Halophilic Bacteria as a Source of Novel Hydrolytic Enzymes
Abstract
:1. Introduction
2. Diversity of Halophilic Bacteria Showing Hydrolytic Activities
2.1. Screening on Solar Salterns
Isolation Site | Hydrolytic Activity Assayed | Most Abundant Hydrolytic Activity | Isolate Affiliation | References |
---|---|---|---|---|
Salterns in Almeria, Cadiz and Huelva (Spain) | amylase protease lipase DNase pullulanase | amylase | Salinivibrio Halomonas Chromohalobacter Bacillus-Salibacillus Salinicoccus Marinococcus | [11] |
Saltern in Huelva (Spain) | lipase protease amylase nuclease | amylase | Halorubrum Haloarcula Halobacterium Salicola Salinibacter Pseudomonas | [15] |
Howz Soltan Lake (Iran) | lipase amylase protease xylanase DNase inulinase pectinase cellulase pulullanase | lipase | Salicola Halovibrio Halomonas Oceanobacillus Thalassobacillus Halobacillus Virgibacillus Gracilibacillus Salinicoccus Piscibacillus | [18] |
Maharlu Salt Lake (Iran) | protease lipase | ND | Bacillus Paenibacillus Halobacterium Aeromonas Staphylococcus | [19,20] |
Deep-sea sediments of the Southern Okinawa Trough (China) | amylase protease lipase DNase | amylase | Alcanivorax Bacillus Cobetia Halomonas Methylarcula Micrococcus Myroides Paracoccus Planococcus Pseudomonas Psychrobacter Sporosarcina Sufflavibacter Wangia | [25] |
Slanic Prahova salt mine (Romania) | amylase gelatinase lipase protease cellulase xylanase | lipase protease | ND | [27] |
Atacama Desert (Chile) | amylase protease lipase DNase xylanase pullulanase | DNase | Bacillus Halobacillus Pseudomonas Halomonas Staphylococcus | [28] |
Saline desert “Indian Wild Ass Sanctuary” (India) | amylase | ND | Bacillus | [32] |
2.2. Screening on Salt Lakes
2.3. Screening on Saline Deposits
2.4. Screening on Saline Deserts
3. Biotechnological Potential of Bacterial Halophilic Hydrolases
3.1. Hydrolases Produced by Moderately Halophilic Bacteria
3.1.1. Bacterial Lipolytic Enzymes
Source | Bacteria | Enzyme | Localization | References |
---|---|---|---|---|
Extremely halophilic bacteria | Salicolamarasensis sp. IC10 | Lipase LipL | Extracellular | [15] |
Protease SaliPro | Extracellular | [15] | ||
Moderately halophilic bacteria | Marinobacterlipolyticus | Lipase LipBL | Intracellular | [48,49,50] |
Pseudoalteromonas ruthenica | Haloprotease CP1 | Extracellular | [51,54] | |
Halobacilluskarajensis | Protease | Extracellular | [55] | |
Nesterenkonia sp. strain F | α-amylase | Extracellular | [57] | |
Thalassobacillus sp. LY18 | α-amylase | Extracellular | [58] |
3.1.2. Bacterial Proteases
3.1.3. Bacterial Amylases
3.2. Hydrolases Produced by Extremely Halophilic Bacteria. Bacterial Lipolytic and Proteolytic Enzymes
References
- Ventosa, A. Unusual microorganisms from unusual habitats: hypersaline environments. In Prokaryotic Diversity-Mechanism and Significance; Logan, N.A., Lppin-Scott, H.M., Oyston, P.C.F., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 223–253. [Google Scholar]
- Kushner, D.J.; Kamekura, M. Physiology of halophilic eubacteria. In Halophilic Bacteria; Rodríguez-Varela, F., Ed.; CRC Press: Boca Raton, FL, USA, 1988; pp. 109–138. [Google Scholar]
- Madigan, M.T.; Oren, A. Thermophilic and halophilic extremophiles. Curr. Opin. Microbiol. 1999, 2, 265–269. [Google Scholar] [CrossRef]
- Oren, A. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 2002, 28, 58–63. [Google Scholar]
- Nieto, J.J.; Vargas, C. Synthesis of osmoprotectants by moderately halophilic bacteria: Genetic and applied aspects. Recent. Res. Devel. Microbiol. 2002, 6, 403–418. [Google Scholar]
- Mellado, E.; Ventosa, A. Biotechnological potential of moderately and extremely halophilic microorganisms. In Microorganisms for Health Care, Food and Enzyme Production; Barredo, J.L., Ed.; Research Signpost: Kerala, India, 2003; pp. 233–256. [Google Scholar]
- Gómez, J.; Steiner, W. The biocatalytic potential of extremophiles and extremozymes. Food Technol. Biotechnol. 2004, 2, 223–235. [Google Scholar]
- Oren, A. Industrial and environmental applications of halophilic microorganisms. Environ. Technol. 2010, 31, 825–834. [Google Scholar] [CrossRef]
- Zaccai, G. The effect of water on protein dynamics. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2004, 359, 1269–1275. [Google Scholar] [CrossRef]
- Salameh, M.; Wiegel, J. Lipases from extremophiles and potential for industrial applications. Adv. Appl. Microbiol. 2007, 61, 253–283. [Google Scholar] [CrossRef]
- Sánchez-Porro, C.; Martín, S.; Mellado, E.; Ventosa, A. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J. Appl. Microbiol. 2003, 94, 295–300. [Google Scholar] [CrossRef]
- Ventosa, A. Taxonomy of moderately halophilic heterotrophic eubacteria. In Halophilic bacteria.; Rodríguez-Valera, F., Ed.; CRC Press: Boca Raton, FL, USA, 1988; pp. 71–84. [Google Scholar]
- Ventosa, A.; Nieto, J.J.; Oren, A. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 1998, 62, 504–544. [Google Scholar]
- Martín, S.; Márquez, M.C.; Sánchez-Porro, C.; Mellado, E.; Arahal, D.R.; Ventosa, A. Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int. J. Syst. Evol. Microbiol. 2003, 53, 1383–1387. [Google Scholar] [CrossRef]
- Moreno, M.L.; García, M.T.; Ventosa, A.; Mellado, E. Characterization of Salicola sp. IC10, a lipase- and protease-producing extreme halophile. FEMS Microbiol. Ecol. 2009, 68, 59–71. [Google Scholar] [CrossRef]
- Ovreas, L.; Bourne, D.; Sandaa, R.A.; Casamayor, E.O.; Benlloch, S.; Goddard, V. Response of bacterial and viral communities to nutrient manipulations in sea water mesocosms. Aquat. Microbiol. Ecol. 2003, 31, 109–121. [Google Scholar] [CrossRef]
- Maturrano, L.; Valens-Vadell, M.; Roselló-Mora, R.; Antón, J. Salicola marasensis gen. nov., sp. nov., an extremely halophilic bacterium isolated from the Maras solar salterns in Perú. Int. J. Syst. Evol. Microbiol. 2006, 56, 1685–1691. [Google Scholar] [CrossRef]
- Rohban, R.; Amoozegar, M.A.; Ventosa, A. Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J. Ind. Microbiol. Biotechnol. 2009, 36, 333–340. [Google Scholar] [CrossRef]
- Ghasemi, Y.; Rasoul-Amini, S.; Ebrahiminezhad, A.; Kazemi, A.; Shahbazia, M.; Talebniaa, N. Screening and Isolation of Extracellular Protease Producing Bacteria from the Maharloo Salt Lake. Iran. J. Pharm. Sci. 2011, 7, 175–180. [Google Scholar]
- Ghasemi, Y.; Rasoul-Amini, S.; Kazemi, A.; Zarrini, G.; Morowvat, M.T.; Kargar, M. Isolation and Characterization of Some Moderately Halophilic Bacteria with Lipase Activity. Microbiology 2011, 80, 483–487. [Google Scholar] [CrossRef]
- Whitman, W.B; Coleman, D.C; Wiebe, W.J. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 1998, 95, 6578–6583. [Google Scholar]
- D'Hondt, S.; Rutherford, S.; Spivack, A.J. Metabolic activity of subsurface life in deep-sea sediments. Science 2012, 295, 2067–2070. [Google Scholar]
- Parkes, R.J.; Webster, G.; Cragg, B.A.; Weightman, A.J.; Newberry, C.J.; Ferdelman, T.G.; Kallmeyer, J.; Jorgensen, B.B.; Aiello, I.W.; Fry, J.C. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 2005, 436, 390–394. [Google Scholar] [CrossRef]
- Schippers, A.; Neretin, L.N.; Kallmeyer, J.; Ferdelman, T.G.; Cragg, B.A.; Parkes, R.J.; Jorgensen, B.B. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 2005, 433, 861–864. [Google Scholar] [CrossRef]
- Dang, H.; Zhu, H.; Wang, J.; Li, T. Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep-sea sediments of the Southern Okinawa Trough. World J. Microbiol. Biotechnol. 2009, 25, 71–79. [Google Scholar] [CrossRef]
- Dell’Anno, A.; Danovaro, R. Extracellular DNA plays a key role in deep-sea ecosystem functioning. Science 2005, 309, 2179. [Google Scholar] [CrossRef]
- Cojoc, R.; Merciu, S.; Popescu, G.; Dumitru, L.; Kamekura, M.; Enache, M. Extracellular hydrolytic enzymes of halophilic bacteria isolated from a subterranean rock salt crystal. Rom. Biotechnol. Lett. 2009, 14, 4658–4664. [Google Scholar]
- Moreno, M.L.; Piubeli, F.; Bonfá, M.R.; García, M.T.; Durrant, L.R.; Mellado, E. Analysis and characterization of cultivable extremophilic hydrolytic bacterial community in heavy-metal-contaminated soils from the Atacama Desert and their biotechnological potentials. J. Appl. Microbiol. 2012, 113, 550–559. [Google Scholar] [CrossRef]
- Sorokin, D.Y.; Tindall, B.J. The status of the genus name Halovibrio. Fendrich 1988 and the identity of the strains Pseudomonas halophila DSM 3050 and Halomonas. variabilis DSM 3051. Request for an opinion. Int. J. Syst. Evol. Microbiol. 2006, 56, 487–489. [Google Scholar] [CrossRef]
- García, M.T.; Mellado, E.; Ostos, J.C.; Ventosa, A. Halomonas. organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int. J. Syst. Evol. Microbiol. 2004, 54, 1723–1728. [Google Scholar] [CrossRef]
- Ventosa, A.; Marquez, M.C.; Ruiz-Berraquero, F.; Kocur, M. Salinicoccus. roseus gen. nov., a new moderately halophilic Gram-positive coccus. Syst. Appl. Microbiol. 1990, 13, 29–33. [Google Scholar] [CrossRef]
- Khunt, M.; Pandhi, N.; Rana, A. Amylase from moderate halophiles isolated from wild ass excreta. Int. J. Pharm. Bio. Sci. 2011, 1, 586–592. [Google Scholar]
- Schallmey, M.; Singh, A.; Ward, O.P. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 2004, 50, 1–17. [Google Scholar] [CrossRef]
- Delgado-García, M.; Valdivia-Urdiales, B.; Aguilar-González, C.N.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R. Halophilic hydrolases as a new tool for the biotechnological industries. J. Sci. Food. Agric. 2012, 92, 2575–2580. [Google Scholar] [CrossRef]
- Chahinian, H.; Ali, Y.B.; Abousalham, A.; Petry, S.; Mandrich, L.; Manco, G.; Canaan, S.; Sarda, L. Substrate specificity and kinetic properties of enzymes belonging to the hormone-sensitive lipase family: Comparison with non-lipolytic and lipolytic carboxyl esterases. Biochim. Biophys. Acta. 2005, 1738, 29–36. [Google Scholar] [CrossRef]
- Houde, A.; Kademi, A.; Leblanc, D. Lipases and their industrial applications: An overview. Appl. Biochem. Biotechnol. 2004, 46, 155–170. [Google Scholar]
- Jaeger, K.E.; Eggert, T. Lipases for biotechnology. Curr. Opin. Biotechnol. 2002, 13, 390–397. [Google Scholar] [CrossRef]
- Park, J.H.; Ha, H.J.; Lee, W.K.; Généreux-Vincent, T.; Kazlauskas, R.J. Molecular basis for the stereoselective ammoniolysis of N-alkyl aziridine-2-carboxylates catalyzed by Candida antarctica lipase B. Chembiochem 2009, 10, 2213–2222. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Mendoza, L.D.; Pezzotti, F.; Vanthuyne, N.; Leclaire, J.; Verger, R.; Buono, G.; Carriere, F.; Fotiadu, F. Novel chromatographic resolution of chiral diacylglycerols and analysis of the stereoselective hydrolysis of triacylglycerols by lipases. Anal. Biochem. 2008, 375, 196–208. [Google Scholar] [CrossRef]
- Snellman, E.A.; Colwell, R.R. Acinetobacter lipases: molecular biology, biochemical properties and biotechnological potential. J. Ind. Microbiol. Biotechnol. 2004, 31, 391–400. [Google Scholar] [CrossRef]
- Breuer, M.; Ditrich, K.; Habicher, T.; Hauer, B.; Kesseler, M.; Stürmer, R.; Zelinski, T. Industrial methods for the production of optically active intermediates. Angew. Chem. Int. Ed. Engl. 2004, 43, 788–824. [Google Scholar]
- Hasan, F.; Shah, A.A.; Hameed, A. Industrial applications of microbial lipases. Enzym. Microbiol. Technol. 2005, 39, 235–251. [Google Scholar]
- Jaeger, K.E.; Holliger, P. Chemical biotechnology a marriage of convenience and necessity. Curr. Opin. Biotechnol. 2010, 21, 711–712. [Google Scholar] [CrossRef]
- Jaeger, K.E.; Reetz, M.T. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 1998, 16, 396–403. [Google Scholar] [CrossRef]
- Snellman, E.A.; Sullivan, E.R.; Colwell, R.R. Purification and properties of the extracellular lipase, LipA of Acinetobacter. sp. RAG-1. FEBS. J. 2002, 269, 5771–5779. [Google Scholar]
- Schmid, A.; Dordick, J.S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B. Industrial biocatalysis today and tomorrow. Nature 2001, 409, 258–268. [Google Scholar]
- Pikuta, E.V.; Hoover, R.B.; Tang, J. Microbial extremophiles at the limits of life. Crit. Rev. Microbiol. 2007, 33, 183–209. [Google Scholar] [CrossRef]
- Pérez, D.; Martín, S.; Fernández-Lorente, G.; Filice, M.; Guisán, J.M.; Ventosa, A.; García, M.T.; Mellado, E. A novel halophilic lipase, LipBL, with applications in synthesis of Eicosapentaenoic acid (EPA). PlosOne. 2011. [Google Scholar] [CrossRef] [Green Version]
- Pérez, D.; Ventosa, A.; Mellado, E.; Guisán, J.M.; Fernández-Lorente, G.; Filice, M. Lipasa LipBL y sus aplicaciones. Spanish Patent P201031636, 8 November 2010. [Google Scholar]
- Pérez, D.; Kovacic, F.; Wilhelm, S.; Jaeger, K.E.; García, M.T.; Ventosa, A.; Mellado, E. Identification of amino acids involved in the hydrolytic activity of lipase LipBL from Marinobacter lipolyticus. Microbiology 2012, 158, 2192–2203. [Google Scholar] [CrossRef]
- Chand, S.; Mishra, P. Research and Application of Microbial Enzymes. India's. Contribution. Adv. Biochem. Eng. Biotechnol. 2003, 85, 95–124. [Google Scholar]
- Li, A.N.; Li, D.C. Cloning, expression and characterization of the serine protease gene from Chaetomium thermophilum. J. Appl. Microbiol. 2009, 106, 369–380. [Google Scholar]
- Sánchez-Porro, C.; Mellado, E.; Bertoldo, C.; Antranikian, G.; Ventosa, A. Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas ruthenica. sp. strain CP76. Extremophiles. 2003, 7, 221–228. [Google Scholar]
- Sánchez-Porro, C.; Mellado, E.; Martín, S.; Ventosa, A. Proteasa producida por una bacteria halófila moderada: modo de producción de la enzima. Spanish Patent P200300745, 26 March 2003. [Google Scholar]
- Karbalaei-Heidari, H.R.; Amoozegar, M.A.; Hajighasemi, M.; Ziaee, A.A.; Ventosa, A. Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis. J. Ind. Microbiol. Biotechnol. 2009, 36, 21–27. [Google Scholar] [CrossRef]
- Pandey, A.; Nigam, P.; Soccol, C.R.; Soccol, V.T.; Singh, D.; Mohan, R. Advances in microbial amylases. Biotechnol. Appl. Biochem. 2000, 31, 135–152. [Google Scholar] [CrossRef]
- Shafiei, M.; Ziaee, A.A.; Amoozegar, M.A. Purification and characterization of a halophilic α-amylase with increased activity in the presence of organic solvents from the moderately halophilic Nesterenkonia sp. strain F. strain F. Extremophiles 2012, 16, 627–635. [Google Scholar]
- Li, X.; Yu, H.Y. Characterization of an organic solvent-tolerant α-amylase from a halophilic isolate, Thalassobacillus sp. LY18. Folia Microbiol. 2012, 57, 447–453. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
De Lourdes Moreno, M.; Pérez, D.; García, M.T.; Mellado, E. Halophilic Bacteria as a Source of Novel Hydrolytic Enzymes. Life 2013, 3, 38-51. https://doi.org/10.3390/life3010038
De Lourdes Moreno M, Pérez D, García MT, Mellado E. Halophilic Bacteria as a Source of Novel Hydrolytic Enzymes. Life. 2013; 3(1):38-51. https://doi.org/10.3390/life3010038
Chicago/Turabian StyleDe Lourdes Moreno, María, Dolores Pérez, María Teresa García, and Encarnación Mellado. 2013. "Halophilic Bacteria as a Source of Novel Hydrolytic Enzymes" Life 3, no. 1: 38-51. https://doi.org/10.3390/life3010038
APA StyleDe Lourdes Moreno, M., Pérez, D., García, M. T., & Mellado, E. (2013). Halophilic Bacteria as a Source of Novel Hydrolytic Enzymes. Life, 3(1), 38-51. https://doi.org/10.3390/life3010038