Chromosome Replication in Escherichia coli: Life on the Scales
Abstract
:1. Introduction
2. Problems with Current Explanations of Initiation Control
3. The Dualism Hypothesis
4. Mechanisms
4.1. Intensity Sensing
4.2. Quantity Sensing
5. The Specific Case of DnaA in the E. coli Cell Cycle
5.1. DnaA Background
Intensity Sensing | Quantity Sensing |
---|---|
Superhelicity. Increased superhelicity during growth might release DnaA from DnaA binding at sites on the chromosome [87]. | Cardiolipin. CL detaches DnaA from spiral hyperstructure (CL detaches DnaA from DNA) [87]. CL domains are also important in division [90]. |
ATP levels. If several DnaA are bound to DARS they can be recharged with ATP (ATP4- condenses before ADP3-) [52]. | Nucleoid Associated Proteins. NAPs include HU, H-NS, Fis, IHF, StpA and Dps; each binds to 100s of specific sites + every 100 bp. IHF, HU and Dps interact with DnaA [91,92]. IHF for example also binds to oriC, helps DnaA bind to datA and binds itself to datA (IHF deletion delays initiation) [93]. H-NS is in a hyperstructure [16] and H-NS deletion delays initiation |
Size/topology of ATP synthase transertion hyperstructure [88]. atp genes are close to oriC and hence to a datA-IHF-DnaA hyperstructure. | |
Central Carbon Metabolism. Acetyl phosphate level is transduced by a DnaA hyperstructure (dnaA46(ts) suppression by pta (phosphate acetyletransferase) or ackA (acetate kinase) [89] |
5.2. Membrane
5.3. DnaA Boxes and DatA
5.4. DARSs
5.5. DnaA Spirals and Foci
5.6. H-NS
5.7. Ribonucleotide Reductase
5.8. Central Carbon Metabolism (CCM)
5.9. Ribosomes
6. Constitutive Stable Replication
7. Predictions
7.1. Non-Equilibrium and Equilibrium Hyperstructures
7.2. Ion Condensation
7.3. Quantity Sensing
7.4. Intensity Sensing
7.5. Constitutive Stable Replication
7.6. Simulation
8. Discussion
9. Conclusions
Acknowledgements
References and Notes
- Kauffman, S. At home in the Universe, the Search for the Laws of Complexity; Penguin: London, UK, 1996; pp. 1–321. [Google Scholar]
- Kawai, F.; Shoda, M.; Harashima, R.; Sadaie, Y.; Hara, H.; Matsumoto, K. Cardiolipin domains in bacillus subtilis marburg membranes. J. Bacteriol. 2004, 186, 1475–1483. [Google Scholar] [CrossRef]
- Benford, G. Old legends. In New legends; Bear, G., Ed.; Legend Books (Random House UK): London, UK, 1995; pp. 292–306. [Google Scholar]
- Schaechter, M.; Curtis, R., III; Ingraham, J.L.; Lin, E.C.C.; Low, K.B.; Magasanik, B.; Neidhardt, F.C.; Reznikoff, W.S.; Riley, M.; Umbarger, H.E. The view from here. In Escherichia coli and salmonella; Neidhardt, F.C., Ed.; American Society for Microbiology: Washington, DC, USA, 1996; pp. 2817–2822. [Google Scholar]
- Crutchfield, J.P.; Young, K. Computation at the edge of chaos. In Complexity, Entropy and the Physics of Information: Sfi Studies in the Sciences of Complexity; Zurek, W.H., Ed.; Addison-Wesley: Reading, MA, USA, 1990; Volume VIII, pp. 223–269. [Google Scholar]
- Langton, C.G. Computation at the edge of chaos—Phase-transitions and emergent computation. Physica. D 1990, 42, 12–37. [Google Scholar] [CrossRef]
- Manning, G.S. Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J. Chem. Phys. 1969, 51, 924–933. [Google Scholar] [CrossRef]
- Oosawa, F. Polyelectrolytes; Dekker: New York, NY, USA, 1971; pp. 1–160. [Google Scholar]
- Hunding, A.; Kepes, F.; Lancet, D.; Minsky, A.; Norris, V.; Raine, D.; Sriram, K.; Root-Bernstein, R. Compositional complementarity and prebiotic ecology in the origin of life. Bioessays 2006, 28, 399–412. [Google Scholar]
- Norris, V.; Delaune, A. Question 1: Contingency versus determinism. Origins Life Evol. Biosphere 2010, 40, 365–370. [Google Scholar]
- Segre, D.; Ben-Eli, D.; Lancet, D. Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc. Natl. Acad. Sci. USA 2000, 97, 4112–4117. [Google Scholar] [CrossRef]
- Narayanaswamy, R.; Levy, M.; Tsechansky, M.; Stovall, G.M.; O'Connell, J.D.; Mirrielees, J.; Ellington, A.D.; Marcotte, E.M. Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc. Natl. Acad. Sci. USA 2009, 106, 10147–10152. [Google Scholar]
- Norris, V.; Blaauwen, T.D.; Doi, R.H.; Harshey, R.M.; Janniere, L.; Jimenez-Sanchez, A.; Jin, D.J.; Levin, P.A.; Mileykovskaya, E.; Minsky, A.; Misevic, G.; Ripoll, C.; Saier Jnr., M.; Skarstad, K.; Thellier, M. Toward a Hyperstructure Taxonomy. Annu. Rev. Microbiol. 2007, 61, 309–329. [Google Scholar] [CrossRef]
- Llopis, P.M.; Jackson, A.F.; Sliusarenko, O.; Surovtsev, I.; Heinritz, J.; Emonet, T.; Jacobs-Wagner, C. Spatial organization of the flow of genetic information in bacteria. Nature 2010, 466, 77–81. [Google Scholar]
- Nevo-Dinur, K.; Nussbaum-Shochat, A.; Ben-Yehuda, S.; Amster-Choder, O. Translation-independent localization of mRNA in E.coli. Science 2011, 331, 1081–1084. [Google Scholar] [CrossRef]
- Wang, W.; Li, G.W.; Chen, C.; Xie, X.S.; Zhuang, X. Chromosome organization by a nucleoid-associated protein in live bacteria. Science 2011, 333, 1445–1449. [Google Scholar] [CrossRef]
- Livolant, F.Y.; Bouligand, Y. New observations on the twisted arrangement of dinoflagellate chromosomes. Chromosoma 1978, 68, 21–44. [Google Scholar] [CrossRef]
- Minsky, A.; Shimoni, E.; Frenkiel-Krispin, D. Stress, order and survival. Nat. Rev. Mol. Cell Biol. 2002, 3, 50–60. [Google Scholar]
- Wolf, S.G.; Frenkiel, D.; Arad, T.; Finkel, S.E.; Kolter, R.; Minsky, A. DNA protection by stress-induced biocrystallization. Nature 1999, 400, 83–85. [Google Scholar]
- Mileykovskaya, E.; Dowhan, W. Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim. Biophys. Acta. 2009, 1788, 2084–2091. [Google Scholar]
- Nishibori, A.; Kusaka, J.; Hara, H.; Umeda, M.; Matsumoto, K. Phosphatidylethanolamine domains and localization of phospholipid synthases in bacillus subtilis membranes. J. Bacteriol. 2005, 187, 2163–2174. [Google Scholar] [CrossRef]
- Mayer, F. Cytoskeletal elements in bacteria Mycoplasma pneumoniae, Thermoanaerobacterium sp., and Escherichia coli as revealed by electron microscopy. J. Mol. Microbiol. Biotechnol. 2006, 11, 228–243. [Google Scholar] [CrossRef]
- Defeu Soufo, H.J.; Reimold, C.; Linne, U.; Knust, T.; Gescher, J.; Graumann, P.L. Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein. Proc. Natl. Acad. Sci. USA 2010, 107, 3163–3168. [Google Scholar]
- Exley, R.; Zouine, M.; Pernelle, J.-J.; Beloin, C.; Le Hegarat, F.; Deneubourg, A.M. A possible role for L24 of Bacillus subtilis in nucleoid organization and segregation. Biochimie 2001, 83, 269–275. [Google Scholar] [CrossRef]
- Miller, O.L., Jr.; Hamkalo, B.A.; Thomas, C.A., Jr. Visualization of bacterial genes in action. Science 1970, 169, 392–395. [Google Scholar]
- Cabrera, J.E.; Jin, D.J. The distribution of rna polymerase in escherichia coli is dynamic and sensitive to environmental cues. Mol. Microbiol. 2003, 50, 1493–1505. [Google Scholar] [CrossRef]
- Sobetzko, P.; Travers, A.; Muskhelishvili, G. Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc. Natl. Acad. Sci. USA 2012, 109, E42–E50. [Google Scholar]
- Norris, V. Speculations on the initiation of chromosome replication in Escherichia coli: The dualism hypothesis. Med. Hypotheses 2011, 76, 706–716. [Google Scholar] [CrossRef]
- Kamimura, A.; Kaneko, K. Reproduction of a protocell by replication of a minority molecule in a catalytic reaction network. Phys. Rev. Lett. 2010, 105, 268103. [Google Scholar] [CrossRef]
- Amar, P.; Legent, G.; Thellier, M.; Ripoll, C.; Bernot, G.; Nystrom, T.; Saier, M.H., Jr.; Norris, V. A stochastic automaton shows how enzyme assemblies may contribute to metabolic efficiency. BMC Syst. Biol. 2008, 2, 27. [Google Scholar]
- Fishov, I.; Zaritsky, A.; Grover, N.B. On microbial states of growth. Mol. Microbiol. 1995, 15, 789–794. [Google Scholar]
- Mendelson, N.H. Bacterial growth and division: genes, structures, forces, and clocks. Microbiol. Rev. 1982, 46, 341–375. [Google Scholar]
- Pritchard, R.H.; Barth, P.T.; Collins, T. Control of DNA synthesis in bacteria. Symp. Soc. Gen. Microbiol. 1969, 19, 263–297. [Google Scholar]
- Schaechter, M.; Maaloe, O.; Kjeldgaard, N.O. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J. Gen. Microbiol. 1958, 19, 592–606. [Google Scholar]
- Cooper, S.; Helmstetter, C.E. Chromosome replication and the division cycle of Escherichia coli B/r. J. Mol. Biol. 1968, 31, 519–540. [Google Scholar] [CrossRef]
- Donachie, W.D. Relationship between cell size and time of initiation of DNA replication. Nature 1968, 219, 1077–1079. [Google Scholar] [CrossRef]
- Lobner-Olesen, A.; Skarstad, K.; Hansen, F.G.; von Meyenburg, K.; Boye, E. The DnaA protein determines the initiation mass of Escherichia coli K-12. Cell 1989, 57, 881–889. [Google Scholar]
- Messer, W.; Bergmans, H.E.; Meijer, M.; Womack, J.E.; Hansen, F.G.; von Meyenburg, K. Mini-chromosomes: Plasmids which carry the E. coli replication origin. Mol. Gen. Genet. 1978, 162, 269–275. [Google Scholar] [CrossRef]
- Leonard, A.C.; Helmstetter, C.E. Cell cycle-specific replication of Escherichia coli minichromosomes. Proc. Natl. Acad. Sci. USA 1986, 83, 5101–5105. [Google Scholar] [CrossRef]
- Hansen, F.G.; Rasmussen, K.V. Regulation of the dnaA product in Escherichia coli. Mol. Gen. Genet. 1977, 155, 219–225. [Google Scholar] [CrossRef]
- Churchward, G.; Estiva, E.; Bremer, H. Growth rate-dependent control of chromosome replication initiation in Escherichia coli. J. Bacteriol. 1981, 145, 1232–1238. [Google Scholar]
- Wold, S.; Skarstad, K.; Steen, H.B.; Stokke, T.; Boye, E. The initiation mass for DNA replication in Escherichia coli K-12 is dependent on growth rate. Embo. J. 1994, 13, 2097–2102. [Google Scholar]
- Boye, E.; Nordstrom, K. Coupling the cell cycle to cell growth. EMBO Rep. 2003, 4, 757–760. [Google Scholar]
- Hill, N.S.; Kadoya, R.; Chattoraj, D.K.; Levin, P.A. Cell size and the initiation of DNA replication in bacteria. PLoS Genet. 2012, 8, e1002549. [Google Scholar] [CrossRef]
- Fralick, J.A. Is DnaA the 'pace-maker' of chromosome replication? An old paper revisited. Mol. Microbiol. 1999, 31, 1011–1012. [Google Scholar]
- Eliasson, A.; Nordstrom, K. Replication of minichromosomes in a host in which chromosome replication is random. Mol. Microbiol. 1997, 23, 1215–1220. [Google Scholar] [CrossRef]
- Lobner-Olesen, A.; von Freiesleben, U. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells. EMBO J. 1996, 15, 5999–6008. [Google Scholar]
- Wang, X.; Lesterlin, C.; Reyes-Lamothe, R.; Ball, G.; Sherratt, D.J. Replication and segregation of an Escherichia coli chromosome with two replication origins. Proc. Natl. Acad. Sci. USA 2011, 108, E243–E250. [Google Scholar]
- Zakrzewska-Czerwinska, J.; Jakimowicz, D.; Zawilak-Pawlik, A.; Messer, W. Regulation of the initiation of chromosomal replication in bacteria. FEMS Microbiol. Rev. 2007, 31, 378–387. [Google Scholar]
- Fralick, J.A.; Lark, K.G. Evidence for the involvement of unsaturated fatty acids in the initiation of chromosome replication in escherichia coli. J. Mol. Biol. 1973, 80, 459–475. [Google Scholar] [CrossRef]
- Castuma, C.E.; Crooke, E.; Kornberg, A. Fluid membranes with acidic domains activate DnaA, the initiator protein of replication in Escherichia coli. J. Biol. Chem. 1993, 268, 24665–24668. [Google Scholar]
- Fujimitsu, K.; Senriuchi, T.; Katayama, T. Specific genomic sequences of E. coli promote replicational initiation by directly reactivating ADP-DnaA. Genes Dev. 2009, 23, 1221–1233. [Google Scholar] [CrossRef]
- Kitagawa, R.; Ozaki, T.; Moriya, S.; Ogawa, T. Negative control of replication initiation by a novel chromosomal locus exhibiting exceptional affinity for Escherichia coli DnaA protein. Genes Dev. 1998, 12, 3032–3043. [Google Scholar]
- Norris, V.; Madsen, M.S. Autocatalytic gene expression occurs via transertion and membrane domain formation and underlies differentiation in bacteria: A model. J. Mol. Biol. 1995, 253, 739–748. [Google Scholar] [CrossRef]
- Rocha, E.; Fralick, J.; Vediyappan, G.; Danchin, A.; Norris, V. A strand-specific model for chromosome segregation in bacteria. Mol. Microbiol. 2003, 49, 895–903. [Google Scholar] [CrossRef]
- Jin, D.J.; Cagliero, C.; Zhou, Y.N. Growth rate regulation in Escherichia coli. FEMS Microbiol. Rev. 2012, 36, 269–287. [Google Scholar] [CrossRef]
- Kennell, D.; Riezman, H. Transcription and translation frequencies of the Escherichia coli lac operon. J. Mol. Biol. 1977, 114, 1–21. [Google Scholar] [CrossRef]
- Brandt, F.; Etchells, S.A.; Ortiz, J.O.; Elcock, A.H.; Hartl, F.U.; Baumeister, W. The native 3D organization of bacterial polysomes. Cell 2009, 136, 261–271. [Google Scholar]
- Norris, V. Hypothesis: Transcriptional sensing and membrane domain formation initiate chromosome replication in Escherichia coli. Mol. Microbiol. 1995, 15, 985–987. [Google Scholar] [CrossRef]
- Cabrera, J.E.; Cagliero, C.; Quan, S.; Squires, C.L.; Jin, D.J. Active transcription of rRNA operons condenses the nucleoid in Escherichia coli: Examining the effect of transcription on nucleoid structure in the absence of transertion. J. Bacteriol. 2009, 191, 4180–4185. [Google Scholar]
- Fröhlich, H. Long range coherence and energy storage in biological systems. Int. J. Quantum Chem. 1968, 42, 641–649. [Google Scholar]
- Norris, V.; Amar, P.; Legent, G.; Ripoll, C.; Thellier, M.; Ovadi, J. Modelling complex biological systems in the context of genomics. In Hypothesis: The Cytoskeleton is A Metabolic Sensor; Amar, P., Képès, F., Norris, V., Eds.; EDP Sciences: Evry, France, 2010; pp. 95–104. [Google Scholar]
- Weart, R.B.; Lee, A.H.; Chien, A.C.; Haeusser, D.P.; Hill, N.S.; Levin, P.A. A metabolic sensor governing cell size in bacteria. Cell 2007, 130, 335–347. [Google Scholar]
- Thellier, M.; Legent, G.; Amar, P.; Norris, V.; Ripoll, C. Steady-state kinetic behaviour of functioning-dependent structures. FEBS J. 2006, 273, 4287–4299. [Google Scholar]
- Pieper, R.; Zhang, Q.; Clark, D.J.; Huang, S.T.; Suh, M.J.; Braisted, J.C.; Payne, S.H.; Fleischmann, R.D.; Peterson, S.N.; Tzipori, S. Characterizing the Escherichia coli O157:H7 proteome including protein associations with higher order assemblies. PLoS One 2011, 6, e26554. [Google Scholar]
- Wada, A.; Mikkola, R.; Kurland, C.G.; Ishihama, A. Growth phase-coupled changes of the ribosome profile in natural isolates and laboratory strains of escherichia coli. J. Bacteriol. 2000, 182, 2893–2899. [Google Scholar] [CrossRef]
- Ortiz, J.O.; Brandt, F.; Matias, V.R.; Sennels, L.; Rappsilber, J.; Scheres, S.H.; Eibauer, M.; Hartl, F.U.; Baumeister, W. Structure of hibernating ribosomes studied by cryoelectron tomography in vitro and in situ. J. Cell. Biol. 2010, 190, 613–621. [Google Scholar]
- Ripoll, C.; Norris, V.; Thellier, M. Ion condensation and signal transduction. BioEssays 2004, 26, 549–557. [Google Scholar]
- Kaguni, J.M. DnaA: Controlling the Initiation of Bacterial DNA Replication and More. Annu. Rev. Microbiol. 2006, 60, 351–371. [Google Scholar] [CrossRef]
- Mott, M.L.; Berger, J.M. DNA replication initiation: Mechanisms and regulation in bacteria. Nat. Rev. Microbiol. 2007, 5, 343–354. [Google Scholar] [CrossRef]
- Katayama, T.; Ozaki, S.; Keyamura, K.; Fujimitsu, K. Regulation of the replication cycle: Conserved and diverse regulatory systems for DnaA and oriC. Nat. Rev. Microbiol. 2010, 8, 163–170. [Google Scholar]
- Hansen, F.G.; Christensen, B.B.; Atlung, T. The initiator titration model: Computer simulation of chromosome and minichromosome control. Res. Microbiol. 1991, 142, 161–167. [Google Scholar]
- Christensen, B.B.; Atlung, T.; Hansen, F.G. Dnaa boxes are important elements in setting the initiation mass of escherichia coli. J. Bacteriol. 1999, 181, 2683–2688. [Google Scholar]
- Duderstadt, K.E.; Chuang, K.; Berger, J.M. DNA stretching by bacterial initiators promotes replication origin opening. Nature 2011, 478, 209–213. [Google Scholar]
- Leonard, A.C.; Grimwade, J.E. Initiating chromosome replication in E. coli: it makes sense to recycle. Genes Dev. 2009, 23, 1145–1150. [Google Scholar] [CrossRef]
- Messer, W. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol. Rev. 2002, 26, 355–374. [Google Scholar]
- Kurokawa, K.; Nishida, S.; Emoto, A.; Sekimizu, K.; Katayama, T. Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli. Embo. J. 1999, 18, 6642–6652. [Google Scholar]
- Regev, T.; Myers, N.; Zarivach, R.; Fishov, I. Association of the chromosome replication initiator DnaA with the Escherichia coli inner membrane in vivo: quantity and mode of binding. PLoS One 2012, 7, e36441. [Google Scholar]
- Soufo, C.D.; Soufo, H.J.; Noirot-Gros, M.F.; Steindorf, A.; Noirot, P.; Graumann, P.L. Cell-cycle-dependent spatial sequestration of the DnaA replication initiator protein in Bacillus subtilis. Dev. Cell. 2008, 15, 935–941. [Google Scholar]
- Boeneman, K.; Fossum, S.; Yang, Y.; Fingland, N.; Skarstad, K.; Crooke, E. Escherichia coli DnaA forms helical structures along the longitudinal cell axis distinct from MreB filaments. Mol. Microbiol. 2009, 72, 645–657. [Google Scholar]
- Nozaki, S.; Niki, H.; Ogawa, T. Replication initiator DnaA of Escherichia coli changes its assembly form on the replication origin during the cell cycle. J. Bacteriol. 2009, 191, 4807–4814. [Google Scholar]
- Landgraf, D.; Okumus, B.; Chien, P.; Baker, T.A.; Paulsson, J. Segregation of molecules at cell division reveals native protein localization. Nat. Methods 2012, 9, 480–482. [Google Scholar] [CrossRef]
- Swulius, M.T.; Jensen, G.J. The helical MreB cytoskeleton in E. coli MC1000/pLE7 is an artifact of the N-terminal YFP tag. J. Bacteriol. 2012. [Google Scholar]
- Garner, E.C.; Bernard, R.; Wang, W.; Zhuang, X.; Rudner, D.Z.; Mitchison, T. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 2011, 333, 222–225. [Google Scholar]
- Dominguez-Escobar, J.; Chastanet, A.; Crevenna, A.H.; Fromion, V.; Wedlich-Soldner, R.; Carballido-Lopez, R. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 2011, 333, 225–228. [Google Scholar]
- Fishov, I.; Norris, V. The heterogeneous bacterial membrane as a global regulator. Curr. Opin. Microbiol. 2012. submitted. [Google Scholar]
- Makise, M.; Mima, S.; Katsu, T.; Tsuchiya, T.; Mizushima, T. Acidic phospholipids inhibit the DNA-binding activity of DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli. Mol. Microbiol. 2002, 46, 245–256. [Google Scholar]
- Norris, V.; den Blaauwen, T.; Cabin-Flaman, A.; Doi, R.H.; Harshey, R.; Janniere, L.; Jimenez-Sanchez, A.; Jin, D.J.; Levin, P.A.; Mileykovskaya, E.; Minsky, A.; Saier, M., Jr.; Skarstad, K. Functional taxonomy of bacterial hyperstructures. Microbiol. Mol. Biol. Rev. 2007, 71, 230–253. [Google Scholar] [CrossRef]
- Maciag-Dorszynska, M.; Ignatowska, M.; Janniere, L.; Wegrzyn, G.; Szalewska-Palasz, A. Mutations in central carbon metabolism genes suppress defects in nucleoid position and cell division of replication mutants in Escherichia coli. Gene 2012, 503, 31–35. [Google Scholar] [CrossRef]
- Koppelman, C.-M.; Den Blaauwen, T.; Duursma, M.C.; Heeren, R.M.A.; Nanninga, N. Escherichia coli minicell membranes are enriched in cardiolipin. J. Bacteriol. 2001, 183, 6144–6147. [Google Scholar] [CrossRef]
- Leonard, A.C.; Grimwade, J.E. Regulating DnaA complex assembly: it is time to fill the gaps. Curr. Opin. Microbiol. 2010, 13, 766–772. [Google Scholar]
- Chodavarapu, S.; Felczak, M.M.; Kaguni, J.M. Two forms of ribosomal protein L2 of Escherichia coli that inhibit DnaA in DNA replication. Nucleic Acids Res. 2011, 39, 4180–4191. [Google Scholar]
- Nozaki, S.; Yamada, Y.; Ogawa, T. Initiator titration complex formed at datA with the aid of IHF regulates replication timing in Escherichia coli. Genes Cells 2009, 14, 329–341. [Google Scholar] [CrossRef]
- Yung, B.Y.; Kornberg, A. Membrane attachment activates dnaA protein, the initiation protein of chromosome replication in Escherichia coli. Proc. Natl. Acad. Sci. USA 1988, 85, 7202–7205. [Google Scholar] [CrossRef]
- Makise, M.; Mima, S.; Tsuchiya, T.; Mizushima, T. Molecular mechanism for functional interaction between DnaA protein and acidic phospholipids: Identification of important amino acids. J. Biol. Chem. 2001, 276, 7450–7456. [Google Scholar]
- Sekimizu, K.; Kornberg, A. Cardiolipin activation of dnaA protein, the initiation protein of replication in Escherichia coli. J. Biol. Chem. 1988, 263, 7131–7135. [Google Scholar]
- Yamamoto, K.; Muniruzzaman, S.; Rajagopalan, M.; Madiraju, M.V. Modulation of Mycobacterium tuberculosis DnaA protein-adenine-nucleotide interactions by acidic phospholipids. Biochem. J. 2002, 363, 305–311. [Google Scholar]
- Ichihashi, N.; Kurokawa, K.; Matsuo, M.; Kaito, C.; Sekimizu, K. Inhibitory effects of basic or neutral phospholipid on acidic phospholipid-mediated dissociation of adenine nucleotide bound to DnaA protein, the initiator of chromosomal DNA replication. J. Biol. Chem. 2003, 278, 28778–28786. [Google Scholar]
- Norris, V. DNA replication in escherichia coli is initiated by membrane detachment of oric: A model. J. Mol. Biol. 1990, 215, 67–71. [Google Scholar] [CrossRef]
- Norris, V. Phospholipid domains determine the spatial organization of the escherichia coli cell cycle: The membrane tectonics model. J. Theor. Bio. 1992, 154, 91–107. [Google Scholar] [CrossRef]
- Norris, V.; Demarty, M.; Raine, D.; Cabin-Flaman, A.; Le Sceller, L. Hypothesis: Hyperstructures regulate initiation in Escherichia coli and other bacteria. Biochimie 2002, 84, 341–347. [Google Scholar] [CrossRef]
- Mileykovskaya, E.; Dowhan, W. Visualization of phospholipid domains in escherichia coli by using the cardiolipin-specific fluorescent dye 10-n-nonyl acridine orange. J. Bacteriol. 2000, 182, 1172–1175. [Google Scholar] [CrossRef]
- Maloney, E.; Madiraju, S.C.; Rajagopalan, M.; Madiraju, M. Localization of acidic phospholipid cardiolipin and DnaA in mycobacteria. Tuberculosis (Edinb.) 2011, 91 Suppl. 1, S150–S155. [Google Scholar] [CrossRef]
- Fishov, I.; Woldringh, C. Visualization of membrane domains in escherichia coli. Mol. Microbiol. 1999, 32, 1166–1172. [Google Scholar]
- Binenbaum, Z.; Parola, A.H.; Zaritsky, A.; Fishov, I. Transcription- and translation-dependent changes in membrane dynamics in bacteria: Testing the transertion model for domain formation. Mol. Microbiol. 1999, 32, 1173–1182. [Google Scholar]
- Michel, G.P.F.; Karibian, D.; Bonnaveiro, N.; Starka, J. Is there a correlation between membrane phospholipid metabolism and cell division? Ann. Inst. Pasteur 1985, 136A, 111–118. [Google Scholar]
- Joseleau-Petit, D.; Kepes, F.; Peutat, L.; D'Ari, R.; Kepes, A. DNA replication initiation, doubling of rate of phospholipid synthesis, and cell division in escherichia coli. J. Bacteriol. 1987, 169, 3701–3706. [Google Scholar]
- Haines, T.H.; Dencher, N.A. Cardiolipin: A proton trap for oxidative phosphorylation. FEBS Lett. 2002, 528, 35–39. [Google Scholar]
- Hansen, F.G.; Atlung, T.; Braun, R.E.; Wright, A.; Hughes, P.; Kohiyama, M. Initiator (DnaA) protein concentration as a function of growth rate in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 1991, 173, 5194–5199. [Google Scholar]
- Roth, A.; Messer, W. High-affinity binding sites for the initiator protein DnaA on the chromosome of Escherichia coli. Mol. Microbiol. 1998, 28, 395–401. [Google Scholar]
- Kitagawa, R.; Mitsuki, H.; Okazaki, T.; Ogawa, T. A novel DnaA protein-binding site at 94.7 min on the Escherichia coli chromosome. Mol. Microbiol. 1996, 19, 1137–1147. [Google Scholar]
- Morigen; Lobner-Olesen, A.; Skarstad, K. Titration of the escherichia coli dnaa protein to excess data sites causes destabilization of replication forks, delayed replication initiation and delayed cell division. Mol. Microbiol. 2003, 46, 245–256. [Google Scholar]
- Felczak, M.M.; Kaguni, J.M. DnaAcos hyperinitiates by circumventing regulatory pathways that control the frequency of initiation in Escherichia coli. Mol. Microbiol. 2009, 72, 1348–1363. [Google Scholar]
- Li, G.W.; Berg, O.G.; Elf, J. Effects of macromolecular crowding and DNA looping on gene regulation kinetics. Nat. Phys. 2009, 5, 294–297. [Google Scholar]
- Oshima, T.; Ishikawa, S.; Kurokawa, K.; Aiba, H.; Ogasawara, N. Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. DNA Res. 2006, 13, 141–153. [Google Scholar]
- Maurer, S.; Fritz, J.; Muskhelishvili, G. A systematic in vitro study of nucleoprotein complexes formed by bacterial nucleoid-associated proteins revealing novel types of DNA organization. J. Mol. Biol. 2009, 387, 1261–1276. [Google Scholar]
- Browning, D.F.; Grainger, D.C.; Busby, S.J. Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr. Opin. Microbiol. 2010, 13, 773–780. [Google Scholar]
- Dillon, S.C.; Dorman, C.J. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol. 2010, 8, 185–195. [Google Scholar]
- Ryan, V.T.; Grimwade, J.E.; Camara, J.E.; Crooke, E.; Leonard, A.C. Escherichia coli prereplication complex assembly is regulated by dynamic interplay among Fis, IHF and DnaA. Mol. Microbiol. 2004, 51, 1347–1359. [Google Scholar]
- Swinger, K.K.; Rice, P.A. IHF and HU: Flexible architects of bent DNA. Curr. Opin. Struct. Biol. 2004, 14, 28–35. [Google Scholar]
- Manning, G.S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev. Biophys. 1978, 11, 179–246. [Google Scholar]
- Zimm, B.H.; Le Bret, M. Counter ion condensation and system dimensionality. J. Biomol. Struct. Dynamics 1983, 1, 461–471. [Google Scholar]
- Manning, G.S. Counterion condensation on charged spheres, cylinders, and planes. J. Phys. Chem. B 2007, 111, 8554–8559. [Google Scholar] [CrossRef]
- Manning, G.S. Electrostatic free energy of the DNA double helix in counterion condensation theory. Biophys. Chem. 2002, 101-102, 461–473. [Google Scholar] [CrossRef]
- von Hippel, P.H. From "simple" DNA-protein interactions to the macromolecular machines of gene expression. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 79–105. [Google Scholar]
- Aranovich, A.; Gdalevsky, G.Y.; Cohen-Luria, R.; Fishov, I.; Parola, A.H. Membrane-catalyzed nucleotide exchange on DnaA. Effect of surface molecular crowding. J. Biol. Chem. 2006, 281, 12526–12534. [Google Scholar]
- Atlung, T.; Hansen, F.G. Effect of different concentrations of H-NS protein on chromosome replication and the cell cycle in Escherichia coli. J. Bacteriol. 2002, 184, 1843–1850. [Google Scholar]
- Von Freiesleben, U.; Rasmussen, K.V.; Atlung, T.; Hansen, F.G. Rifampicin-resistant initiation of chromosome replication from oriC in ihf mutants. Mol. Microbiol. 2000, 37, 1087–1093. [Google Scholar]
- Guarino, E.; Jimenez-Sanchez, A.; Guzman, E.C. Defective Ribonucleoside Diphosphate Reductase Impairs Replication Fork Progression in Escherichia coli. J. Bacteriol. 2007, 189, 3496–3501. [Google Scholar]
- Odsbu, I.; Morigen; Skarstad, K. A reduction in ribonucleotide reductase activity slows down the chromosome replication fork but does not change its localization. PLoS One 2009, 4, e7617. [Google Scholar] [CrossRef]
- Sanchez-Romero, M.A.; Molina, F.; Jimenez-Sanchez, A. Organization of ribonucleoside diphosphate reductase during multifork chromosome replication in Escherichia coli. Microbiology 2011, 157, 2220–2225. [Google Scholar]
- Janniere, L.; Canceill, D.; Suski, C.; Kanga, S.; Dalmais, B.; Lestini, R.; Monnier, A.F.; Chapuis, J.; Bolotin, A.; Titok, M.; Chatelier, E.L.; Ehrlich, S.D. Genetic evidence for a link between glycolysis and DNA replication. PLoS ONE 2007, 2, e447. [Google Scholar]
- Maciag, M.; Nowicki, D.; Janniere, L.; Szalewska-Palasz, A.; Wegrzyn, G. Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in Escherichia coli. Microb. Cell. Fact. 2011, 10, 19. [Google Scholar]
- Wolfe, A.J. Physiologically relevant small phosphodonors link metabolism to signal transduction. Curr. Opin. Microbiol. 2010, 13, 204–209. [Google Scholar]
- Motojima-Miyazaki, Y.; Yoshida, M.; Motojima, F. Ribosomal protein L2 associates with E. coli HtpG and activates its ATPase activity. Biochem. Biophys. Res. Commun. 2010, 400, 241–245. [Google Scholar] [CrossRef]
- Kjeldgaard, N.O.; Maaloe, O.; Schaechter, M. The transition between different physiological states during balanced growth of Salmonella typhimurium. J. Gen. Microbiol. 1958, 19, 607–616. [Google Scholar]
- Gourse, R.L.; Gaal, T.; Bartlett, M.S.; Appleman, J.A.; Ross, W. rRNA transcription and growth rate-dependent regulation of ribosome synthesis in Escherichia coli. Annu. Rev. Microbiol. 1996, 50, 645–677. [Google Scholar] [CrossRef]
- Bremer, H.; Dennis, P.P. Modulation of chemical composition and other parameters of the cell by growth rate. In Escherichia coli and Salmonella; Neidhardt, F.C., Curtiss, R., Curtiss, R., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M., Umbarger, H.E., Eds.; ASM Press: Washington, DC, USA, 1996; Volume 1, pp. 1553–1569. [Google Scholar]
- Potrykus, K.; Murphy, H.; Philippe, N.; Cashel, M. ppGpp is the major source of growth rate control in E. coli. Environ. Microbiol. 2011, 13, 563–575. [Google Scholar] [CrossRef]
- Gropp, M.; Strausz, Y.; Gross, M.; Glaser, G. Regulation of Escherichia coli RelA requires oligomerization of the C-terminal domain. J. Bacteriol. 2001, 183, 570–579. [Google Scholar]
- English, B.P.; Hauryliuk, V.; Sanamrad, A.; Tankov, S.; Dekker, N.H.; Elf, J. Single-molecule investigations of the stringent response machinery in living bacterial cells. Proc. Natl. Acad. Sci. USA 2011, 108, E365–E373. [Google Scholar]
- Wang, J.D.; Sanders, G.M.; Grossman, A.D. Nutritional control of elongation of DNA Replication by (p)ppGpp. Cell 2007, 128, 865–875. [Google Scholar]
- Kogoma, T. Stable DNA replication: Interplay between DNA replication, homologous recombination and transcription. Microbiol. Mol. Biol. Rev. 1997, 61, 212–238. [Google Scholar]
- Sandler, S.J. Requirements for replication restart proteins during constitutive stable DNA replication in Escherichia coli K-12. Genetics 2005, 169, 1799–1806. [Google Scholar]
- Byrne, M.E.; Ball, D.A.; Guerquin-Kern, J.L.; Rouiller, I.; Wu, T.D.; Downing, K.H.; Vali, H.; Komeili, A. Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes. Proc. Natl. Acad. Sci. USA 2010, 107, 12263–12268. [Google Scholar]
- Gangwe Nana, G.; Gibouin, D.; Lefebvre, F.; Delaune, A.; Jannière, L.; Ripoll, C.; Cabin-Flaman, A.; Norris, V. Modelling complex biological systems in the context of genomics. In Intracellular and Population Heterogeneity in Bacillus Subtilis Revealed by Secondary Ion Mass Spectrometry; Amar, P., Képès, F., Norris, V., Eds.; EDF Sciences: Evry, France, 2012; pp. 79–84. [Google Scholar]
- Cabin-Flaman, A.; Monnier, A.F.; Coffinier, Y.; Audinot, J.N.; Gibouin, D.; Wirtz, T.; Boukherroub, R.; Migeon, H.N.; Bensimon, A.; Janniere, L.; Ripoll, C.; Norris, V. Combed Single DNA Molecules Imaged by Secondary Ion Mass Spectrometry. Annu. Chem. 2011, 83, 6940–6947. [Google Scholar]
- Hong, X.; Kogoma, T. Absence of a direct role for RNase HI in initiation of DNA replication at the oriC site on the Escherichia coli chromosome. J. Bacteriol. 1993, 175, 6731–6734. [Google Scholar]
- Raine, D.J.; Grondin, Y.; Thellier, M.; Norris, V. Networks as constrained thermodynamic systems. C.R. Acad. Sci. 2003, 326, 65–74. [Google Scholar]
- Batto, A.F.; Cabin, A.; Legent, G.; Canceill, D.; Le Chatelier, E.; Ripoll, C.; Thellier, M.; Norris, V.; Janniere, L. Modelling complex biological systems in the context of genomics. In From Metabolic Hyperstructures to DNA Replication Complexes and Back Again; Amar, P., Képès, F., Norris, V., Bernot, G., Eds.; EDP Sciences: Evry, France, 2008; pp. 161–178. [Google Scholar]
- Mayer, F. Cytoskeletons in prokaryotes. Cell Biol. Int. 2003, 27, 429–438. [Google Scholar]
- Naseem, R.; Wann, K.T.; Holland, I.B.; Campbell, A.K. ATP regulates calcium efflux and growth in E. coli. J. Mol. Biol. 2009, 391, 42–56. [Google Scholar] [CrossRef]
- Popp, D.; Iwasa, M.; Erickson, H.P.; Narita, A.; Maeda, Y.; Robinson, R.C. Suprastructures and dynamic properties of Mycobacterium tuberculosis FtsZ. J. Biol. Chem. 2010, 285, 11281–11289. [Google Scholar]
- Strahl, H.; Hamoen, L. The actin homolog MreB organizes the bacterial cell membrane. 2012; Unpublished Work. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Norris, V.; Amar, P. Chromosome Replication in Escherichia coli: Life on the Scales. Life 2012, 2, 286-312. https://doi.org/10.3390/life2040286
Norris V, Amar P. Chromosome Replication in Escherichia coli: Life on the Scales. Life. 2012; 2(4):286-312. https://doi.org/10.3390/life2040286
Chicago/Turabian StyleNorris, Vic, and Patrick Amar. 2012. "Chromosome Replication in Escherichia coli: Life on the Scales" Life 2, no. 4: 286-312. https://doi.org/10.3390/life2040286
APA StyleNorris, V., & Amar, P. (2012). Chromosome Replication in Escherichia coli: Life on the Scales. Life, 2(4), 286-312. https://doi.org/10.3390/life2040286