Near-Infrared Spectroscopy Patterns as Indicator of Perioperative Stroke in Acute Type A Aortic Dissection
Abstract
1. Introduction
- Determine whether intraoperative NIRS parameters—absolute minima, variability, and recovery—differ between patients with and without perioperative stroke.
- Assess the association between preoperative vessel dissection status and cerebral oximetry patterns.
- Gain insights into whether NIRS-derived variables may provide additive prognostic value to established risk scores such as the GERAADA score, which predicts 30-day mortality following ATAAD [11].
2. Materials and Methods
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Comparison of Stroke and No-Stroke
3.2.1. Demographics and Preoperative Characteristics
3.2.2. Intraoperative Data and Cerebral Oximetry
3.2.3. Visualization of Near-Infrared Spectroscopy Dynamics
3.2.4. Postoperative Outcomes
3.2.5. Survival Analysis
4. Discussion
4.1. State of Research
4.2. Summary of Main Findings
- Higher preoperative GERAADA scores;
- More frequent dissection of the RCCA and the right lower limb;
- Significantly lower cerebral oximetry minima during DHCA and a muted post-DHCA recovery;
- Greater variability in NIRS signal (higher crest factor and standard deviation);
- Increased incidence of cerebral hypoxia as cause of death in the postoperative course and prolonged ICU stays.
4.3. Cerebral Desaturation and Neurologic Injury
4.4. Signal Variability: Beyond Absolute Oximetry Values
4.5. Malperfusion Syndromes and Stroke Risk
4.6. GERAADA Risk Score Validation
4.7. Postoperative Course and Intensive Care Unit Utilization
4.8. Implications for Cerebral Protection Strategies
- More proactive NIRS thresholds: Our data suggest that thresholds below ~50% during DHCA are highly predictive of stroke. Early deepening of hypothermia and augmentation of cerebral perfusion pressure may prevent critical declines with hypoxia [21].
- Real-time signal variability monitoring: Continual tracking of dynamic parameters, e.g., crest factor and standard deviation, may alert surgeons to impending perfusion instability. Automated alert algorithms could be developed to prompt intervention before desaturation worsens. NIRS-guided perfusion adjustments have already demonstrated efficacy in other high-risk cardiac surgeries [22].
4.9. Biological Plausibility and Mechanisms
- Pre-existing Hypoperfusion: Patients with carotid malperfusion have diminished cerebral reserve, rendering any intraoperative hypoxia more harmful.
- DHCA-Induced Ischemia: Even with deep hypothermia, metabolic suppression fails to entirely prevent neural injury, particularly in marginally perfused regions.
- Reperfusion Injury: Cerebral desaturation rebound is limited in stroke patients, suggesting endothelial dysfunction or microthrombosis that compromise reperfusion.
- Microembolism: Fluctuating NIRS might reflect embolic showers during circulatory arrest and restoration, e.g., through aortic manipulation [23].
4.10. Integration of Autoregulation Monitoring and Dynamic NIRS Assessment
4.11. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATAAD | Acute type A aortic dissection |
BACP | Bilateral antegrade cerebral perfusion |
CBP | Cardiopulmonary bypass |
CT | Computer tomography |
DHCA | Deep hypothermic circulatory arrest |
EL | Exitus letalis |
GERAADA | German registry for acute aortic dissection type A |
ICU | Intensive care unit |
LCCA | Left common carotid artery |
LRA | Left renal artery |
MAP | Mean arterial pressure |
MRI | Magnetic resonance imaging |
NIRS | Near infrared spectroscopy |
RCCA | Right common carotid artery |
RRA | Right renal artery |
SACP | Selective antegrade cerebral perfusion |
SD | Standard deviation |
SMA | Superior mesenteric artery |
S/P | Status post |
References
- Czerny, M.; Grabenwöger, M.; Berger, T.; Aboyans, V.; Della Corte, A.; Chen, E.P.; Desai, N.D.; Dumfarth, J.; Elefteriades, J.A.; Etz, C.D.; et al. EACTS/STS Guidelines for Diagnosing and Treating Acute and Chronic Syndromes of the Aortic Organ. Ann. Thorac. Surg. 2024, 118, 5–115. [Google Scholar] [CrossRef]
- Raksamani, K.; Tangvipattanapong, M.; Charoenpithakwong, N.; Silarat, S.; Pantisawat, N.; Sanphasitvong, V.; Raykateeraroj, N. Postoperative Stroke in Acute Type A Aortic Dissection: Incidence, Outcomes, and Perioperative Risk Factors. BMC Surg. 2024, 24, 214. [Google Scholar] [CrossRef]
- Zeldich, D.; Bierowski, M.; Shabo, L.; Yaddanapudi, S.; Marhefka, G. Neurovascular Complications of Acute Aortic Syndrome. J. Stroke 2025, 27, 19–29. [Google Scholar] [CrossRef]
- Gocoł, R.; Hudziak, D.; Bis, J.; Mendrala, K.; Morkisz, Ł.; Podsiadło, P.; Kosiński, S.; Piątek, J.; Darocha, T. The Role of Deep Hypothermia in Cardiac Surgery. Int. J. Environ. Res. Public Health 2021, 18, 7061. [Google Scholar] [CrossRef]
- Qu, J.Z.; Kao, L.-W.; Smith, J.E.; Kuo, A.; Xue, A.; Iyer, M.H.; Essandoh, M.K.; Dalia, A.A. Brain Protection in Aortic Arch Surgery: An Evolving Field. J. Cardiothorac. Vasc. Anesth. 2021, 35, 1176–1188. [Google Scholar] [CrossRef]
- Bennett, S.R.; Smith, N.; Bennett, M.R. Cerebral Oximetry in Adult Cardiac Surgery to Reduce the Incidence of Neurological Impairment and Hospital Length-of-Stay: A Prospective, Randomized, Controlled Trial. J. Intensive Care Soc. 2022, 23, 109–116. [Google Scholar] [CrossRef]
- Wirayannawat, W.; Amawat, J.; Yamsiri, N.; Paes, B.; Kitsommart, R. Comparison of the SenSmartTM and the INVOSTM Neonatal Cerebral Near-Infrared Spectrometry Devices. Front. Pediatr. 2023, 11, 1243977. [Google Scholar] [CrossRef]
- Orihashi, K. Near-Infrared Spectroscopy for Monitoring Cerebral Ischemia during Selective Cerebral Perfusion. Eur. J. Cardio-Thorac. Surg. 2004, 26, 907–911. [Google Scholar] [CrossRef] [PubMed]
- Bochmann, K.; Meineri, M.; Ender, J.K.; Von Aspern, K.; Flo Forner, A.; Janai, A.R.; Zakhary, W.Z.A. Interventions Triggered During Routine Use of NIRS Cerebral Oxygenation Monitoring in Cardiac Surgical Patients. J. Cardiothorac. Vasc. Anesth. 2022, 36, 2022–2030. [Google Scholar] [CrossRef] [PubMed]
- Pierik, R.; Scheeren, T.W.L.; Erasmus, M.E.; Van Den Bergh, W.M. Association of Early Perioperative Stroke after Cardiothoracic Surgery with Intraoperative Regional Cerebral Oxygenation Using Near-Infrared Spectroscopy: An Observational Cohort Study Comparing Affected versus Non-Affected Hemispheres. J. Clin. Monit. Comput. 2025, 39, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Berezowski, M.; Kalva, S.; Bavaria, J.E.; Zhao, Y.; Patrick, W.L.; Kelly, J.J.; Szeto, W.Y.; Grimm, J.C.; Desai, N.D. Validation of the GERAADA Score to Predict 30-Day Mortality in Acute Type A Aortic Dissection in a Single High-Volume Aortic Centre. Eur. J. Cardio-Thorac. Surg. 2024, 65, ezad412. [Google Scholar] [CrossRef]
- Sterbetafel, Bayerisches Landesamt für Statistik, GENESIS-Tabelle: 12621-002, Bayern, Jahr: 2021/23. Available online: https://www.lifetable.de/File/GetDocument/data/DEU/DEU002020212023CU1.pdf (accessed on 12 April 2025).
- Gaudino, M.; Benesch, C.; Bakaeen, F.; DeAnda, A.; Fremes, S.E.; Glance, L.; Messé, S.R.; Pandey, A.; Rong, L.Q.; On behalf of the American Heart Association Council on Cardiovascular Surgery and Anesthesia; et al. Considerations for Reduction of Risk of Perioperative Stroke in Adult Patients Undergoing Cardiac and Thoracic Aortic Operations: A Scientific Statement from the American Heart Association. Circulation 2020, 142, e193–e209. [Google Scholar] [CrossRef] [PubMed]
- Kletzer, J.; Czerny, M.; Kreibich, M.; Berger, T.; Bauer, N.; Dimov, A.; Fagu, A.; Eschenhagen, M.; Lehane, C.; Kondov, S. Correlation Between Intraoperative Near-Infrared Spectroscopy Values and Neurologic Outcomes in Patients Undergoing Total Aortic Arch Replacement Using the Frozen Elephant Trunk Technique. J. Cardiothorac. Vasc. Anesth. 2024, 39, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Hibino, M.; Peterson, M.D.; Tachibana, R.; Chu, M.W.A.; Bozinovski, J.; Dagenais, F.; Quan, A.; Papa, F.D.V.; Dickson, J.; Teoh, H.; et al. Association of Cerebral Oximetry with Brain Ischemic Lesions and Functional Outcomes in Arch Repair. Ann. Thorac. Surg. 2024, 117, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Brady, K.M.; Lee, J.K.; Kibler, K.K.; Easley, R.B.; Koehler, R.C.; Shaffner, D.H. Continuous Measurement of Autoregulation by Spontaneous Fluctuations in Cerebral Perfusion Pressure: Comparison of 3 Methods. Stroke 2008, 39, 2531–2537. [Google Scholar] [CrossRef]
- Zweifel, C.; Castellani, G.; Czosnyka, M.; Helmy, A.; Manktelow, A.; Carrera, E.; Brady, K.M.; Hutchinson, P.J.A.; Menon, D.K.; Pickard, J.D.; et al. Noninvasive Monitoring of Cerebrovascular Reactivity with near Infrared Spectroscopy in Head-Injured Patients. J. Neurotrauma 2010, 27, 1951–1958. [Google Scholar] [CrossRef]
- Vendramin, I.; Isola, M.; Piani, D.; Onorati, F.; Salizzoni, S.; D’Onofrio, A.; Di Marco, L.; Gatti, G.; De Martino, M.; Faggian, G.; et al. Surgical Management and Outcomes in Patients with Acute Type A Aortic Dissection and Cerebral Malperfusion. JTCVS Open 2022, 10, 22–33. [Google Scholar] [CrossRef]
- Kreibich, M.; Rylski, B.; Czerny, M.; Beyersdorf, F.; Itagaki, R.; Okamura, H.; Kimura, N.; Yamaguchi, A.; Vallabhajosyula, P.; Szeto, W.Y.; et al. Impact of Carotid Artery Involvement in Type A Aortic Dissection. Circulation 2019, 139, 1977–1978. [Google Scholar] [CrossRef]
- Czerny, M.; Siepe, M.; Beyersdorf, F.; Feisst, M.; Gabel, M.; Pilz, M.; Pöling, J.; Dohle, D.-S.; Sarvanakis, K.; Luehr, M.; et al. Prediction of Mortality Rate in Acute Type A Dissection: The German Registry for Acute Type A Aortic Dissection Score. Eur. J. Cardio-Thorac. Surg. 2020, 58, 700–706. [Google Scholar] [CrossRef]
- Murkin, J.M.; Adams, S.J.; Novick, R.J.; Quantz, M.; Bainbridge, D.; Iglesias, I.; Cleland, A.; Schaefer, B.; Irwin, B.; Fox, S. Monitoring Brain Oxygen Saturation during Coronary Bypass Surgery: A Randomized, Prospective Study. Anesth. Analg. 2007, 104, 51–58. [Google Scholar] [CrossRef]
- Slater, J.P.; Guarino, T.; Stack, J.; Vinod, K.; Bustami, R.T.; Brown, J.M.; Rodriguez, A.L.; Magovern, C.J.; Zaubler, T.; Freundlich, K.; et al. Cerebral Oxygen Desaturation Predicts Cognitive Decline and Longer Hospital Stay after Cardiac Surgery. Ann. Thorac. Surg. 2009, 87, 36–45. [Google Scholar] [CrossRef]
- Gottesman, R.F.; Sherman, P.M.; Grega, M.A.; Yousem, D.M.; Borowicz, L.M.; Selnes, O.A.; Baumgartner, W.A.; McKhann, G.M. Watershed Strokes after Cardiac Surgery: Diagnosis, Etiology, and Outcome. Stroke 2006, 37, 2306–2311. [Google Scholar] [CrossRef]
- Sainbhi, A.S.; Vakitbilir, N.; Gomez, A.; Stein, K.Y.; Froese, L.; Zeiler, F.A. Non-Invasive Mapping of Cerebral Autoregulation Using Near-Infrared Spectroscopy: A Study Protocol. Methods Protoc. 2023, 6, 58. [Google Scholar] [CrossRef]
Cohort 2015–2023 | Total | Stroke | No-Stroke | p-Value | Rating |
---|---|---|---|---|---|
Patients | 175 (100) | 47 (100) | 128 (100) | - | - |
Age at procedure | 60.8 (37.0–81.0) | 60.5 (40.5–77.8) | 61.0 (37.0–81.8) | 0.647 | - |
Female | 56 (32.0) | 15 (31.9) | 41 (32.0) | 1.000 | - |
DeBakey I | 122 (69.7) | 38 (80.9) | 84 (65.6) | 0.064 | * |
DeBakey II | 51 (29.1) | 8 (17) | 43 (34) | 0.039 | ** |
DeBakey III | 1 (0.6) | 0 (0.0) | 1 (0.8) | 1.000 | - |
DeBakey other | 1 (0.6) | 1 (2.1) | 0 (0.0) | 0.269 | - |
GERAADA-Score (%) | 21.5 (6.7–46.8) | 25.8 (10.7–49.9) | 19.9 (6.7–44.6) | 0.002 | *** |
Total Arch Replacement | 20 (11.4) | 5 (10.6) | 15 (11.7) | 1.000 | - |
Vessel dissection: | |||||
coronary | 11 (6.3) | 5 (10.6) | 6 (4.7) | 0.168 | - |
innominate | 58 (33.1) | 21 (44.7) | 37 (28.9) | 0.069 | * |
RCCA | 49 (28.0) | 19 (40.4) | 30 (23.4) | 0.036 | ** |
LCCA | 42 (24.0) | 10 (21.3) | 32 (25.0) | 0.693 | - |
RSA | 31 (17.7) | 10 (21.3) | 21 (16.4) | 0.504 | - |
LSA | 32 (18.3) | 8 (17.0) | 24 (18.8) | 1.000 | - |
spinal | 4 (2.3) | 2 (4.3) | 2 (1.6) | 0.292 | - |
coeliacal | 48 (27.4) | 16 (34.0) | 32 (25.0) | 0.255 | - |
SMA | 29 (16.6) | 9 (19.1) | 20 (15.6) | 0.647 | - |
RRA | 28 (16.0) | 11 (23.4) | 17 (13.3) | 0.110 | - |
LRA | 73 (41.7) | 21 (44.7) | 52 (40.6) | 0.730 | - |
Leg R | 18 (10.3) | 9 (19.1) | 9 (7.0) | 0.026 | ** |
Leg L | 29 (16.6) | 11 (23.4) | 18 (14.1) | 0.169 | - |
CPR, prae procedure | 6 (3.4) | 3 (6.4) | 3 (2.3) | 0.345 | - |
Total | Stroke | No-Stroke | p-Value | Rating | |
---|---|---|---|---|---|
Duration of DHCA (minutes) | 48.0 (18.3–106.3) | 47.7 (23.3–103.2) | 48.1 (18.0–108.6) | 0.815 | - |
Lowest Rectal Temperature (°C) | 25.6 (20.7–29.0) | 25.8 (21.3–29.0) | 25.5 (20.4–28.9) | 0.585 | - |
Temperature (°C) at | |||||
MP1—rectal, pre-CPB | 36.2 (34.1–37.7) | 36.1 (33.9–37.7) | 36.2 (34.2–37.7) | 0.398 | - |
MP2—rectal, pre-DHCA | 27.1 (21.9–33.0) | 27.1 (23.1–32.1) | 27.1 (21.9–33.7) | 0.948 | - |
MP3—head temp at DHCA | 21.2 (18.0–28.0) | 21.6 (20.0–28.0) | 21.0 (18.0–28.0) | 0.075 | * |
MP4—rectal, post-DHCA | 26.6 (22.2–31.0) | 26.6 (23.3–30.9) | 26.5 (22.2–30.9) | 0.957 | - |
MP5—rectal, end of CPB | 35.5 (31.7–37.3) | 35.4 (30.9–37.2) | 35.6 (32.5–37.5) | 0.808 | - |
NIRS (Left/Right) at | |||||
MP1—pre-CPB | 69.3 (37.0–92.6) 68.9 (40.0–89.6) | 67.6 (32.1–82.0) 65.6 (29.5–82.7) | 69.9 (37.5–93.3) 70.1 (43.3–91.6) | 0.459 | - |
0.114 | - | ||||
MP2—pre-DHCA | 67.2 (41.0–86.0) 67.6 (49.3–89.6) | 65.9 (41.3–79.8) 65.5 (50.3–82.8) | 67.7 (43.5–86.0) 68.4 (49.2–90.0) | 0.337 | - |
0.117 | - | ||||
MP3—minimum at DHCA | 50.7 (16.7–80.6) 53.8 (20.3–85.0) | 46.7 (15.7–69.4) 47.0 (23.3–78.5) | 52.2 (22.0–81.6) 56.3 (20.2–85.0) | 0.027 | ** |
0.001 | *** | ||||
MP4—post-DHCA | 63.6 (40.3–85.6) 65.4 (39.3–89.0) | 61.7 (40.3–84.8) 63.5 (42.7–87.0) | 64.3 (41.2–84.6) 66.1 (37.3–89.0) | 0.100 | - |
0.109 | - | ||||
MP5—end of CPB | 73.2 (54.4–90.3) 73.6 (55.3–93.0) | 71.7 (53.0–93.9) 70.8 (50.4–93.4) | 73.7 (57.2–88.8) 74.6 (58.2–92.6) | 0.159 | - |
0.044 | ** | ||||
Crest Factor of NIRS values (L/R) | 0.46 (0.12–1.01) 0.43 (0.10–1.05) | 0.52 (0.17–1.06) 0.49 (0.17–1.01) | 0.44 (0.11–1.01) 0.41 (0.09–1.05) | 0.015 | ** |
0.016 | ** | ||||
Band Power of NIRS values (L/R) at DHCA (1/min) | 289 (77–675) 303 (89–675) | 262 (75–508) 272 (76–604) | 298 (89–714) 315 (120–680) | 0.400 | - |
0.127 | - | ||||
SD of all NIRS samples | 11.4 (3.9–22.6) | 12.7 (4.5–21.7) | 10.9 (3.6–22.8) | 0.013 | ** |
NIRS MP3 < 50% | 95 (54.3) | 32 (68.1) | 63 (49.2) | 0.039 | ** |
NIRS Drop MP1-MP3 (%, L/R) | −23 (−74–40) −19 (−72–41) | −23 (−74–40) −24 (−67–54) | −23 (−73–25) −18 (−74–40) | 0.089 | * |
0.060 | * | ||||
NIRS Drop MP1-MP3 > 20% | 116 (66.3) | 35 (74.5) | 81 (63.3) | 0.207 | - |
NIRS Rise MP3-MP5 (%, Left/Right) | 61 (−01–277) 0.57 (−15–289) | 72 (9–283) 68 (−13–202) | 57 (−1–244) 53 (−15–294) | 0.115 | - |
0.011 | ** | ||||
NIRS Rise MP3-MP5 > 20% | 138 (78.9) | 41 (87.2) | 97 (75.8) | 0.143 | - |
NIRS Drop and Rise > 20% | 108 (61.7) | 34 (72.3) | 74 (57.8) | 0.114 | - |
Total | Stroke | No-Stroke | p-Value | Rating | |
---|---|---|---|---|---|
EL due to Cerebral Hypoxia | 15 (8.6) | 14 (29.8) | 1 (0.8) | 0.000 | *** |
Days on ICU | 11.7 (1.0–46.6) | 16.3 (3.1–48.2) | 10.0 (1.0–34.8) | 0.000 | *** |
Days in Clinic | 21.1 (2.3–57.6) | 23.5 (4.0–59.8) | 20.2 (2.0–57.0) | 0.254 | - |
In-Hospital Mortality | 32 (18.3) | 12 (25.5) | 20 (15.6) | 0.184 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heuer, H.; Truong, A.; Schach, C.; Krämer, L.; Micek, J.; Putz, F.J.; Flörchinger, B.; Rohlffs, F.; Schmid, C.; Li, J. Near-Infrared Spectroscopy Patterns as Indicator of Perioperative Stroke in Acute Type A Aortic Dissection. Life 2025, 15, 1295. https://doi.org/10.3390/life15081295
Heuer H, Truong A, Schach C, Krämer L, Micek J, Putz FJ, Flörchinger B, Rohlffs F, Schmid C, Li J. Near-Infrared Spectroscopy Patterns as Indicator of Perioperative Stroke in Acute Type A Aortic Dissection. Life. 2025; 15(8):1295. https://doi.org/10.3390/life15081295
Chicago/Turabian StyleHeuer, Henrik, André Truong, Christian Schach, Lukas Krämer, Jozef Micek, Franz Josef Putz, Bernhard Flörchinger, Fiona Rohlffs, Christof Schmid, and Jing Li. 2025. "Near-Infrared Spectroscopy Patterns as Indicator of Perioperative Stroke in Acute Type A Aortic Dissection" Life 15, no. 8: 1295. https://doi.org/10.3390/life15081295
APA StyleHeuer, H., Truong, A., Schach, C., Krämer, L., Micek, J., Putz, F. J., Flörchinger, B., Rohlffs, F., Schmid, C., & Li, J. (2025). Near-Infrared Spectroscopy Patterns as Indicator of Perioperative Stroke in Acute Type A Aortic Dissection. Life, 15(8), 1295. https://doi.org/10.3390/life15081295