ± 0.7 mmol/L, p < 0.01 Fasting insulin: N: 9.4 ± 5.7 vs. 7.8 ± 4.9 mIU/L, p < 0.001 N1: 9.8 ± 5.2 vs. 7.8 ± 2.8 mIU/L, p > 0.05 N2: 9.3 ± 5.8 vs. 7.9 ± 5.1 mIU/L, p < 0.01 HOMA-IR N: 2.3 ± 1.6 vs. 1.9 ± 1.3, p < 0.001 N1: 2.5 ± 1.6 vs. 1.9 ± 1.0 p > 0.05 N2: 2.3 ± 1.7 vs. 1.9 ± 1.3 p > 0.05 HOMA-B% N: 99.4 ± 50.7 vs. 94.9 ± 55.9, p > 0.05 N1: 103.3 ± 54.1 vs. 102.2 ± 45.6 p > 0.05 N2: 98.9 ± 50.5 vs. 94.0 ± 57.2 p > 0.05 Adiponectin N: 6.2 ± 3.6 vs. 7.2 ± 3.9 μg/mL, p < 0.001 N1: 5.8 ± 3.5 vs. 6.7 ± 3.3 μg/mL, p < 0.01 N2: 6.3 ± 3.6 vs. 7.3 ± 4.0 μg/mL, p < 0.001 No correlation between Change in Ca albumin-adjusted and change in: Fasting plasma glucose (N: p = 0.96, N1: p = 0.86, N2: p = 0.62) Fasting plasma insulin (N: p = 0.90, N1: p = 0.38, N2: p = 0.69) HOMA-IR (N: p = 0.80, N1: p = 0.58, N2: p = 0.55) HOMA-B (N: p = 0.56, N1: p = 0.34, N2: p = 0.7) Adiponectin (N: p = 0.32, N1: p = 0.35, N2: p = 0.76) Change in PTH and change in: Fasting plasma glucose (N: p = 0.78, N1: p = 0.49, N2: p = 0.88) Fasting plasma insulin (N: p = 0.65, N1: p = 0.76, N2: p = 0.78) HOMA-IR (N: p = 0.76, N1: p = 0.88, N2: p = 0.88) HOMA-B (N: p = 0.84, N1: p = 0.094, N2: p = 0.78) Adiponectin (N: p = 0.70, N1: p = 0.88, N2: p = 0.97) |
[40] | Preoperative vs. post-operative Prevalence of insulin resistance: 32.3% vs. 23.1%, p = 0.031 Fasting plasma glucose: 87.55 ± 7.94 vs. 85.83 ± 7.22 mg/dL, p = 0.01 HbA1c (%) Median (25–75 percentile): 5 (4.65–5.2) vs. 5 (4.45–5.1), p = 0.0001 Insulin: Median (25–75 percentile) insulin: 10.4 (8.9–11.9) vs. 9.8 (8.2–11.07) pmol/L, p = 0.0001 HOMA-IR: 2.21 ± 0.69 vs. 2.02 ± 0.64, p = 0.0001 |
[41] | Preoperative vs. post-operative: Fasting plasma glucose: 90.15 ± 16.28 vs. 92.08 ± 12.61 mg/dL, p = 0.42 Fasting insulin: 8.70 ± 5.36 vs. 9.23 ± 4.57 μIU/mL, p = 0.42 HOMA-IR: 1.14 ± 0.72 vs. 1.22 ± 0.61, p = 0.45 HOMA-B%: 97.53 ± 25.13 vs. 100.31 ± 28.22, p = 0.68 HOMA-S%: 127.74 ± 76.90 vs. 104.51 ± 48.15, p = 0.68 QUICKI: 0.36 ± 0.04 vs. 0.34 ± 0.03, p = 0.08 Matsuda Index: 6.34 ± 3.7 vs. 5.27 ± 2.44, p = 0.06 GLP-1: 74.73 ± 52.33 vs. 59.25 ± 25.67 pg/mL, p = 0.58 GIP: 3.45 (7.43) vs. 9.84 (29.59) pg/mL, p = 0.26 Correlations before PTx Calcium and HOMA-S% r = −0.59, p = 0.03 PTH and: GLP-1 r = 0.79, p = 0.02 HOMA-B% r = 0.74, p = 0.002 HOMA-IR r = 0.43, p = 0.13 Matsuda index r = −0.3, p = 0.30 QUICKI r = −0.32, p = 0.26 Correlations after PTx Calcium and HOMA-S% r = 0.06, p = 0.84 PTH and: GLP-1 r = −0.5, p = 0.71 HOMA-B% r = 0.55, p = 0.04 HOMA-IR r = 0.56, p = 0.04 Matsuda index r = −0.58, p = 0.03 QUICKI r = −0.41, p = 0.04 Similar glucose and insulin response to OGTT before and after PTx |
[44] | N1 vs. N2: Fasting plasma glucose: 119.4 ± 2.8 vs. 118.2 ± 1.8 mg/dL, p = 0.451 2 h post-load: 163.2 ± 3.2 vs. 167.2 ± 3.2 mg/dL, p = 0.371 HbA1c: 5.84 ± 0.0 vs. 5.86 ± 0.0%, p = 0.415 Fasting insulin: 11.0 ± 2.3 vs. 12.8 ± 1.4 µIU/mL, p = 0.731 N1 preoperatively vs. post-operatively: Fasting plasma glucose: 119.4 ± 2.8 vs. 111.2 ± 1.9 (−8.2 ± 0.6) mg/dL, p = 0.021 2 h post-load: 163.2 ± 3.2 vs. 144.4 ± 3.2 (−18.8 ± 0.3) mg/dL, p = 0.041 N1 preoperatively vs. N2 32 w: Fasting plasma glucose: 111.2 ± 1.9 vs. 117.6 ± 2.3 (−6.4 ± 0.7) mg/dL, p = 0.02 2 h post-load: 144.2 ± 3.2 vs 176.2 ± 3.2 (−32 ± 0.4) mg/dL, p < 0.01 |
Reference | Adiponectin | Leptin | Fasting GLP-1 | Fasting GIP |
---|---|---|---|---|
[30] | Median (IQR) N1 vs. N2 7.22 (4.56–8.79) vs. 7.23 (4.81–10.8) μg/mL, p = 0.849 N1 preoperative vs. postoperative 8.08 (6.27–9.71) vs. 7.10 (3.98–10.3) μg/mL, p = 0.059 | Median (IQR) N1 vs. N2 12.5 (4.74–18.8) vs. 7.09 (6.28–11.7) μg/L, p = 0.247 N1 preoperative vs. postoperative 10.8 (4.36–17.6) vs. 12.1 (4.09–24.8) μg/L, p = 0.123 | NA | NA |
[38] | Mean ± SD Preoperative vs. 1 y postoperative N: 6.2 ± 3.6 vs. 7.2 ± 3.9 μ, p < 0.001 N1: 5.8 ± 3.5 vs. 6.7 ± 3.3 μg/mL, p < 0.01 N2: 6.3 ± 3.6 vs. 7.3 ± 4.0 μg/mL, p < 0.001 | NA | NA | NA |
[41] | NA | NA | Mean ± SD Preoperative vs. postoperative 74.73 ± 52.33 vs. 59.25 ± 25.67 pg/mL, p = 0.58 | Median (IQR) Preoperative vs. postoperative 3.45 (7.43) vs. 9.84 (29.59) pg/mL, p = 0.26 |
Reference | Main Findings |
---|---|
[25] | Prevalence of T2DM: N1 vs. N2 vs. N3: 12% vs. 35% vs. 12% N1 vs. N2 p < 0.05 N1 vs. N3 p > 0.05 N2 vs. N3 p < 0.05 Glucose disorders: N1 vs. N3: 6% vs. 9%, p > 0.05 N1 vs. N2: 6% vs. 41%, p < 0.05 Glucose (Mean ± SD): N1 vs. N3: 88 ± 11 vs. 95 ± 22 mg/dL, p > 0.05 N1 vs. N2: 88 ± 11 vs. 113 ± 31 mg/dL, p < 0.05 N2 vs. N3: 113 ± 31 vs. 95 ± 22 mg/dL, p < 0.05 Insulin (Mean ± SD): N1 vs. N3: 5.6 ± 2.9 vs. 11.7 ± 8.4 pmol/L, p > 0.05 N1 vs. N2: 5.6 ± 2.9 vs. 10.0 ± 6 pmol/L, p > 0.05 N2 vs. N3: 10.0 ± 6 vs. 11.7 ± 8.4 pmol/L, p > 0.05 HOMA-IR (Mean ± SD): N1 vs. N3: 1.1 ± 0.5 vs. 2.6 ± 2, p > 0.05 N1 vs. N2: 1.1 ± 0.5 vs. 2.7 ± 1.5 p > 0.05 N2 vs. N3: 2.7 ± 1.5 vs. 2.6 ± 2.0, p > 0.05 Correlation between tCa and glucose in N1 + N2: r = 0.46, p < 0.05 No correlation between tCa or PTH and glucose in N2 No correlation between PTH or iCa and glucose in N1 + N2 |
[36] | Prevalence of prediabetes: N3 vs. N4 vs. N5: 23% (8/35) vs. 39% (36/93) vs. 41% (19/46), p = 0.176 Prevalence of insulin resistance (HOMA-IR > 2.6): N3 vs. N4 vs. N5: 17% (6/35) vs. 43% (40/93) vs. 70% (32/46), p < 0.001 Fasting glucose: N3 vs. N4 vs. N5: 0.961 ± 0.139 vs. 0.985 ± 0.125 vs. 0.995 ± 0.127 g/L, p = 0.473 Fasting insulin: N3 vs. N4 vs. N5: 8.92 ± 5 vs. 13.34 ± 13.76 vs. 17.73 ± 12 mUI/L, p = 0.005 HOMA-IR N3 vs. N4 vs. N5: 2.14 ± 1.29 vs. 3.28 ± 3.2 vs. 4.53 ± 3.51, p = 0.002 HOMA-B% N3 vs. N4 vs. N5: 105.9 ± 57.4 vs. 165.9 ± 348.7 vs. 176.4 ± 107.6, p = 0.447 |
[43] | N1 vs. N2 Fasting plasma glucose: 105.6 ± 2.8 vs. 98.2 ± 1.8 mg/dL, p = 0.01 2 h post-load: 157.2 ± 2.2 vs. 152.2 ± 2 mg/dL, p = 0.07 HbA1c: 5.9 ± 0 vs. 5.9 ± 0, p = 0.44 Fasting insulin: 14.0 ± 4.3 vs. 12.2 ± 1.1 μIU/mL, p = 0.53 HOMA-IR: 3.7 ± 1.2 vs. 2.9 ± 0.2, p = 0.48 HOMA-B%: 117.8 ± 31.8 vs. 146.9 ± 22.0, p = 0.14 |
[44] | N1 preoperatively vs. post-operatively: Fasting plasma glucose: 119.4 ± 2.8 vs. 111.2 ± 1.9 (−8.2 ± 0.6) mg/dL, p = 0.021 2 h post-load: 163.2 ± 3.2 vs. 144.4 ± 3.2 (−18.8 ± 0.3) mg/dL, p = 0.041 |
References
- Silva, B.C.; Cusano, N.E.; Bilezikian, J.P. Primary hyperparathyroidism. Best. Pract. Res. Clin. Endocrinol. Metab. 2024, 38, 101247. [Google Scholar] [CrossRef] [PubMed]
- Kurtom, S.; Carty, S.E. Primary Hyperparathyroidism: Part One: Evaluation. Surg. Clin. N. Am. 2024, 104, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Nabata, K.J.; Wiseman, J.J.; Wiseman, S.M. Normohormonal primary hyperparathyroidism: A systematic review and meta-analysis. Am. J. Surg. 2023, 226, 186–196. [Google Scholar] [CrossRef]
- El-Hajj Fuleihan, G.; Chakhtoura, M.; Cipriani, C.; Eastell, R.; Karonova, T.; Liu, J.M.; Minisola, S.; Mithal, A.; Moreira, C.A.; Peacock, M.; et al. Classical and Nonclassical Manifestations of Primary Hyperparathyroidism. J. Bone Miner. Res. 2022, 37, 2330–2350. [Google Scholar] [CrossRef] [PubMed]
- Iwanowska, M.; Kochman, M.; Szatko, A.; Zgliczyński, W.; Glinicki, P. Bone Disease in Primary Hyperparathyroidism-Changes Occurring in Bone Metabolism and New Potential Treatment Strategies. Int. J. Mol. Sci. 2024, 25, 11639. [Google Scholar] [CrossRef]
- Kochman, M. Primary hyperparathyroidism: Clinical manifestations, diagnosis and evaluation according to the Fifth International Workshop guidelines. Reumatologia 2023, 61, 256–263. [Google Scholar] [CrossRef]
- Abel, E.D.; Gloyn, A.L.; Evans-Molina, C.; Joseph, J.J.; Misra, S.; Pajvani, U.B.; Simcox, J.; Susztak, K.; Drucker, D.J. Diabetes mellitus-Progress and opportunities in the evolving epidemic. Cell 2024, 187, 3789–3820. [Google Scholar] [CrossRef]
- Wong, N.D.; Sattar, N. Cardiovascular risk in diabetes mellitus: Epidemiology, assessment and prevention. Nat. Rev. Cardiol. 2023, 20, 685–695. [Google Scholar] [CrossRef]
- Zhou, B.; Rayner, A.W.; Gregg, E.W.; Sheffer, K.E.; Carrillo-Larco, R.M.; Bennett, J.E.; Shaw, J.E.; Paciorek, C.J.; Singleton, R.K.; Pires, A.B.; et al. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: A pooled analysis of 1108 population-representative studies with 141 million participants. Lancet 2024, 404, 2077–2093. [Google Scholar] [CrossRef]
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Barnett, M.J. Association Between Primary Hyperparathyroidism and Secondary Diabetes Mellitus: Findings from a Scoping Review. Cureus 2023, 15, e40743. [Google Scholar] [CrossRef] [PubMed]
- Carsote, M.; Paduraru, D.N.; Nica, A.E.; Valea, A. Parathyroidectomy: Is vitamin D a player for a good outcome? J. Med. Life 2016, 4, 348–352. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S. Parathyroidectomy Ameliorates Glucose and Blood Pressure Control in a Patient with Primary Hyperparathyroidism, Type 2 Diabetes, and Hypertension. Clin. Med. Insights Endocrinol. Diabetes 2015, 8, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Krumeich, L.N.; Santos, A.; Fraker, D.L.; Kelz, R.R.; Wachtel, H. Modern Trends for Primary Hyperparathyroidism: Intervening on Less Biochemically Severe Disease. J. Surg. Res. 2024, 296, 489–496. [Google Scholar] [CrossRef]
- Kurtom, S.; Carty, S.E. Primary Hyperparathyroidism: Part Two: Surgical Management. Surg. Clin. N. Am. 2024, 104, 799–809. [Google Scholar] [CrossRef]
- Dumitru, N.; Carsote, M.; Cocolos, A.; Petrova, E.; Olaru, M.; Dumitrache, C.; Ghemigian, A. The Link Between Bone Osteocalcin and Energy Metabolism in a Group of Postmenopausal Women. Curr. Health Sci. J. 2019, 45, 47–51. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Khan, A.A.; Silverberg, S.J.; Fuleihan, G.E.; Marcocci, C.; Minisola, S.; Perrier, N.; Sitges-Serra, A.; Thakker, R.V.; Guyatt, G.; et al. Evaluation and Management of Primary Hyperparathyroidism: Summary Statement and Guidelines from the Fifth International Workshop. J. Bone Miner. Res. 2022, 37, 2293–2314. [Google Scholar] [CrossRef]
- Vasiliu, O.; Panea, C.A.; Mangalagiu, A.G.; Petrescu, B.M.; Cândea, C.A.; Manea, M.M.; Ciobanu, A.M.; Sîrbu, C.A.; Mitrică, M. Case Management of Delirium in Patients with Major Neurocognitive Disorders. Rom. J. Mil. Med. 2025, CXXVIII, 67–77. [Google Scholar] [CrossRef]
- Wilhelm, S.M.; Wang, T.S.; Ruan, D.T.; Lee, J.A.; Asa, S.L.; Duh, Q.Y.; Doherty, G.M.; Herrera, M.F.; Pasieka, J.L.; Perrier, N.D.; et al. The American Association of Endocrine Surgeons Guidelines for Definitive Management of Primary Hyperparathyroidism. JAMA Surg. 2016, 151, 959–968. [Google Scholar] [CrossRef]
- Ciuche, A.; Nistor, C.; Pantile, D.; Marin, D.; Tudose, A. Spontaneous pneumothorax in a case of pulmonary langerhans cell histiocytosis. Maedica 2011, 6, 204–209. [Google Scholar]
- Yavari, M.; Feizi, A.; Haghighatdoost, F.; Ghaffari, A.; Rezvanian, H. The influence of parathyroidectomy on cardiometabolic risk factors in patients with primary hyperparathyroidism: A systematic review and meta-analysis. Endocrine 2021, 72, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Beysel, S.; Caliskan, M.; Kizilgul, M.; Apaydin, M.; Kan, S.; Ozbek, M.; Cakal, E. Parathyroidectomy improves cardiovascular risk factors in normocalcemic and hypercalcemic primary hyperparathyroidism. BMC Cardiovasc. Disord. 2019, 19, 106. [Google Scholar] [CrossRef] [PubMed]
- Godang, K.; Lundstam, K.; Mollerup, C.; Fougner, F.; Pernow, Y.; Nordenström, J.; Rosén, T.; Jansson, S.; Hellström, M.; Bollerslev, J.; et al. The effect of surgery on fat mass, lipid and glucose metabolism in mild primary hyperparathyroidism. Endocr. Connect. 2018, 7, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Gillis, A.; Lindeman, B.; Chen, H.; Fazendin, J. Normocalcemic primary hyperparathyroidism: From pathophysiology to clinical management. Am. J. Surg. 2024, 235, 115812. [Google Scholar] [CrossRef]
- Barale, M.; Maiorino, F.; Pusterla, A.; Fraire, F.; Sauro, L.; Presti, M.; Sagone, N.; Ghigo, E.; Arvat, E.; Procopio, M. Normocalcemic primary hyperparathyroidism is not associated with cardiometabolic alterations. Endocrine 2024, 86, 1140–1147. [Google Scholar] [CrossRef]
- Govind, K.; Paruk, I.M.; Motala, A.A. Characteristics, management and outcomes of primary hyperparathyroidism from 2009 to 2021: A single centre report from South Africa. BMC Endocr. Disord. 2024, 24, 53. [Google Scholar] [CrossRef]
- Misgar, R.A.; Wani, M.; Qadir, A.; Chhabra, A. Clinical, Biochemical and Surgical Outcomes of Primary Hyperparathyroidism in the Present Era: A Prospective Study From a Tertiary Care Hospital. Cureus 2024, 16, e60965. [Google Scholar] [CrossRef]
- Nomine-Criqui, C.; Bihain, F.; Nguyen-Thi, P.L.; Scheyer, N.; Demarquet, L.; Klein, M.; Guerci, B.; Brunaud, L. Patients with prediabetes improve insulin resistance after surgery for primary hyperparathyroidism. Surgery 2024, 175, 180–186. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, H.; Yang, A.; YHNg, N.; Zhang, X.; Lau, E.S.H.; Chow, E.W.K.; Kong, A.P.S.; Chow, E.Y.K.; Chan, J.C.N.; et al. Higher risk of incident diabetes among patients with primary hyperparathyroidism. Clin. Endocrinol. 2024, 101, 605–613. [Google Scholar] [CrossRef]
- Bibik, E.E.; Dobreva, E.A.; Elfimova, A.R.; Miliutina, A.P.; Eremkina, A.K.; Gorbacheva, A.M.; Krupinova, J.A.; Koksharova, E.O.; Sklyanik, I.A.; Mayorov, A.Y.; et al. Primary hyperparathyroidism in young patients is associated with metabolic disorders: A prospective comparative study. BMC Endocr. Disord. 2023, 23, 57. [Google Scholar] [CrossRef]
- Dobreva, E.A.; Gorbacheva, A.M.; Bibik, E.E.; Eremkina, A.K.; Elfimova, A.R.; Salimkhanov, R.K.; Kovaleva, E.V.; Maganeva, I.S.; Mokrysheva, N.G. Cardiovascular and metabolic status in patients with primary hyperparathyroidism: A single-center experience. Front. Endocrinol. 2023, 14, 1266728. [Google Scholar] [CrossRef]
- Iglesias, P.; Arias, J.; López, G.; Romero, I.; Díez, J.J. Primary Hyperparathyroidism and Cardiovascular Disease: An Association Study Using Clinical Natural Language Processing Systems and Big Data Analytics. J. Clin. Med. 2023, 12, 6718. [Google Scholar] [CrossRef] [PubMed]
- Maldar, A.N.; Shah, N.F.; Chauhan, P.H.; Lala, M.; Kirtane, M.V.; Chadha, M. Differences in the Presentation and Outcome between Premenopausal and Postmenopausal Primary Hyperparathyroidism Indian Women: A Single-Center Experience. J. Mid-Life Health 2023, 14, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Şengül Ayçiçek, G.; Aydoğan, B.İ.; Şahin, M.; Emral, R.; Erdoğan, M.F.; Güllü, S.; Başkal, N.; Çorapçıoğlu, D. The impact of vitamin D deficiency on clinical, biochemical and metabolic parameters in primary hyperparathyroidism. Endocrinol. Diabetes Nutr. (Engl. Ed.) 2023, 70, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Soto-Pedre, E.; Lin, Y.Y.; Soto-Hernaez, J.; Newey, P.J.; Leese, G.P. Morbidity Associated with Primary Hyperparathyroidism-A Population-based Study with a Subanalysis on Vitamin D. J. Clin. Endocrinol. Metab. 2023, 108, e842–e849. [Google Scholar] [CrossRef]
- Al-Jehani, A.; Al-Ahmed, F.; Nguyen-Thi, P.L.; Bihain, F.; Nomine-Criqui, C.; Demarquet, L.; Guerci, B.; Ziegler, O.; Brunaud, L. Insulin resistance is more severe in patients with primary hyperparathyroidism. Surgery 2022, 172, 552–558. [Google Scholar] [CrossRef]
- Al-Saleh, Y.; AlSohaim, A.; AlAmoudi, R.; AlQarni, A.; Alenezi, R.; Mahdi, L.; Alzanbaqi, H.; Nawar, S.M.; AlHarbi, H.; ALMulla, A.; et al. Primary hyperparathyroidism in Saudi Arabia revisited: A multi-centre observational study. BMC Endocr. Disord. 2022, 22, 155. [Google Scholar] [CrossRef]
- Frey, S.; Bourgade, R.; Le May, C.; Croyal, M.; Bigot-Corbel, E.; Renaud-Moreau, N.; Wargny, M.; Caillard, C.; Mirallié, E.; Cariou, B.; et al. Effect of Parathyroidectomy on Metabolic Homeostasis in Primary Hyperparathyroidism. J. Clin. Med. 2022, 11, 1373. [Google Scholar] [CrossRef]
- Kumari, P.; Arya, A.K.; Pal, R.; Sood, A.; Dahiya, D.; Mukherjee, S.; Rastogi, A.; Bhadada, S.K. Comparison of Profile of Primary Hyperparathyroidism With and Without Type 2 Diabetes Mellitus: Retrospective Analysis from the Indian Primary Hyperparathyroidism Registry. Endocr. Pract. 2022, 28, 96–101. [Google Scholar] [CrossRef]
- Nikooei Noghani, S.; Milani, N.; Afkhamizadeh, M.; Kabiri, M.; Bonakdaran, S.; Vazifeh-Mostaan, L.; Asadi, M.; Morovatdar, N.; Mohebbi, M. Assessment of insulin resistance in patients with primary hyperparathyroidism before and after Parathyroidectomy. Endocrinol. Diabetes Metab. 2021, 4, e00294. [Google Scholar] [CrossRef]
- Antonopoulou, V.; Karras, S.N.; Koufakis, T.; Yavropoulou, M.; Katsiki, N.; Gerou, S.; Papavramidis, T.; Kotsa, K. Rising Glucagon-Like Peptide 1 Concentrations After Parathyroidectomy in Patients with Primary Hyperparathyroidism. J. Surg. Res. 2020, 245, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Pei, J.H.; Kuang, J. Moderators of the Association Between Serum Parathyroid Hormone and Metabolic Syndrome in Participants with Elevated Parathyroid Hormone: NHANES 2003–2006. Horm. Metab. Res. 2020, 52, 509–516. [Google Scholar] [CrossRef]
- Karras, S.N.; Koufakis, T.; Tsekmekidou, X.; Antonopoulou, V.; Zebekakis, P.; Kotsa, K. Increased parathyroid hormone is associated with higher fasting glucose in individuals with normocalcemic primary hyperparathyroidism and prediabetes: A pilot study. Diabetes Res. Clin. Pract. 2020, 160, 107985. [Google Scholar] [CrossRef] [PubMed]
- Karras, S.; Annweiler, C.; Kiortsis, D.; Koutelidakis, I.; Kotsa, K. Improving Glucose Homeostasis after Parathyroidectomy for Normocalcemic Primary Hyperparathyroidism with Co-Existing Prediabetes. Nutrients 2020, 12, 3522. [Google Scholar] [CrossRef]
- World Health Organization & International Diabetes Federation. 2006. Available online: https://iris.who.int/handle/10665/43588 (accessed on 11 November 2014).
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43 (Suppl. S1), S14–S31. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Hills, S.A.; Balkau, B.; Coppack, S.W.; Dekker, J.M.; Mari, A.; Natali, A.; Walker, M.; Ferrannini, E.; Report prepared on behalf of the EGIR-RISC Study Group. The EGIR-RISC STUDY (The European group for the study of insulin resistance: Relationship between insulin sensitivity cardiovascular disease risk): I. Methodology and objectives. Diabetologia 2004, 47, 566–570. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Hrebícek, J.; Janout, V.; Malincíková, J.; Horáková, D.; Cízek, L. Detection of insulin resistance by simple quantitative insulin sensitivity check index QUICKI for epidemiological assessment and prevention. J. Clin. Endocrinol. Metab. 2002, 87, 144–147. [Google Scholar] [CrossRef]
- Matsuda, M.; DeFronzo, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef]
- DeBoer, M.D.; Gurka, M.J. Clinical utility of metabolic syndrome severity scores: Considerations for practitioners. Diabetes Metab. Syndr. Obes. 2017, 10, 65–72. [Google Scholar] [CrossRef]
- Anghel, D.; Ciobica, L.M.; Negru, M.M.; Jurcut, C.; Otlocan, L.; Coca, A. Bone mineral density and vitamin D levels in patients with rheumatoid arthritis. Osteoporos. Int. 2017, 28, S435–S436. [Google Scholar]
- Chen, T.; Wang, Y.; Hao, Z.; Hu, Y.; Li, J. Parathyroid hormone and its related peptides in bone metabolism. Biochem. Pharmacol. 2021, 192, 114669. [Google Scholar] [CrossRef] [PubMed]
- Matikainen, N.; Pekkarinen, T.; Ryhänen, E.M.; Schalin-Jäntti, C. Physiology of Calcium Homeostasis: An Overview. Endocrinol. Metab. Clin. N. Am. 2021, 50, 575–590. [Google Scholar] [CrossRef]
- Rendina-Ruedy, E.; Rosen, C.J. Parathyroid hormone (PTH) regulation of metabolic homeostasis: An old dog teaches us new tricks. Mol. Metab. 2022, 60, 101480. [Google Scholar] [CrossRef]
- Larsson, S.; Jones, H.A.; Göransson, O.; Degerman, E.; Holm, C. Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase. Cell. Signal. 2016, 28, 204–213. [Google Scholar] [CrossRef]
- Gunther, C.W.; Legowski, P.A.; Lyle, R.M.; Weaver, C.M.; McCabe, L.D.; McCabe, G.P.; Peacock, M.; Teegarden, D. Parathyroid hormone is associated with decreased fat mass in young healthy women. Int. J. Obes. 2006, 30, 94–99. [Google Scholar] [CrossRef]
- Ishimura, E.; Okuno, S.; Tsuboniwa, N.; Norimine, K.; Fukumoto, S.; Yamakawa, K.; Yamakawa, T.; Shoji, S.; Nishizawa, Y.; Inaba, M. Significant positive association between parathyroid hormone and fat mass and lean mass in chronic hemodialysis patients. J. Clin. Endocrinol. Metab. 2013, 98, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Tay Donovan, Y.K.; Bilezikian, J.P. Interactions between PTH and adiposity: Appetizing possibilities. J. Bone Miner. Res. 2024, 39, 536–543. [Google Scholar] [CrossRef]
- Kir, S.; Komaba, H.; Garcia, A.P.; Economopoulos, K.P.; Liu, W.; Lanske, B.; Hodin, R.A.; Spiegelman, B.M. PTH/PTHrP Receptor Mediates Cachexia in Models of Kidney Failure and Cancer. Cell Metab. 2016, 23, 315–323. [Google Scholar] [CrossRef]
- Hedesan, O.C.; Fenzl, A.; Digruber, A.; Spirk, K.; Baumgartner-Parzer, S.; Bilban, M.; Kenner, L.; Vierhapper, M.; Elbe-Bürger, A.; Kiefer, F.W. Parathyroid hormone induces a browning program in human white adipocytes. Int. J. Obes. 2019, 43, 1319–1324. [Google Scholar] [CrossRef] [PubMed]
- Răcătăianu, N.; Leach, N.; Bondor, C.I.; Mârza, S.; Moga, D.; Valea, A.; Ghervan, C. Thyroid disorders in obese patients. Does insulin resistance make a difference? Arch. Endocrinol. Metab. 2017, 61, 575–583. [Google Scholar] [CrossRef] [PubMed]
- DeMambro, V.E.; Tian, L.; Karthik, V.; Rosen, C.J.; Guntur, A.R. Effects of PTH on osteoblast bioenergetics in response to glucose. Bone Rep. 2023, 19, 101705. [Google Scholar] [CrossRef] [PubMed]
- Valea, A.; Ghervan, C.; Morar, A.; Pop, D.D.; Carsote, M.; Albu, S.E.; Georgescu, C.E.; Chiorean, A. Hashimoto’s thyroiditis and breast cancer: Coincidence or correlation? Arch. Balk. Med. Union 2016, 51, 129–132. [Google Scholar]
- Chang, E.; Donkin, S.S.; Teegarden, D. Parathyroid hormone suppresses insulin signaling in adipocytes. Mol. Cell. Endocrinol. 2009, 307, 77–82. [Google Scholar] [CrossRef]
- Saxe, A.W.; Gibson, G.; Gingerich, R.L.; Levy, J. Parathyroid hormone decreases in vivo insulin effect on glucose utilization. Calcif. Tissue Int. 1995, 57, 127–132. [Google Scholar] [CrossRef]
- He, X.; Liu, M.; Ding, X.; Bian, N.; Wang, J.; Wang, G.; Liu, J. Parathyroid Hormone is Negatively Correlated with Glycated Hemoglobin in Newly Diagnosed Type 2 Diabetic Patients. Int. J. Endocrinol. 2024, 2024, 8414689. [Google Scholar] [CrossRef]
- Tammineni, E.R.; Kraeva, N.; Figueroa, L.; Manno, C.; Ibarra, C.A.; Klip, A.; Riazi, S.; Rios, E. Intracellular calcium leak lowers glucose storage in human muscle, promoting hyperglycemia and diabetes. eLife 2020, 9, e53999. [Google Scholar] [CrossRef]
- Valea, A.; Carsote, M.; Moldovan, C.; Georgescu, C. Chronic autoimmune thyroiditis and obesity. Arch. Balk. Med. Union 2018, 53, 64–69. [Google Scholar]
- Weiser, A.; Feige, J.N.; De Marchi, U. Mitochondrial Calcium Signaling in Pancreatic β-Cell. Int. J. Mol. Sci. 2021, 22, 2515. [Google Scholar] [CrossRef]
- Wiederkehr, A.; Szanda, G.; Akhmedov, D.; Mataki, C.; Heizmann, C.W.; Schoonjans, K.; Pozzan, T.; Spät, A.; Wollheim, C.B. Mitochondrial matrix calcium is an activating signal for hormone secretion. Cell Metab. 2011, 13, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Tarasov, A.I.; Semplici, F.; Ravier, M.A.; Bellomo, E.A.; Pullen, T.J.; Gilon, P.; Sekler, I.; Rizzuto, R.; Rutter, G.A. The mitochondrial Ca2+ uniporter MCU is essential for glucose-induced ATP increases in pancreatic β-cells. PLoS ONE 2012, 7, e39722. [Google Scholar] [CrossRef] [PubMed]
- Misgar, R.A.; Bhat, M.H.; Rather, T.A.; Masoodi, S.R.; Wani, A.I.; Bashir, M.I.; Wani, M.A.; Malik, A.A. Primary hyperparathyroidism and pancreatitis. J. Endocrinol. Investig. 2020, 43, 1493–1498. [Google Scholar] [CrossRef]
- Karim, M.M.; Raza, H.; Parkash, O. Recurrent acute pancreatitis as an initial presentation of primary hyperparathyroidism: A case report. World J. Clin. Cases 2024, 12, 6302–6306. [Google Scholar] [CrossRef]
- Carsote, M.; Valea, A.; Dumitru, N.; Terzea, D.; Petrova, E.; Albu, S.; Buruiana, A.; Ghemigian, A. Metastases in daily endocrine practice. Arch. Balk. Med. Union 2016, 51, 476–480. [Google Scholar]
- Cipriani, C.; Colangelo, L.; Santori, R.; Renella, M.; Mastrantonio, M.; Minisola, S.; Pepe, J. The Interplay Between Bone and Glucose Metabolism. Front. Endocrinol. 2020, 11, 122. [Google Scholar] [CrossRef]
- Nica, S.; Sionel, R.; Maciuca, R.; Csutak, O.; Ciobica, M.L.; Nica, M.I.; Chelu, I.; Radu, I.; Toma, M. Gender-Dependent Associations Between Digit Ratio and Genetic Polymorphisms, BMI, and Reproductive Factors. Rom. J. Mil. Med. 2025, 128, 78–86. [Google Scholar] [CrossRef]
- Ducy, P. Bone Regulation of Insulin Secretion and Glucose Homeostasis. Endocrinology 2020, 161, bqaa149. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.K.; Sowa, H.; Hinoi, E.; Ferron, M.; Ahn, J.D.; Confavreux, C.; Dacquin, R.; Mee, P.J.; McKee, M.D.; Jung, D.Y.; et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007, 130, 456–469. [Google Scholar] [CrossRef]
- Paracha, N.; Mastrokostas, P.; Kello, E.; Gedailovich, Y.; Segall, D.; Rizzo, A.; Mitelberg, L.; Hassan, N.; Dowd, T.L. Osteocalcin improves glucose tolerance, insulin sensitivity and secretion in older male mice. Bone 2024, 182, 117048. [Google Scholar] [CrossRef]
- Nowicki, J.K.; Jakubowska-Pietkiewicz, E. Osteocalcin: Beyond Bones. Endocrinol. Metab. 2024, 39, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Conte, C.; Epstein, S.; Napoli, N. Insulin resistance and bone: A biological partnership. Acta Diabetol. 2018, 55, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Ferron, M.; Clarke, C.J.; Hannun, Y.A.; Jiang, H.; Blaner, W.S.; Karsenty, G. Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J. Clin. Investig. 2014, 124, 1781–1793. [Google Scholar] [CrossRef]
- Kalra, S.; Joshi, A.; Kapoor, N. Osteoporosis and diabetes: The dual pandemics. J. Pak. Med. Assoc. 2022, 72, 1663–1664. [Google Scholar] [CrossRef] [PubMed]
- Mesinovic, J.; Fyfe, J.J.; Talevski, J.; Wheeler, M.J.; Leung, G.K.W.; George, E.S.; Hunegnaw, M.T.; Glavas, C.; Jansons, P.; Daly, R.M.; et al. Type 2 Diabetes Mellitus and Sarcopenia as Comorbid Chronic Diseases in Older Adults: Established and Emerging Treatments and Therapies. Diabetes Metab. J. 2023, 47, 719–742. [Google Scholar] [CrossRef]
- Popa, F.L.; Diaconu, C.; Canciu, A.; Ciortea, V.M.; Iliescu, M.G.; Stanciu, M. Medical management and rehabilitation in posttraumatic common peroneal nerve palsy. Balneo PRM Res. J. 2022, 13, 496. [Google Scholar] [CrossRef]
- Liu, X.; Chen, F.; Liu, L.; Zhang, Q. Prevalence of osteoporosis in patients with diabetes mellitus: A systematic review and meta-analysis of observational studies. BMC Endocr. Disord. 2023, 23, 1. [Google Scholar] [CrossRef]
- Al-Hariri, M. Sweet Bones: The Pathogenesis of Bone Alteration in Diabetes. J. Diabetes Res. 2016, 2016, 6969040. [Google Scholar] [CrossRef]
- Kupai, K.; Kang, H.L.; Pósa, A.; Csonka, Á.; Várkonyi, T.; Valkusz, Z. Bone Loss in Diabetes Mellitus: Diaporosis. Int. J. Mol. Sci. 2024, 25, 7269. [Google Scholar] [CrossRef]
- Sheu, A.; White, C.P.; Center, J.R. Bone metabolism in diabetes: A clinician’s guide to understanding the bone-glucose interplay. Diabetologia 2024, 67, 1493–1506. [Google Scholar] [CrossRef]
- Brandt, I.A.G.; Starup-Linde, J.; Andersen, S.S.; Viggers, R. Diagnosing Osteoporosis in Diabetes-A Systematic Review on BMD and Fractures. Curr. Osteoporos. Rep. 2024, 22, 223–244. [Google Scholar] [CrossRef]
- Chuang, T.L.; Chuang, M.H.; Wang, Y.F.; Koo, M. Comparison of Trabecular Bone Score-Adjusted Fracture Risk Assessment (TBS-FRAX) and FRAX Tools for Identification of High Fracture Risk among Taiwanese Adults Aged 50 to 90 Years with or without Prediabetes and Diabetes. Medicina 2022, 58, 1766. [Google Scholar] [CrossRef]
- Palermo, A.; Tabacco, G.; Makras, P.; Zavatta, G.; Trimboli, P.; Castellano, E.; Yavropoulou, M.P.; Naciu, A.M.; Anastasilakis, A.D. Primary hyperparathyroidism: From guidelines to outpatient clinic. Rev. Endocr. Metab. Disord. 2024, 25, 875–896. [Google Scholar] [CrossRef]
- Weber, T.; Dotzenrath, C.; Dralle, H.; Niederle, B.; Riss, P.; Holzer, K.; Kußmann, J.; Trupka, A.; Negele, T.; Kaderli, R.; et al. Management of primary and renal hyperparathyroidism: Guidelines from the German Association of Endocrine Surgeons (CAEK). Langenbecks Arch. Surg. 2021, 406, 571–585. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Hanley, D.A.; Rizzoli, R.; Bollerslev, J.; Young, J.E.; Rejnmark, L.; Thakker, R.; D’Amour, P.; Paul, T.; Van Uum, S.; et al. Primary hyperparathyroidism: Review and recommendations on evaluation, diagnosis, and management. A Canadian and international consensus. Osteoporos. Int. 2017, 28, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Stefanova, D.; Ullmann, T.M.; Limberg, J.; Moore, M.; Beninato, T.; Zarnegar, R.; Fahey, T.J.; Finnerty, B.M. Risk Factors for Prolonged Length of Stay and Readmission After Parathyroidectomy for Renal Secondary Hyperparathyroidism. World J. Surg. 2020, 44, 3751–3760. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, M.; Zhen, Y.; Tang, Y. The Relationships Between Glycated Hemoglobin and Bone Turnover Markers in Patients with Type 2 Diabetes but No Diabetic Nephropathy. Int. J. Gen. Med. 2022, 15, 5591–5598. [Google Scholar] [CrossRef]
- Jain, N.; Reilly, R.F. Hungry bone syndrome. Curr. Opin. Nephrol. Hypertens 2017, 26, 250–255. [Google Scholar] [CrossRef]
- Kritmetapak, K.; Kongpetch, S.; Chotmongkol, W.; Raruenrom, Y.; Sangkhamanon, S.; Pongchaiyakul, C. Incidence of and risk factors for post-parathyroidectomy hungry bone syndrome in patients with secondary hyperparathyroidism. Ren. Fail. 2020, 42, 1118–1126. [Google Scholar] [CrossRef]
- Ho, L.Y.; Wong, P.N.; Sin, H.K.; Wong, Y.Y.; Lo, K.C.; Chan, S.F.; Lo, M.W.; Lo, K.Y.; Mak, S.K.; Wong, A.K. Risk factors and clinical course of hungry bone syndrome after total parathyroidectomy in dialysis patients with secondary hyperparathyroidism. BMC Nephrol. 2017, 18, 12. [Google Scholar] [CrossRef]
- Witteveen, J.E.; van Thiel, S.; Romijn, J.A.; Hamdy, N.A. Hungry bone syndrome: Still a challenge in the post-operative management of primary hyperparathyroidism: A systematic review of the literature. Eur. J. Endocrinol. 2013, 168, R45–R53. [Google Scholar] [CrossRef] [PubMed]
- Zavatta, G.; Clarke, B.L. Normocalcemic Primary Hyperparathyroidism: Need for a Standardized Clinical Approach. Endocrinol. Metab. 2021, 36, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Dawood, N.B.; Yan, K.L.; Shieh, A.; Livhits, M.J.; Yeh, M.W.; Leung, A.M. Normocalcaemic primary hyperparathyroidism: An update on diagnostic and management challenges. Clin. Endocrinol. 2020, 93, 519–527. [Google Scholar] [CrossRef] [PubMed]
First Author Year of Publication Reference | Study Design/Studied Population | Calcium and PTH Metabolism Amid the Diagnosis of Primary Hyperparathyroidism | Diagnostic Criteria of the Glucose Metabolism Anomalies |
---|---|---|---|
Barale 2024 [25] | Observational cross-sectional study N = 68 F:M = 48:20 (61% females) Mean age = 70 ± 9 y N1 = 17 with NCPHPT F:M = 12:5 (61% females) Mean age = 70 ± 9 y Mean BMI = 28 ± 4 kg/m2 N2 = 17 with HCPHPT F:M = 12:5 (61% females) Mean age = 70 ± 9 y Mean BMI = 29 ± 6 kg/m2 N3 = 34 controls F:M = 24:10 (61% females) Mean age = 70 ± 9 y Mean BMI = 29 ± 5 kg/m2 N1 were matched for age, sex, and BMI with N2 and N3 | Mean ± SD N1 vs. N2 vs. N3: tCa (mmol/L): 2.4 ± 0.2 vs. 2.7 ± 0.2 vs. 2.3 ± 0.2 N1 vs. N2 p < 0.05 N1 vs. N3 p < 0.05 N2 vs. N3 p < 0.05 iCa (mmol/L): 1.2 ± 0.1 vs. 1.4 ± 0.1 vs. 1.1 ± 0.1 N1 vs. N2 p < 0.05 N1 vs. N3 p < 0.05 N2 vs. N3 p < 0.05 PO4 (mmol/L): 0.96 ± 0.15 vs. 0.87 ± 0.11 vs. 1.19 ± 0.27 N1 vs. N2 p < 0.05 N1 vs. N3 p < 0.05 N2 vs. N3 p < 0.05 25OHD (ng/mL): 38.8 ± 8.4 vs. 21.1 ± 9.9 vs. 23.3 ± 10.6 N1 vs. N2 p > 0.05 N1 vs. N3 p < 0.05 N2 vs. N3 p < 0.05 PTH (pg/mL): 60 ± 25 vs. 99 ± 42 vs. 29 ± 21 N1 vs. N2 p < 0.05 N1 vs. N3 p < 0.05 N2 vs. N3 p < 0.05 urinary Ca (mmol/24 h): 4.5 ± 2.7 vs. 8.5 ± 4 vs. 4.6 ± 4.5 N1 vs. N2 p < 0.05 N1 vs. N3 p > 0.05 N2 vs. N3 p < 0.05 | Glucose disorders (IFG, IGT, T2DM) * |
Govind 2024 [26] | Retrospective study N = 110 with PHPT F:M = 96:14 (87.3% females) Median (IQR) age = 57 (44–66.8) y Median (IQR) BMI = 27.4 (23.39–32.85) kg/m2 N1 = 84 with PHPT who underwent surgery, out of which: N2 = 14 with hungry bone syndrome Median (IQR) age = 39.5 (20.8–56) y Median (IQR) BMI = 22.7 (17.8–24.1) kg/m2 N3 = 70 without hungry bone syndrome Median (IQR) age = 27.4 (23.7–32.4) y Median (IQR) BMI = 27.4 (23.7–32.4) kg/m2 | Mean ± SD or Median (IQR) N: tCa (mmol/L) = 2.87 ± 0.34 PO4 (mmol/L) = 0.87 ± 0.2 25OHD (nmol/L) = 42.9 (33.3–62.9) PTH (pmol/L) = 23.3 (16–45.4) urinary Ca mmol/24 h) = 3.3 (1.6–5.4) | Electronic health records |
Misgar 2024 [27] | Cross-sectional study N = 103 with PHPT F:M = 84:19 (81.6% females) Mean age = 42.8 ± 14.73 y | Mean ± SD tCa (mg/dL) = 12.1 ± 1.34 PO4 (mg/dL) = 2.35 ± 0.613 25OHD (ng/mL) = 25.7 ± 15.12 PTH (pg/mL) = 332.9 ± 403.6 urinary Ca (mg/24 h) = 452.1 ± 256.4 | NA |
Nomine-Criqui 2024 [28] | Observational study N = 231 with PHPT who underwent surgery (out of which 41 with NCPHPT) F:M = 181:50 (78% females) Mean age = 63.2 ± 14.1 y Mean BMI = 26.8 ± 5.5 kg/m2 | Mean ± SD tCa (mg/dL) = 10.99 ± 0.74 PO4 (mg/dL) = 2.59 ± 0.51 25OHD (ng/mL) = 23.8 ± 9.7 PTH (pmol/L) = 12.3 ± 9.5 | DM as exclusion criterion Prediabetes (impaired fasting glucose): ADA criteria **: fasting glucose ≥1 g/L Insulin resistance: HOMA-IR *** > 2.5 EGIR ****: HOMA-IR > 1.8 for women and 2.12 for men |
Zhang 2024 [29] | Population-based retrospective cohort study N = 16,494 F:M = 11,238:5256 (68.1% females) Mean age = 64.76 ± 16.22 y N1 = 2749 with PHPT F:M = 1873:876 (68.1% females) Mean age = 64.76 ± 16.22 y N2 = 13,745 index year, age and sex matched controls F:M = 9365:4380 (68.1% females) Mean age = 64.76 ± 16.22 y | Median (IQR) N1 vs. N2: tCa (mmol/L) = 2.63 (2.42–2.79) vs. 2.29 (2.2–2.37), p < 0.001 PO4 (mmol/L) = 0.84 (0.7–0.99) vs. 1.1 (0.97–1.23), p < 0.001 | Incident T2DM: One of the following: HbA1c ≥ 6.5% or fasting plasma glucose ≥ 7 mmol/L or 2 h post-load with 75 g oral glucose (OGTT) ≥ 11.1 mmol/L or prescription of insulin or glucose-lowering drugs or diabetes codes from records |
Bibik 2023 [30] | Prospective comparative study N1 = 24 with PHPT < 50 y (out of which 17 underwent PTx) F:M = 4:1 Median (IQR) age = 37 (33–41) y Median (IQR) BMI = 24.6 (22.5–26.5) kg/m2 N2 = 20 controls matched for sex, age and BMI Median (IQR) BMI = 23.9 (22.7–25.9) kg/m2 | Median (IQR) N1 vs. N2 tCa albumin-adjusted (mmol/L): 2.73 (2.61–2.94) vs. 2.23 (2.15–2.28) p < 0.001 P (mmol/L): 0.76 (0.73–0.84) vs. 1.14 (1.09–1.25) p < 0.001 25OHD (ng/mL): 19.0 (13.3–21.9) vs. 20.8 (17.1–28.2) p = 0.154 PTH (pg/mL): 141 (111–228) vs. 39.9 (33.8–47.5) p < 0.001 N1 preoperative vs. post-operative—Median (IQR) tCa (mmol/L): 2.71 (2.61–2.91) vs. 2.18 (2.16–2.24) p < 0.001 P (mmol/L): 0.76 (0.72–0.83) vs. 0.94 (0.87–1.07) p = 0.001 25OHD (ng/mL): 20.5 (16.6–22.2) 30.4 (22.2–36.5) p = 0.004 PTH (pg/mL): 138 (106–210) vs. 38.8 (32.7–49.2) p < 0.001 | DM as exclusion criterion |
Dobreva 2023 [31] | Comparative study N = 838 with PHPT F:M = 775:63 (92.5% females) Median (IQR) age = 59 (51–66) y N1 = 150 with PHPT 18–49 y Median (IQR) BMI = 26 (22–29) kg/m2 N2 = 688 with PHPT ≥ 50 y Median (IQR) BMI = 28 (25–32) kg/m2 N1 vs. N2 BMI p < 0.001 Obesity N1 vs. N2: 24.2% vs. 35.9%, p = 0.006 | Median (IQR) N1 vs. N2 tCa (mmol/L): 2.8 (2.7–3.0) vs. 2.8 (2.7–2.9) p = 0.034 iCa (mmol/L): 1.3 (1.2–1.4) vs. 1.3 (1.2–1.4) p = 0.236 Ca albumin-adjusted (mmol/L): 2.7 (2.6–2.9) vs. 2.7 (2.6–2.8) p = 0.079 P (mmol/L): 0.8 (0.7–0.9) vs. 0.9 (0.8–1.0) p < 0.001 25OHD (ng/mL): 21 (12–28) vs. 24 (17–34) p = 0.004 PTH (pg/mL): 132.3 (107–257) vs. 132 (99.9–209.5) p = 0.117 urinary Ca mmol/24 h): 9.3 (7.3–11.3) vs. 7.7 (5.2–10.5) p < 0.001 | NA |
Iglesias 2023 [32] | Observational, retrospective, non-interventional study N = 699,157 F:M = 382,597:316,560 (54.7% females) N1 = 6515 with PHPT F:M = 4261:2254 (65.4% females) Mean age = 67.6 ± 15.9 y N2 = 692,642 without PHPT F:M = 378,336:314,306 (54.62% females) | NA | Data from electronic health records extracted with artificial intelligence tools |
Maldar 2023 [33] | Retrospective study N = 130 females with PHPT who underwent PTx Mean age = 52.1 ± 15.7 y N1 = 58 females premenopause Mean age = 37.9 ± 9.7 y N2 = 72 females post-menopause Mean age = 63.5 ± 8.8 y | Mean ± SD or Median (IQR) N vs. N1 vs. N2: tCa (mg/dL): 12.13 ± 1.27 vs. 12.35 ± 1.28 vs. 11.96 ± 1.22, p = 0.079 P (mg/dL): 2.5 ± 0.61 vs. 2.42 ± 0.54 vs. 2.56 ± 0.66, p = 0.195 25OHD (ng/mL): 22 (1.5–89) vs. 21 (1.5–89) vs. 22 (3.9–67.2), p = 0.322 PTH (pg/mL): 262 (42.7–3361) vs. 334 (44.6–2500) vs. 239 (42.7–3361), p = 0.051 | Electronic health records |
Şengül 2023 [34] | Retrospective observational study N = 128 with PHPT F:M = 106:22 (82.8% females) N1 = 66 with PHPT and 25OHD < 50 nmol/L F:M = 58:8 (82.8% females) Mean age = 55.5 ± 14.7 y Mean BMI = 28.4 ± 4.7 kg/m2 N2 = 62 with PHPT and 25OHD ≥ 50 nmol/L F:M = 48:14 (82.8% females) Mean age = 60.5 ± 13.1 y Mean BMI = 26.9 ± 3.5 kg/m2 | Median (IQR) N1 vs. N2: tCa albumin-adjusted (mmol/L): 2.6 (2.5–3.8) vs. 2.6 (2.6–3.4), p = 0.4 PTH (ng/L): 138 (65–700) vs. 135 (72–1229), p = 0.8 urinary Ca (mg/24 h): 311 (100–922) vs. 282 (98–1300), p = 0.4 | MetS: National Cholesterol Education Program Adult Treatment Panel III ***** Criteria T2DM: NA |
Soto-Pedre 2023 [35] | Population-based study N1 = 11,616 with probable PHPT F:M = 7768:3848 (66.8% females) Mean age = 55.7 ± 25.5 y Mean BMI = 30 ± 6.2 kg/m2 N2 = 33,848 comparison cohort F:M = 23,304:11,544 (66.8% females) Mean age = 55.4 ± 23.1 y Mean BMI = 30.4 ± 6.2 kg/m2 N3 = 6795 with definite PHPT N1 vs. N2 BMI p < 0.01 | Median (IQR) tCa albumin-adjusted (mmol/L): 2.7 (2.5–2.7) vs. 2.3 (2.2–2.4), p < 0.001 25OHD (nmol/L): 38 (24–63) vs. 40 (24–90), p = 0.281 PTH (pmol/L): 7.8 (4.1–13.2) vs. 6.4 (3.9–12.5), p < 0.01 | Electronic health records based on ICD-10 codes |
Al-Jehani 2022 [36] | Observational study N1 = 174 with PHPT F:M = 140:34 (80% females) Mean age = 61.8 ± 14.6 y Mean BMI = 27.3 ± 6.1 kg/m2 N2 = 171 controls F:M = 133:38 (% females) Mean age = 37.3 ± 8.2 y Mean BMI = 27.7 ± 5.9 kg/m2 Age in N1 vs. N2 p < 0.05 N3 = 35 with NCPHPT N4 = 93 with mild HCPHT N5 = 46 with classic HCPHPT | Mean ± SD N1: tCa (mg/dL) = 10.95 ± 0.93 P (mg/L) = 25.7 ± 4.8 25OHD (ng/mL) = 22.0 ± 16.9 PTH (pmol/L) = 14.9 ± 13.9 | DM as exclusion criterion Insulin resistance: HOMA > 2.6 or fasting insulin > 12 mIU/L Impaired fasting glucose: ADA **: fasting glucose = 1.00–1.25 g/L Data were evaluated before PTx |
Al-Saleh 2022 [37] | Multicentre observational study N = 205 with PHPT F:M = 163:42 (79.5% females) Mean age = 59.8 ± 15.5 y | Mean ± SD Ca albumin-adjusted (mmol/L): 2.8 ± 0.12 25OHD (nmol/L): 50.2 ± 1.8 PTH (pg/mL): 30 ± 20 | Electronic health records |
Frey 2022 [38] | Observational prospective study N = 139 with PHPT who underwent PTx F:M = 117:22 (84% females) Mean age = 63 ± 13.4 y Mean BMI = 25.9 ± 4.9 kg/m2 N1 = 19 with classic PHPT (Ca > 2.85 mmol/L) F:M = 13:6 (68% females) Mean age = 60 ± 15 y Mean BMI = 25.8 ± 4.1 kg/m2 N2 = 120 with mild PHPT (Ca ≤ 2.85 mmol/L) F:M = 104:16 (86.6% females) Mean age = 63.5 ± 13.1 y Mean BMI = 25.9 ± 5.1 kg/m2 | Mean ± SD or Median (IQR) Before PTx vs. after PTx N: Ca albumin-adjusted (mmol/L): 2.68 ± 0.21 vs. 2.36 ± 0.13, p < 0.001 P (mmol/L): 0.78 ± 0.15 vs. 0.97 ± 0.17, p < 0.001 25OHD (ng/mL): 24.7 ± 10 vs. 30 ± 8.9, p < 0.001 PTH (pg/mL): 93.4 (77.6–121.1) vs. 47.4 (35.4–59.4), p < 0.001 urinary Ca (mmol/24 h): 4.95 ± 2.81 vs. 2.28 ± 1.36, p < 0.001 N1: tCa (mmol/L): 3.05 ± 0.25 vs. 2.39 ± 0.17, p < 0.001 P (mmol/L): 0.65 ± 0.20 vs. 0.87 ± 0.20, p < 0.001 25OHD (ng/mL): 22.3 ± 9.1 vs. 29.6 ± 10.9, p < 0.05 PTH (pg/mL): 145.4 (107.6–223.0) vs. 39.6 (27.8–70.4), p < 0.001 urinary Ca (mmol/24 h): 6.01 ± 3.59 vs. 2.10 ± 1.07, p < 0.001 N2: tCa (mmol/L): 2.62 ± 0.14 vs. 2.36 ± 0.12, p < 0.001 P (mmol/L): 0.80 ± 0.13 vs. 0.99 ± 0.16, p < 0.001 25OHD (ng/mL): 25.1 ± 10.1 vs. 30.1 ± 8.6, p < 0.001 PTH (pg/mL): 87.8 (76.0–112.5) vs. 47.5 (37.2–59.4), p < 0.001 urinary Ca (mmol/24 h): 4.77 ± 2.65 vs. 2.31 ± 1.41, p < 0.001 | DM at baseline as exclusion criterion |
Kumari 2022 [39] | Retrospective observational study N = 464 with PHPT F:M = 356:108 (76.7% females) Median age = 45 (34–55) y N1 = 54 with PHPT and T2DM F:M = 39:15 (72.22% females) Median (IQR) age = 54 (49–60) y Median (IQR) BMI = 26.5 (22.8–30.6) kg/m2 N2 = 409 with PHPT without T2DM F:M = 316:93 (77.26% females) Median (IQR) age = 43 (32–54) Median (IQR) BMI = 23.6 (20.3–26.8) kg/m2 N1 vs. N2 median age: p < 0.0001 median BMI: p = 0.003 N3 = 108 with PHPT without T2DM matched for age, sex and BMI with N1 | Median (IQR) N1 vs. N3: tCa (mg/dL): 11.6 (10.98–12.61) vs. 11.7 (11.0–12.5), p = 0.93 PO4 (mg/dL): 2.5 (2.2–2.8) vs. 2.5 (2.2–3.1), p = 0.49 PTH (pg/mL): 203 (139.8–437.3) vs. 285 (166–692), p = 0.04 25OHD (ng/mL) 18.6 (12.52–33.46) vs. 22.0 (11.2–34.2), p = 0.82 urinary Ca (mg/24 h): 297 (128–460) vs. 218 (161–356), p = 0.48 | T2DM: ADA criteria ** |
Nikooei 2021 [40] | Retrospective cohort study N = 65 with PHPT who underwent PTx F:M = 38:27 (58.5% females) Mean age = 45.44 ± 9.59 y Mean BMI = 26.65 ± 2.26 kg/m2 | Mean ± SD Preoperative vs. post-operative tCa (mg/dL): 11.15 ± 0.39 vs. 9.91 ± 0.46, p = 0.0001 PTH (pg/mL): 112.49 ± 45.95 vs. 33.12 ± 9.83, p = 0.0001 Preoperative P (mg/dL): 2.85 ± 0.38 | DM at baseline as exclusion criterion Insulin resistance ***: HOMA-IR ≥2.5 Moderate insulin resistance: HOMA-IR: 2.5–3.9 Severe insulin resistance: HOMA-IR > 3.9 |
Antonopoulou 2020 [41] | Observational pilot study N = 14 with PHPT F:M = 12:2 (85.71% females) Mean age = 52.93 ± 9.96 y Mean BMI = 27.19 ± 5.83 kg/m2 | Mean ± SD Before PTx vs. after PTx tCa (mg/dL): 11.05 ± 0.49 vs. 9.11 ± 0.32, p < 0.001 Ca albumin-adjusted (mg/dL): 11.42 ± 0.53 vs. 9.4 ± 0.39, p < 0.001 P (mg/dL): 2.43 ± 0.64 vs. 3.06 ± 0.55, p = 0.007 25OHD (ng/mL): 24.47 ± 0.63 vs. 30.30 ± 11.97, p = 0.05 PTH (pmol/L): 11.62 ± 4.93 vs. 5.64 ± 1.53, p < 0.001 | DM at baseline as exclusion criterion Insulin resistance ***: HOMA2-IR β-cell function: HOMA2-B% *** Insulin sensitivity: HOMA2-S% *** QUICKI ****** Matsuda ******* 75 g OGTT in all patients |
Chen 2020 [42] | Cross-sectional study N = 392 with elevated PTH F:M = 220:172 (56.21% females) Mean age = 55.95 ± 1.28 y | Mean ± SD 25OHD (nmol/L): 50.91 ± 1.57 PTH (pg/mL): 87.35 ± 1.60 | MetS score based on equations using waist circumference, high-density lipoprotein, triglycerides, fasting plasma glucose, systolic blood pressure ******** |
Karras SN 2020 [43] | Pilot study N = 62 N1 = 20 with NCPHPT and prediabetes F:M = 14:6 (70% females) Mean age = 66.2 ± 3.2 y Mean BMI = 28.6 ± 1.3 kg/m2 N2 = 42 controls with prediabetes F:M = 30:12 (71.43% females) Mean age = 63.9 ± 1 y Mean BMI = 30 ± 0.7 kg/m2 | Mean ± SD N1 vs. N2 tCa (mg/dL): 9.8 ± 0.1 vs. 9.8 ± 0, p = 0.99 P (mg/dL): 3.4 ± 0.1 vs. 3.5 ± 0.0, p = 0.29 25OHD (ng/mL): 31.2 ± 1.3 vs. 26.3 ± 1.1, p = 0.09 PTH (pg/mL): 86.2 ± 3.2 vs. 29.2 ± 1.4, p < 0.01 | DM at baseline as exclusion criterion Prediabetes: ADA criteria ** Insulin resistance: HOMA-IR Insulin secretion: HOMA-B% *** 75 g OGTT in all participants |
Karras S 2020 [44] | Cohort study N1 = 16 with NCPHPT and prediabetes who underwent PTx F:M = 12:4 (75% females) Mean age = 58.9 ± 1 y Mean BMI = 28.1 ± 0.7 kg/m2 N2 = 16 with NCPHPT and prediabetes conservatively managed F:M = 11:5 (68.75% females) Mean age = 56.2 ± 3.2 y Mean BMI = 28.2 ± 1.3 kg/m2 | Mean ± SD N1 baseline: tCa albumin-adjusted (mg/dL): 9.9 ± 0.0 P (mg/dL): 3.5 ± 0.0 25OHD (ng/mL): 36.3 ± 2.1 PTH (pg/mL): 94.2 ± 2.4 N2 baseline: tCa albumin-adjusted (mg/dL): 9.8 ± 0.1 P (mg/dL): 3.4 ± 0.1 25OHD (ng/mL): 33.2 ± 1.3 PTH (pg/mL): 96.2 ± 3.2 N1 after PTx: tCa albumin-adjusted (mg/dL): 9.1 ± 0.0 P (mg/dL): 3.9 ± 0.1 25OHD (ng/mL): 32.3 ± 3.1 PTH (pg/mL): 44.2 ± 1.4 N2 after 32 w: tCa albumin-adjusted (mg/dL): 9.7 ± 0.2 P (mg/dL): 3.6 ± 0.1 25OHD (ng/mL): 31.2 ± 1.9 PTH (pg/mL): 86.2 ± 2.2 N1 vs. N2 after 32 w: PTH: p = 0.02 Ca albumin-adjusted: p = 0.044 P: p = 0.031 25OHD: p = 0.383 | DM at baseline as exclusion criterion Insulin resistance: HOMA-IR Insulin secretion: HOMA-B% *** 75-g OGTT in all participants Prediabetes: ADA criteria **: Impaired fasting glucose: fasting glucose: 101–125 mg/dL Impaired glucose tolerance: 2 h post-load glucose: 140–199 mg/dL HbA1c: 5.7–6.4% |
Reference | T2DM Prevalence/Incidence and Other Epidemiologic Findings |
---|---|
[25] | N1 vs. N2 vs. N3: T2DM: 12% vs. 35% vs. 12% N1 vs. N2 p < 0.05 N1 vs. N3 p > 0.05 N2 vs. N3 p < 0.05 |
[26] | In N: T2DM of 60.5% (66/110) |
[27] | T2DM: 14.5% (15/103) |
[29] | Incident diabetes N1: 433 vs. N2: 2110 IR of diabetes (95% CI) N1: 27.60 (25.00–30.30) per 1000 person-year N2: 23.90 (22.80–24.90) per 1000 person-year Risk of diabetes N1 vs. N2: Overall: HR (95% CI) = 1.15 (1.04–1.28), p = 0.007 18–35 y: HR (95% CI) = 2.59 (1.37–4.88, p = 0.004) 36–50 y: p = 0.123 51–65: p = 0.163 66–80: p = 0.408 >80 y: p = 0.338 Adjusted for screening frequency HR (95% CI) = 1.12 (1.01–1.24) N1 with Ca above median vs. below median (median Ca = 2.63 mmol/L): IR of diabetes: 28.80 vs. 26.50 per 1000 person-year, p = 0.011 HR (95% CI) = 1.44 (1.08–1.90) |
[31] | N1 vs. N2: T2DM of 2.6% vs. 14.4%, p < 0.001 |
[32] | N1 vs. N2: T2DM of 31.3% vs. 9.3%, p < 0.001 |
[33] | N vs. N1 vs. N2: T2DM of 10.8% vs. 3.5% vs. 16.7%, p = 0.033 |
[34] | N1 vs. N2: T2DM of 19.7% vs. 8.1%, p = 0.05 25OHD (nmol/L): T2DM vs. without T2DM of 40 (13.5–136) vs. 47.8 (10–206.8), p = 0.82 |
[35] | N1 vs. N2: 8.1% (944/11,616) vs. 9.2% (3212/33,848), p < 0.001 HR (95% CI) of T2DM N1: 1.39 (1.26–1.54), p < 0.05 N3: 1.43 (1.28–1.60), p < 0.05 HR (95% CI) of T2DM in N1 (competing risk regression with death as competing event): 1.02 (0.95–1.1), p > 0.05 HR (95% CI) of T2DM in N1 (adjusted for vitamin D): 1.26 (1.07–1.48), p < 0.05 |
[36] | T2DM: 13.19% (31/235) + patients with T2DM were excluded from final analysis |
[37] | T2DM: 4.9% (10/205) |
[38] | T2DM: 4.01% (14/349) + patients with T2DM were excluded from final analysis |
[39] | T2DM: 11.6% (54/464) N females vs. males: 11% vs. 13.9%, p = 0.51 Mean duration of T2DM before PHPT diagnosis: 6.8 ± 0.9 years Obesity N1 vs. N2: 48.1% vs. 30.2%, p = 0.008 N1 vs. N2: Bone disease: 37% vs. 47.2%, p = 0.29 Osteitis fibrosa cystica: 7.4% vs. 17.6%, p = 0.13 Nephrolithiasis: 18.5% vs. 36.1%, p = 0.03 Pancreatitis: 22.2% vs. 6.5%, p = 0.007 Psychiatric abnormalities: 20.4% vs. 9.3%, p = 0.08 Hypertension: 59.3% vs. 44.4%, p = 0.10 Anaemia: 51.9% vs. 50.9%, p = 0.96 |
Reference | Prevalence of Prediabetes | Prevalence of Insulin Resistance |
---|---|---|
[28] | 32% (75/231) Preoperative vs. 3 mo vs. 6 mo vs. 1 y: 32% vs. 39% vs. 35% vs. 35%, p = 0.555 | HOMA-IR ≥ 2.5: 47% (108/231) EGIR: 67% (154/231) HOMA-IR ≥ 2.5 Preoperative vs. 3 mo vs. 6 mo vs. 1 y: 47% vs. 50% vs. 47% vs. 50%, p = 0.514 EGIR definition Preoperative vs. 3 mo vs. 6 mo vs. 1 y: 67% vs. 64% vs. 64% vs. 67%, p = 0.980 |
[31] | N1 vs. N2 Impaired glucose tolerance/impaired fasting glycaemia: 2% vs. 7.3%, p = 0.016 | NA |
[36] | N1 vs. N2: 36% (63/174) vs. 26% (44/171), p = 0.035 N3 vs. N4 vs. N5: 23% (8/35) vs. 39% (36/93) vs. 41% (19/46), p = 0.176 | HOMA-IR > 2.6 N1 vs. N2: 45% (78/174) vs. 20% (34/171), p < 0.001 N3 vs. N4 vs. N5: 17% (6/35) vs. 43% (40/93) vs. 70% (32/46), p < 0.001 |
[40] | NA | Preoperative vs. postoperative 32.3% vs. 23.1%, p = 0.031 |
Reference | Fasting Glucose [Mean ± SD or Median (IQR)] | HbA1c (%) [Median (IQR)] | Fasting Insulin (Mean ± SD or Median (IQR)] |
---|---|---|---|
[25] | N1 vs. N3: 88 ± 11 vs. 95 ± 22 mg/dL, p > 0.05 N1 vs. N2: 88 ± 11 vs. 113 ± 31 mg/dL, p < 0.05 N2 vs. N3: 113 ± 31 vs. 95 ± 22 mg/dL, p < 0.05 | NA | N1 vs. N3: 5.6 ± 2.9 vs. 11.7 ± 8.4 pmol/L, p > 0.05 N1 vs. N2: 5.6 ± 2.9 vs. 10.0 ± 6 pmol/L, p > 0.05 N2 vs. N3: 10.0 ± 6 vs. 11.7 ± 8.4 pmol/L, p > 0.05 |
[26] | NA | N2 vs. N3: 5.4 (5.3–5.8) vs. 6.3 (5.8–7.9), p = 0.008 | NA |
[28] | Preoperative vs. 3 mo vs. 6 mo vs. 1 y: 0.98 ± 0.11 vs. 0.98 ± 0.12 vs. 0.97 ± 0.12 vs. 0.98 ± 0.15 g/L, p = 0.573 | NA | Preoperative vs. 3 mo vs. 6 mo vs. 1 y: 13.2 ± 9.9 vs. 13.2 ± 11 vs. 12.5 ± 8.7 vs. 12.3 ± 7.5 mUI/L, p = 0.0.82 |
[30] | N1 vs. N2: 5.04 (4.63–5.23) vs. 4.83 (4.50–5.20) mmol/L, p = 0.556 N1 preoperative vs. postoperative: 5.10 (4.81–5.24) vs. 4.69 (4.48–5.00) mmol/L, p = 0.031 | N1 vs. N2: 5.30 (5.10–5.50) vs. 5.20 (5.10–5.50) p = 0.815 N1 preoperative vs. postoperative: 5.30 (5.10–5.50) vs. 5.60 (5.30–5.80) p = 0.001 | N1 vs. N2 AUC Insulin phase 1: 61.9 (44.4–73.9) vs. 37.6 (36.1–42.6) p < 0.001 AUC Insulin phase 2: 160 (145–198) 132 (115–175) p = 0.019 N1 preoperative vs. postoperative AUC Insulin phase 1: 657 (426–862) vs. 501 (339–768), p = 0.163 AUC Insulin phase 2: 1121 (917–1320) vs. 982 (806–1375) p = 0.044 |
[31] | In patients without T2DM or IFG/IGT: 4.9 (4.6–5.3) vs. 5.2 (4.9–5.5) mmol/L, p < 0.001 | In patients without T2DM or IFG/IGT: HbA1c (%) = 5.3 (5.0–5.4) vs. 5.6 (5.3–5.8) p = 0.002 | NA |
[36] | N1 vs. N2: 0.98 ± 0.13 vs. 0.93 ± 0.12 g/L, p < 0.001 N3 vs. N4 vs. N5: 0.961 ± 0.139 vs. 0.985 ± 0.125 vs. 0.995 ± 0.127 g/L, p = 0.473 | NA | N1 vs. N2: 13.6 ± 12.3 vs. 8.07 ± 4.16 mUI/L, p < 0.001 N3 vs. N4 vs. N5: 8.92 ± 5 vs. 13.34 ± 13.76 vs. 17.73 ± 12 mUI/L, p = 0.005 |
[38] | Preoperative vs. 1 y postoperative N: 5.4 ± 0.6 vs. 5.2 ± 0.7 mmol/L, p < 0.001 N1: 5.5 ± 0.7 vs. 5.2 ± 0.9 mmol/L, p > 0.05 N2: 5.4 ± 0.6 vs. 5.2 ± 0.7 mmol/L, p < 0.01 | NA | Preoperative vs. 1 y postoperative N: 9.4 ± 5.7 vs. 7.8 ± 4.9 mIU/L, p < 0.001 N1: 9.8 ± 5.2 vs. 7.8 ± 2.8 mIU/L, p > 0.05 N2: 9.3 ± 5.8 vs. 7.9 ± 5.1 mIU/L, p < 0.01 |
[39] | NA | N1: before PTx: 7.2% (6.4–8.9) vs. after PTx: 6.6% (6.2–7.8), p = 0.13 | |
[40] | Preoperative vs. postoperative 87.55 ± 7.94 vs. 85.83 ± 7.22 mg/dL, p = 0.01 | Preoperative vs. postoperative: 5 (4.65–5.2) vs. 5 (4.45–5.1), p = 0.0001 | Preoperative vs. postoperative: 10.4 (8.9–11.9) vs. 9.8 (8.2–11.07) pmol/L, p = 0.0001 |
[41] | Preoperative vs. postoperative 90.15 ± 16.28 vs. 92.08 ± 12.61 mg/dL, p = 0.42 | NA | Preoperative vs. postoperative 8.70 ± 5.36 vs. 9.23 ± 4.57 μIU/mL, p = 0.42 |
[43] | N1 vs. N2: 105.6 ± 2.8 vs. 98.2 ± 1.8 mg/dL, p = 0.01 | N1 vs. N2: 5.9 ± 0 vs. 5.9 ± 0, p = 0.44 | N1 vs. N2: 14.0 ± 4.3 vs. 12.2 ± 1.1 μIU/mL, p = 0.53 |
[44] | N1 vs. N2: 119.4 ± 2.8 vs. 118.2 ± 1.8 mg/dL, p = 0.451 N1 preoperatively vs. postoperatively: 119.4 ± 2.8 vs. 111.2 ± 1.9 (−8.2 ± 0.6) mg/dL, p = 0.021 N2 baseline vs. 32 w: 118.2 ± 1.8 vs. 117.6 ± 2.3 (−0.6 ± 0.2) mg/dL, p = 0.031 N1 vs. N2 after 32 w: 111.2 ± 1.9 vs. 117.6 ± 2.3 (−6.4 ± 0.7) mg/dL, p = 0.02 | N1 vs. N2: 5.84 ± 0.0 vs. 5.86 ± 0.0%, p = 0.415 | N1 vs. N2: 11.0 ± 2.3 vs. 12.8 ± 1.4 µIU/mL, p = 0.731 |
Reference | Main Findings During OGTT |
---|---|
[41] | Median ± SD or Mean (IQR) Preoperative vs. postoperative At 0 min Glucose: 90.15 ± 16.28 vs. 92.08 ± 12.61 mg/dL, p = 0.42 Insulin: 7.35 (11.27) vs. 8.30 (8.93) μIU/mL, p = 0.21 GLP-1: 74.73 ± 52.33 vs. 59.25 ± 25.67 pg/mL, p = 0.40 GIP: 8.7 ± 5.36 vs. 9.23 ± 4.57 pg/mL, p = 0.58 At 15 min Glucose: 139.5 ± 27.97 vs. 130.31 ± 24.25 mg/dL, p = 0.19 Insulin: 56.5 (53.45) vs. 45.85 (51.78) μIU/mL, p = 0.07 GLP-1: 67.06 (84.3) vs. 82.22 (72.88) pg/mL, p = 0.67 GIP: 3.52 (7.43) vs. 9.63 (17.86) pg/mL, p = 0.09 At 30 min Glucose: 147 ± 3.83 vs. 143 ± 37 mg/dL, p = 0.54 Insulin: 57 (77.9) vs. 66.35 (52.83) μIU/mL, p = 0.55 GLP-1: 55.08 (79.97) vs. 82.69 (73.46) pg/mL, p = 0.76 GIP: 9.99 (15.27) vs. 9.35 (17.99 pg/mL, p = 0.48 At 60 min Glucose: 152.50 ± 48.15 vs. 158.36 ± 47 mg/dL, p = 0.58 Insulin: 71.3 (93.4) vs. 70.50 (76.83) μIU/mL, p = 0.55 GLP-1: 63.06 ± 44.78 vs. 102.64 ± 40.19 pg/mL, p = 0.02 GIP: 9.25 (17.23) vs. 12.98 (14.45) pg/mL, p = 0.40 At 120 min Glucose: 113.38 ± 33.70 vs. 116.92 ± 35.96 mg/dL, p = 0.51 Insulin: 35.3 (63.25) vs. 38.25 (66.28) μIU/mL, p = 0.056 GLP-1: 71.20 ± 35.9 vs. 102.49 ± 40.02 pg/mL, p = 0.03 GIP: 20.18 (36.33) vs. 12.83 (15.18) pg/mL, p = 0.58 |
[43] | 2-h post-load glucose: N1 vs. N2:157.2 ± 2.2 vs. 152.2 ± 2 mg/dL, p = 0.07 |
[44] | 2-h post-load glucose: N1 vs. N2 baseline: 163.2 ± 3.2 vs. 167.2 ± 3.2 mg/dL, p = 0.371 N1 preoperatively vs. postoperatively: 163.2 ± 3.2 vs. 144.4 ± 3.2 (−18.8 ± 0.3) mg/dL, p = 0.041 N2 baseline vs. 32 w:167.2 ± 2.7 vs. 176.2 ± 3.2 (+9.0 ± 0.8) mg/dL, p = 0.781 N1 vs. N2 after 32 w:144.2 ± 3.2 vs. 176.2 ± 3.2 (−32 ± 0.4) mg/dL, p < 0.01 |
Reference | HOMA-IR (Mean ± SD) | HOMA-B (%) (Mean ± SD) | HOMA-S (%) and Other Insulin Sensitivity Scores |
---|---|---|---|
[25] | N1 vs. N3: 1.1 ± 0.5 vs. 2.6 ± 2, p > 0.05 N1 vs. N2: 1.1 ± 0.5 vs. 2.7 ± 1.5 p > 0.05 N2 vs. N3: 2.7 ± 1.5 vs. 2.6 ± 2.0, p > 0.05 | NA | NA |
[28] | Preoperative vs. 3 mo vs. 6 mo vs. 1 y: 3.29 ± 2.79 vs. 3.28 ± 2.86 vs. 3.12 ± 2.49 vs. 3.07 ± 2.13, p = 0.514 N with prediabetes: Preoperative vs. 3 mo vs. 6 mo vs. 1 y: 4.79 ± 3.49 vs. 4.51 ± 3.54 vs. 4.20 ± 2.56 vs. 4.10 ± 2.38, p = 0.040 N without prediabetes: Preoperative vs. 3 mo vs. 6 mo vs. 1 y: 2.57 ± 2.03 vs. 2.66 ± 2.21 vs. 2.61 ± 2.29 vs. 2.58 ± 1.80, p = 0.933 N with insulin resistance: Preoperative vs. 3 mo vs. 6 mo vs. 1 y: 5.16 ± 3.14 vs. 4.83 ± 3.43 vs. 4.39 ± 2.77 vs. 4.31 ± 2.33, p = 0.002 N without insulin resistance: Preoperative vs. 3 mo vs. 6 mo vs. 1 y: 1.65 ± 0.48 vs. 1.91 ± 1.02 vs. 1.96 ± 1.45 vs. 1.99 ± 1.11, p = 0.001 N with insulin resistance according to EGIR: Preoperative vs. 3 mo vs. 6 mo vs. 1 y: 4.25 ± 2.97 vs. 4.06 ± 3.16 vs. 3.80 ± 2.60 vs. 3.76 ± 2.24, p = 0.016 N without insulin resistance according to EGIR: Preoperative vs. 3 mo vs. 6 mo vs. 1 y: 1.36 ± 0.34 vs. 1.76 ± 1.11 vs. 1.71 ± 1.44 vs. 1.69 ± 0.82, p = 0.001 | Preoperative vs. 3 mo vs. 6 mo vs. 1 y: 140 ± 96 vs. 143 ± 117 vs. 135 ± 85 vs. 133 ± 74, p = 0.202 | NA |
[36] | N1 vs. N2: 3.39 ± 3.11 vs. 1.92 ± 1.16, p < 0.001 N3 vs. N4 vs. N5: 2.14 ± 1.29 vs. 3.28 ± 3.29 vs. 4.53 ± 3.51, p = 0.002 | N1 vs. N2: 156 ± 262 vs. 100 ± 50, p = 0.006 N3 vs. N4 vs. N5: 105.9 ± 57.4 vs. 165.9 ± 348.7 vs. 176.4 ± 107.7, p = 0.447 | NA |
[38] | Preoperative vs. 1 y postoperative N: 2.3 ± 1.6 vs. 1.9 ± 1.3, p < 0.001 N1: 2.5 ± 1.6 vs. 1.9 ± 1.0 p > 0.05 N2: 2.3 ± 1.7 vs. 1.9 ± 1.3 p > 0.05 | Preoperative vs. 1 y postoperative N: 99.4 ± 50.7 vs. 94.9 ± 55.9, p > 0.05 N1: 103.3 ± 54.1 vs. 102.2 ± 45.6 p > 0.05 N2: 98.9 ± 50.5 vs. 94.0 ± 57.2 p > 0.05 | NA |
[40] | Preoperative vs. postoperative 2.21 ± 0.69 vs. 2.02 ± 0.64, p = 0.0001 | NA | NA |
[41] | Preoperative vs. postoperative 1.14 ± 0.72 vs. 1.22 ± 0.61, p = 0.45 | Preoperative vs. postoperative 97.53 ± 25.13 vs. 100.31 ± 28.22, p = 0.68 | Preoperative vs. postoperative 127.74 ± 76.90 vs. 104.51 ± 48.15, p = 0.68 QUICKI: Preoperative vs. postoperative 0.36 ± 0.04 vs. 0.34 ± 0.03, p = 0.08 Matsuda Index: Preoperative vs. postoperative 6.34 ± 3.7 vs. 5.27 ± 2.44, p = 0.06 |
[43] | N1 vs. N2 3.7 ± 1.2 vs. 2.9 ± 0.2, p = 0.48 | N1 vs. N2 117.8 ± 31.8 vs. 146.9 ± 22.0, p = 0.14 | NA |
[44] | N1 vs. N2 3.1 ± 1.2 vs. 2.9 ± 0.2, p = 0.211 | N1 vs. N2 112.9 ± 31.8 vs. 116.9 ± 21.0, p = 0.314 | NA |
Reference | Main Findings |
---|---|
[34] | N1 vs. N2: MetS: 40.9% vs. 24.2%, p = 0.04 Median (IQR) 25OHD levels: MetS vs. without MetS: 40.8 (10–150.8) vs. 52.8 (10–206.8), p = 0.52 |
[42] | Mean MetS severity score: 94.78 ± 4.53 Statistically significant correlation between PTH and MetS severity scores in: Overall: β = 0.399, p = 0.030 With moderate physical activity: β = 0.413, p = 0.045 Without vitamin D supplementation: β = 0.524, p = 0.028 With high protein intake: β = 0.586, p = 0.03 With vitamin D deficiency: β = 0.456, p = 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheorghe, A.-M.; Stanciu, M.; Nistor, C.; Lebada, I.C.; Carsote, M. Primary Hyperparathyroidism: An Analysis Amid the Co-Occurrence of Type 2 Diabetes Mellitus. Life 2025, 15, 677. https://doi.org/10.3390/life15040677
Gheorghe A-M, Stanciu M, Nistor C, Lebada IC, Carsote M. Primary Hyperparathyroidism: An Analysis Amid the Co-Occurrence of Type 2 Diabetes Mellitus. Life. 2025; 15(4):677. https://doi.org/10.3390/life15040677
Chicago/Turabian StyleGheorghe, Ana-Maria, Mihaela Stanciu, Claudiu Nistor, Ioana Codruta Lebada, and Mara Carsote. 2025. "Primary Hyperparathyroidism: An Analysis Amid the Co-Occurrence of Type 2 Diabetes Mellitus" Life 15, no. 4: 677. https://doi.org/10.3390/life15040677
APA StyleGheorghe, A.-M., Stanciu, M., Nistor, C., Lebada, I. C., & Carsote, M. (2025). Primary Hyperparathyroidism: An Analysis Amid the Co-Occurrence of Type 2 Diabetes Mellitus. Life, 15(4), 677. https://doi.org/10.3390/life15040677