Surface Appendages of Archaea: Structure, Function, Genetics and Assembly
Abstract
:1. Introduction
2. Widespread Use of the Bacterial Type IV Pili System for Archaeal Surface Structures
|
3. Archaella
3.1. Fla Operon–Genetic Location of Archaellar Associated Genes
3.1.1. Archaellins
3.1.2. FlaCDEFG
3.1.3. FlaHIJ
3.2. FlaK-Signal Peptidase for Archaellin Maturation
3.3. N-Glycosylation Modifications of Archaellin
3.4. Archaella Regulation
3.5. Archaella Structure
3.6. Archaella Function
4. Pili
4.1. Type IV Pili-Like Loci in Archaea
4.1.1. Adhesive (Aap) Pili of S. acidocaldarius
4.1.2. UV-Inducible Pili of Sulfolobus Species
4.1.3. Pili Locus in M. maripaludis
4.2. Pili Regulation
4.3. Pili Structure
4.4. Pili Function
5. Other Unusual Archaeal Surface Structures
5.1. Iho670 Fibers
5.2. Cannulae
5.3. Hami
5.4. Bindosome
6. Concluding Remarks
Acknowledgements
References
- Jarrell, K.F.; Walters, A.D.; Bochiwal, C.; Borgia, J.M.; Dickinson, T.; Chong, J.P.J. Major players on the microbial stage:why archaea are important. Microbiology 2011, 157, 919–936. [Google Scholar] [CrossRef]
- Cavicchioli, R. Archaea-timeline of the third domain. Nat. Rev. Microbiol. 2011, 9, 51–61. [Google Scholar] [CrossRef]
- Ng, S.Y.M.; Zolghadr, B.; Driessen, A.J.M.; Albers, S.V.; Jarrell, K.F. Cell surface structures of Archaea. J. Bacteriol. 2008, 190, 6039–6047. [Google Scholar] [CrossRef]
- Albers, S.V.; Meyer, B.H. The archaeal cell envelope. Nat. Rev. Microbiol. 2011, 9, 414–426. [Google Scholar] [CrossRef]
- Pohlschroder, M.; Ghosh, A.; Tripepi, M.; Albers, S.V. Archaeal type IV pilus-like structures-evolutionarily conserved prokaryotic surface organelles. Curr. Opin. Microbiol. 2011, 14, 1–7. [Google Scholar] [CrossRef]
- Albers, S.V.; Pohlschroder, M. Diversity of archaeal type IV pilin-like structures. Extremophiles. 2009, 13, 403–410. [Google Scholar] [CrossRef]
- Moissl, C.; Rachel, R.; Briegel, A.; Engelhardt, H.; Huber, R. The unique structure of archaeal 'hami', highly complex cell appendages with nano-grappling hooks. Mol. Microbiol. 2005, 56, 361–370. [Google Scholar] [CrossRef]
- Rieger, G.; Rachel, R.; Hermann, R.; Stetter, K.O. Ultrastructure of the hyperthermophilic archaeon Pyrodictium. abyssi. J. Struct. Biol. 1995, 115, 78–87. [Google Scholar] [CrossRef]
- Henche, A.L.; Ghosh, A.; Yu, X.; Jeske, T.; Egelman, E.; Albers, S.V. Structure and function of the adhesive type IV pilus of Sulfolobus. acidocaldarius. Environ. Microbiol. 2012, 14, 3188–3202. [Google Scholar] [CrossRef]
- Yu, X.; Goforth, C.; Meyer, C.; Rachel, R.; Schröder, G.F.; Egelman, E.H. Filaments from Ignicoccus hospitalis show diversity of packing in proteins containing N-terminal type IV pilin helices. J. Mol. Biol. 2012, 422, 274–281. [Google Scholar] [CrossRef]
- Wang, Y.A.; Yu, X.; Ng, S.Y.M.; Jarrell, K.F.; Egelman, E.H. The structure of an archaeal pilus. J. Mol. Biol. 2008, 381, 456–466. [Google Scholar] [CrossRef]
- Jarrell, K.F.; Albers, S.V. The archaellum: an old motility structure with a new name. Trends Microbiol. 2012, 20, 307–312. [Google Scholar] [CrossRef]
- Jarrell, K.F.; VanDyke, D.J.; Wu, J. Archaeal flagella and pili. In Current Research and Future Trends Pili and Flagella; Jarrell, K.F., Ed.; Caister Academic Press: Norfolk, UK, 2009; pp. 215–234. [Google Scholar]
- Jarrell, K.F.; McBride, M.J. The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 2008, 6, 466–476. [Google Scholar] [CrossRef]
- Ng, S.Y.; Chaban, B.; Jarrell, K.F. Archaeal flagella, bacterial flagella and type IV pili: A comparison of genes and posttranslational modifications. J. Mol. Microbiol. Biotechnol. 2006, 11, 167–191. [Google Scholar] [CrossRef]
- Ghosh, A.; Albers, S.V. Assembly and function of the archaeal flagellum. Biochem. Soc. Trans. 2011, 39, 64–69. [Google Scholar] [CrossRef]
- Lassak, K.; Neiner, T.; Ghosh, A.; Klingl, A.; Wirth, R.; Albers, S. Molecular analysis of the crenarchaeal flagellum. Mol. Microbiol. 2012, 83, 110–124. [Google Scholar] [CrossRef]
- Eichler, J. Response to Jarrell and Albers: the name says it all. Trends Microbiol. 2012, 20, 512–513. [Google Scholar] [CrossRef]
- Wirth, R. Response to Jarrell and Albers: seven letters less does not say more. Trends Microbiol. 2012, 20, 511–512. [Google Scholar] [CrossRef]
- Leigh, J.A.; Albers, S.V.; Atomi, H.; Allers, T. Model organisms for genetics in the domain archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol. Rev. 2011, 35, 577–608. [Google Scholar] [CrossRef]
- Cohen-Krausz, S.; Trachtenberg, S. The flagellar filament structure of the extreme acidothermophile Sulfolobus. shibatae B12 suggests that archaeabacterial flagella have a unique and common symmetry and design. J. Mol. Biol. 2008, 375, 1113–1124. [Google Scholar] [CrossRef]
- Bardy, S.L.; Jarrell, K.F. FlaK of the archaeon Methanococcus. maripaludis possesses preflagellin peptidase activity. FEMS Microbiol. Lett. 2002, 208, 53–59. [Google Scholar] [CrossRef]
- Bardy, S.L.; Jarrell, K.F. Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus. voltae. Mol. Microbiol. 2003, 50, 1339–1347. [Google Scholar] [CrossRef]
- Szabo, Z.; Stahl, A.O.; Albers, S.V.; Kissinger, J.C.; Driessen, A.J.M.; Pohlschroder, M. Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases. J. Bacteriol. 2007, 189, 772–778. [Google Scholar] [CrossRef]
- Albers, S.V.; Szabo, Z.; Driessen, A.J.M. Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J. Bacteriol. 2003, 185, 3918–3925. [Google Scholar]
- Tripepi, M.; Imam, S.; Pohlschroder, M. Haloferax. volcanii flagella are required for motility but are not involved in PibD-dependent surface adhesion. J. Bacteriol. 2010, 192, 3093–3102. [Google Scholar] [CrossRef]
- Jarrell, K.F.; Jones, G.M.; Kandiba, L.; Nair, D.B.; Eichler, J. S-layer glycoproteins and flagellins: reporters of archaeal posttranslational modifications. Archaea. 2010. [Google Scholar] [CrossRef]
- Ng, S.Y.M.; Wu, J.; Nair, D.B.; Logan, S.M.; Robotham, A.; Tessier, L.; Kelly, J.F.; Uchida, K.; Aizawa, S.; Jarrell, K.F. Genetic and mass spectrometry analysis of the unusual type IV-like pili of the archaeon Methanococcus. maripaludis. J. Bacteriol. 2011, 193, 804–814. [Google Scholar]
- Kelly, J.; Logan, S.M.; Jarrell, K.F.; Vandyke, D.J.; Vinogradov, E. A novel N-linked flagellar glycan from Methanococcus. maripaludis. Carbohydr. Res. 2009, 344, 648–653. [Google Scholar] [CrossRef]
- Tripepi, M.; You, J.; Temel, S.; Önder, Ö.; Brisson, D.; Pohlschröder, M. N-glycosylation of Haloferax. volcanii flagellins requires known Agl proteins and is essential for biosynthesis of stable flagella. J. Bacteriol. 2012, 194, 4876–4887. [Google Scholar] [CrossRef]
- Jarrell, K.F.; Stark, M.; Nair, D.B.; Chong, J.P.J. Flagella and pili are both necessary for efficient attachment of Methanococcus. maripaludis to surfaces. FEMS Microbiol. Lett. 2011, 319, 44–50. [Google Scholar] [CrossRef]
- Henche, A.L.; Koerdt, A.; Ghosh, A.; Albers, S.V. Influence of cell surface structures on crenarchaeal biofilm formation using a thermostable green fluorescent protein. Environ. Microbiol. 2012, 14, 779–793. [Google Scholar]
- Koerdt, A.; Gödeke, J.; Berger, J.; Thormann, K.M.; Albers, S.V. Crenarchaeal biofilm formation under extreme conditions. PloS One 2010. [Google Scholar] [CrossRef]
- Ajon, M.; Fröls, S.; van Wolferen, M.; Stoecker, K.; Teichmann, D.; Driessen, A.J.; Grogan, D.W.; Albers, S.V.; Schleper, C. UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili. Mol. Microbiol. 2011, 82, 807–817. [Google Scholar]
- Muller, D.W.; Meyer, C.; Gurster, S.; Kuper, U.; Huber, H.; Rachel, R.; Wanner, G.; Wirth, R.; Bellack, A. The Iho670 fibers of Ignicoccus. hospitalis: A new type of archaeal cell surface appendage. J. Bacteriol. 2009, 191, 6465–6468. [Google Scholar] [CrossRef]
- Frols, S.; Ajon, M.; Wagner, M.; Teichmann, D.; Zolghadr, B.; Folea, M.; Boekema, E.J.; Driessen, A.J.; Schleper, C.; Albers, S.V. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus. solfataricus is mediated by pili formation. Mol. Microbiol. 2008, 70, 938–952. [Google Scholar] [CrossRef] [Green Version]
- Schopf, S.; Wanner, G.; Rachel, R.; Wirth, R. An archaeal bi-species biofilm formed by Pyrococcus. furiosus and Methanopyrus. kandleri. Arch. Microbiol. 2008, 190, 371–377. [Google Scholar] [CrossRef]
- Weiner, A.; Schopf, S.; Wanner, G.; Probst, A.; Wirth, R. Positive, neutral and negative interactions in cocultures between Pyrococcus. furiosus and different methanogenic Archaea. Microb. Insights 2012, 5, 1–10. [Google Scholar]
- Reimann, J.; Lassak, K.; Khadouma, S.; Ettema, T.J.; Yang, N.; Driessen, A.J.; Klingl, A.; Albers, S.V. Regulation of archaella expression by the FHA and von Willebrand domain-containing proteins ArnA and ArnB in Sulfolobus. acidocaldarius. Mol. Microbiol. 2012, 86, 24–36. [Google Scholar] [CrossRef]
- Trachtenberg, S.; Cohen-Krausz, S. The archaeabacterial flagellar filament: a bacterial propeller with a pilus-like structure. J. Mol. Microbiol. Biotechnol. 2006, 11, 208–220. [Google Scholar]
- Faguy, D.M.; Jarrell, K.F.; Kuzio, J.; Kalmokoff, M.L. Molecular analysis of archael flagellins: similarity to the type IV pilin-transport superfamily widespread in bacteria. Can. J. Microbiol. 1994, 40, 67–71. [Google Scholar]
- Jarrell, K.F.; Bayley, D.P.; Kostyukova, A.S. The archaeal flagellum: a unique motility structure. J. Bacteriol. 1996, 178, 5057–5064. [Google Scholar]
- Zolghadr, B.; Weber, S.; Szabo, Z.; Driessen, A.J.M.; Albers, S.V. Identification of a system required for the functional surface localization of sugar binding proteins with class III signal peptides in Sulfolobus. solfataricus. Mol. Microbiol. 2007, 64, 795–806. [Google Scholar] [CrossRef]
- Strom, M.S.; Nunn, D.N.; Lory, S. A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc. Natl. Acad. Sci. USA 1993, 90, 2404–2408. [Google Scholar] [CrossRef]
- Bardy, S.L.; Eichler, J.; Jarrell, K.F. Archaeal signal peptides—A comparative survey at the genome level. Protein Sci. 2003, 12, 1833–1843. [Google Scholar]
- Bayley, D.P.; Jarrell, K.F. Further evidence to suggest that archaeal flagella are related to bacterial type IV pili. J. Mol. Evol. 1998, 46, 370–373. [Google Scholar]
- Peabody, C.R.; Chung, Y.J.; Yen, M.R.; Vidal-Ingigliardi, D.; Pugsley, A.P.; Saier, M.H., Jr. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 2003, 149, 3051–3072. [Google Scholar]
- Faguy, D.M.; Koval, S.F.; Jarrell, K.F. Physical characterization of the flagella and flagellins from Methanospirillum. hungatei. J. Bacteriol. 1994, 176, 7491–7498. [Google Scholar]
- Thomas, N.A.; Bardy, S.L.; Jarrell, K.F. The archaeal flagellum: A different kind of prokaryotic motility structure. FEMS Microbiol. Rev. 2001, 25, 147–174. [Google Scholar]
- Pyatibratov, M.G.; Beznosov, S.N.; Rachel, R.; Tiktopulo, E.I.; Surin, A.K.; Syutkin, A.S.; Fedorov, O.V. Alternative flagellar filament types in the haloarchaeon Haloarcula. marismortui. Can. J. Microbiol. 2008, 54, 835–844. [Google Scholar] [CrossRef]
- Bardy, S.L.; Ng, S.Y.; Jarrell, K.F. Recent advances in the structure and assembly of the archaeal flagellum. J. Mol. Microbiol. Biotechnol. 2004, 7, 41–51. [Google Scholar]
- Chaban, B.; Ng, S.Y.; Kanbe, M.; Saltzman, I.; Nimmo, G.; Aizawa, S.I.; Jarrell, K.F. Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus. maripaludis. Mol. Microbiol. 2007, 66, 596–609. [Google Scholar] [CrossRef]
- Patenge, N.; Berendes, A.; Engelhardt, H.; Schuster, S.C.; Oesterhelt, D. The fla gene cluster is involved in the biogenesis of flagella in Halobacterium. salinarum. Mol. Microbiol. 2001, 41, 653–663. [Google Scholar] [CrossRef]
- Chaban, B.; Voisin, S.; Kelly, J.; Logan, S.M.; Jarrell, K.F. Identification of genes involved in the biosynthesis and attachment of Methanococcus. voltae N-linked glycans: Insight into N-linked glycosylation pathways in Archaea. Mol. Microbiol. 2006, 61, 259–268. [Google Scholar] [CrossRef]
- Vandyke, D.J.; Wu, J.; Logan, S.M.; Kelly, J.F.; Mizuno, S.; Aizawa, S.I.; Jarrell, K.F. Identification of genes involved in the assembly and attachment of a novel flagellin N-linked tetrasaccharide important for motility in the archaeon Methanococcus. maripaludis. Mol. Microbiol. 2009, 72, 633–644. [Google Scholar] [CrossRef]
- Jarrell, K.F.; Jones, G.M.; Nair, D.B. Role of N-linked glycosylation in cell surface structures of Archaea with a focus on flagella and S layers. Int. J. Microbiol. 2010. [Google Scholar] [CrossRef]
- Gerl, L.; Deutzmann, R.; Sumper, M. Halobacterial flagellins are encoded by a multigene family. Identification of all five gene products. FEBS Lett. 1989, 244, 137–140. [Google Scholar] [CrossRef]
- Gerl, L.; Sumper, M. Halobacterial flagellins are encoded by a multigene family. Characterization of five flagellin genes. J. Biol. Chem. 1988, 263, 13246–13251. [Google Scholar]
- Tarasov, V.Y.; Pyatibratov, M.G.; Tang, S.L.; Dyall-Smith, M.; Fedorov, O.V. Role of flagellins from A and B loci in flagella formation of Halobacterium. salinarum. Mol. Microbiol. 2000, 35, 69–78. [Google Scholar] [CrossRef]
- Kalmokoff, M.L.; Jarrell, K.F.; Koval, S.F. Isolation of flagella from the archaebacterium Methanococcus. voltae by phase separation with Triton X-114. J. Bacteriol. 1988, 170, 1752–1758. [Google Scholar]
- Bardy, S.L.; Mori, T.; Komoriya, K.; Aizawa, S.; Jarrell, K.F. Identification and localization of flagellins FlaA and FlaB3 within flagella of Methanococcus. voltae. J. Bacteriol. 2002, 184, 5223–5233. [Google Scholar] [CrossRef]
- Macnab, R.M. How bacteria assemble flagella. Annu. Rev. Microbiol. 2003, 57, 77–100. [Google Scholar]
- Aizawa, S.I. Flagellar assembly in Salmonella typhimurium. Mol. Microbiol. 1996, 19, 1–5. [Google Scholar]
- Beznosov, S.N.; Pyatibratov, M.G.; Fedorov, O.V. On the multicomponent nature of Halobacterium. salinarum flagella. Microbiology Russ. 2007, 76, 435–441. [Google Scholar]
- Syutkin, A.S.; Pyatibratov, M.G.; Beznosov, S.N.; Fedorov, O.V. Various mechanisms of flagella helicity formation in Halobacteria. Microbiology Russ. 2012, 81, 573–581. [Google Scholar]
- Schlesner, M.; Miller, A.; Streif, S.; Staudinger, W.F.; Muller, J.; Scheffer, B.; Siedler, F.; Oesterhelt, D. Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus. BMC Microbiol. 2009, 9, 56. [Google Scholar]
- Mukhopadhyay, B.; Johnson, E.F.; Wolfe, R.S. A novel pH2 control on the expression of flagella in the hyperthermophilic strictly hydrogenotrophic methanarchaeaon Methanococcus. jannaschii. Proc. Natl. Acad. Sci. USA 2000, 97, 11522–11527. [Google Scholar] [CrossRef]
- Thomas, N.A.; Jarrell, K.F. Characterization of flagellum gene families of methanogenic archaea and localization of novel flagellum accessory proteins. J. Bacteriol. 2001, 183, 7154–7164. [Google Scholar]
- Banerjee, A.; Ghosh, A.; Mills, D.J.; Kahnt, J.; Vonck, J.; Albers, S.V. FlaX, a unique component of the crenarchaeal archaellum, forms oligomeric ring-shaped structures and interacts with the motor ATPase FlaI. J. Biol. Chem. 2012, 287, 43322–43330. [Google Scholar]
- Ghosh, A.; Hartung, S.; van der Does, C.; Tainer, J.A.; Albers, S.V. Archaeal flagellar ATPase motor shows ATP-dependent hexameric assembly and activity stimulation by specific lipid binding. Biochem. J. 2011, 437, 43–52. [Google Scholar]
- Kalmokoff, M.L.; Jarrell, K.F. Cloning and sequencing of a multigene family encoding the flagellins of Methanococcus. voltae. J. Bacteriol. 1991, 173, 7113–7125. [Google Scholar]
- Szabo, Z.; Albers, S.V.; Driessen, A.J.M. Active-site residues in the type IV prepilin peptidase homologue PibD from the archaeon Sulfolobus. solfataricus. J. Bacteriol. 2006, 188, 1437–1443. [Google Scholar] [CrossRef]
- Hu, J.; Xue, Y.; Lee, S.; Ha, Y. The crystal structure of GxGD membrane protease FlaK. Nature 2011, 475, 528–531. [Google Scholar]
- Thomas, N.A.; Chao, E.D.; Jarrell, K.F. Identification of amino acids in the leader peptide of Methanococcus. voltae preflagellin that are important in posttranslational processing. Arch. Microbiol. 2001, 175, 263–269. [Google Scholar] [CrossRef]
- Ng, S.Y.; VanDyke, D.J.; Chaban, B.; Wu, J.; Nosaka, Y.; Aizawa, S.; Jarrell, K.F. Different minimal signal peptide lengths recognized by the archaeal prepilin-like peptidases FlaK and PibD. J. Bacteriol. 2009, 191, 6732–6740. [Google Scholar]
- Sumper, M. Halobacterial glycoprotein biosynthesis. Biochim. Biophys. Acta. 1987, 906, 69–79. [Google Scholar]
- Voisin, S.; Houliston, R.S.; Kelly, J.; Brisson, J.R.; Watson, D.; Bardy, S.L.; Jarrell, K.F.; Logan, S.M. Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus. voltae. J. Biol. Chem. 2005, 280, 16586–16593. [Google Scholar]
- Chaban, B.; Logan, S.M.; Kelly, J.F.; Jarrell, K.F. AglC and AglK are involved in biosynthesis and attachment of diacetylated glucuronic acid to the N-glycan in Methanococcus. voltae. J. Bacteriol. 2009, 191, 187–195. [Google Scholar] [CrossRef]
- Shams-Eldin, H.; Chaban, B.; Niehus, S.; Schwarz, R.T.; Jarrell, K.F. Identification of the archaeal alg7 gene homolog encoding N-acetylglucosamine-1-phosphate transferase of the N-linked glycosylation system by cross-domain complementation in Saccharomyces. cerevisiae. J. Bacteriol. 2008, 190, 2217–2220. [Google Scholar] [CrossRef]
- Namboori, S.C.; Graham, D.E. Acetamido sugar biosynthesis in the Euryarchaea. J. Bacteriol. 2008, 190, 2987–2996. [Google Scholar]
- Jones, G.M.; Wu, J.; Ding, Y.; Uchida, K.; Aizawa, S.; Robotham, A.; Logan, S.M.; Kelly, J.; Jarrell, K.F. Identification of genes involved in the acetamidino group modification of the flagellin N-linked glycan of Methanococcus. maripaludis. J. Bacteriol. 2012, 194, 2693–2702. [Google Scholar]
- VanDyke, D.J.; Wu, J.; Ng, S.Y.; Kanbe, M.; Chaban, B.; Aizawa, S.I.; Jarrell, K.F. Identification of putative acetyltransferase gene, MMP0350, which affects proper assembly of both flagella and pili in the archaeon Methanococcus. maripaludis. J. Bacteriol. 2008, 190, 5300–5307. [Google Scholar]
- Calo, D.; Guan, Z.; Eichler, J. Glyco-engineering in Archaea: differential N-glycosylation of the S-layer glycoprotein in a transformed Haloferax. volcanii strain. Microb. Biotechnol. 2011, 4, 461–470. [Google Scholar] [CrossRef]
- Calo, D.; Kaminski, L.; Eichler, J. Protein glycosylation in Archaea: Sweet and Extreme. Glycobiology. 2010, 20, 1065–1076. [Google Scholar]
- Eichler, J.; Maupin-Furlow, J. Post-translation modification in Archaea: Lessons from Haloferax. volcanii and other haloarchaea. FEMS Microbiol. Rev. 2012. [Google Scholar] [CrossRef]
- Abu-Qarn, M.; Yurist-Doutsch, S.; Giordano, A.; Trauner, A.; Morris, H.R.; Hitchen, P.; Medalia, O.; Dell, A.; Eichler, J. Haloferax. volcanii AglB and AglD are involved in N-glycosylation of the S-layer glycoprotein and proper assembly of the surface layer. J. Mol. Biol. 2007, 374, 1224–1236. [Google Scholar] [CrossRef]
- Hendrickson, E.L.; Liu, Y.; Rosas-Sandoval, G.; Porat, I.; Soll, D.; Whitman, W.B.; Leigh, J.A. Global responses of Methanococcus. maripaludis to specific nutrient limitations and growth rate. J. Bacteriol. 2008, 190, 2198–2205. [Google Scholar] [CrossRef]
- Xia, Q.; Wang, T.; Hendrickson, E.L.; Lie, T.J.; Hackett, M.; Leigh, J.A. Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus. maripaludis. BMC Microbiol. 2009, 9, 149. [Google Scholar] [CrossRef]
- Duan, X.; He, Z.G. Characterization of the specific interaction between archael FHA domain-containing protein and the promoter of a flagella-like gene-cluster and its regulation by phosphorylation. Biochem. Biophys. Res. Commun. 2011, 407, 242–247. [Google Scholar]
- Wurtzel, O.; Sapra, R.; Chen, F.; Zhu, Y.; Simmons, B.A.; Sorek, R. A single-base resolution map of an archaeal transcriptome. Genome Res. 2010, 20, 133–141. [Google Scholar]
- Cohen-Krausz, S.; Trachtenberg, S. The structure of the archeabacterial flagellar filament of the extreme halophile Halobacterium. salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili. J. Mol. Biol. 2002, 321, 383–395. [Google Scholar] [CrossRef]
- Trachtenberg, S.; Galkin, V.E.; Egelman, E.H. Refining the structure of the Halobacterium. salinarum flagellar filament using the iterative helical real space reconstruction method: Insights into polymorphism. J. Mol. Biol. 2005, 346, 665–676. [Google Scholar] [CrossRef]
- Kalmokoff, M.L.; Karnauchow, T.M.; Jarrell, K.F. Conserved N-terminal sequences in the flagellins of archaebacteria. Biochem. Biophys. Res. Commun. 1990, 167, 154–160. [Google Scholar] [CrossRef]
- Jarrell, K.F.; Bayley, D.P.; Florian, V.; Klein, A. Isolation and characterization of insertional mutations in flagellin genes in the archaeon Methanococcus. voltae. Mol. Microbiol. 1996, 20, 657–666. [Google Scholar]
- Marwan, W.; Alam, M.; Oesterhelt, D. Rotation and switching of the flagellar motor assembly in Halobacterium. halobium. J. Bacteriol. 1991, 173, 1971–1977. [Google Scholar]
- Welch, M.; Oosawa, K.; Aizawa, S.; Eisenbach, M. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. PNAS 1993, 90, 8787–8791. [Google Scholar]
- Rudolph, J.; Nordmann, B.; Storch, K.F.; Gruenberg, H.; Rodewald, K.; Oesterhelt, D. A family of halobacterial transducer proteins. FEMS Microbiol. Lett. 1996, 139, 161–168. [Google Scholar]
- Rudolph, J.; Oesterhelt, D. Deletion analysis of the che operon in the archaeon Halobacterium. salinarium. J. Mol. Biol. 1996, 258, 548–554. [Google Scholar] [CrossRef]
- Jarrell, K.F.; Ng, S.Y.; Chaban, B. Flagellation and chemotaxis. Cavicchioli, R., Ed.; Archaea: molecular and cellular biology, 2007; pp. 385–410, ASM Press: Washington, DC, USA. [Google Scholar]
- del Rosario, R.C.; Diener, F.; Diener, M.; Oesterhelt, D. The steady-state phase distribution of the motor switch complex model of Halobacterium. salinarum. Math. Biosci. 2009, 222, 117–126. [Google Scholar] [CrossRef]
- Herzog, B.; Wirth, R. Swimming behavior of selected species of Archaea. Appl. Environ. Microbiol. 2012, 78, 1670–1674. [Google Scholar]
- Nather, D.J.; Rachel, R.; Wanner, G.; Wirth, R. Flagella of Pyrococcus. furiosus: Multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts. J. Bacteriol. 2006, 188, 6915–6923. [Google Scholar] [CrossRef]
- Bellack, A.; Huber, H.; Rachel, R.; Wanner, G.; Wirth, R. Methanocaldococcus. villosus sp. nov., a heavily flagellated archaeon adhering to surfaces and forming cell-cell contacts. Int. J. Syst. Evol. Microbiol. 2011, 61, 1239–1245. [Google Scholar] [CrossRef]
- Shimoyama, T.; Kato, S.; Ishii, S.; Watanabe, K. Flagellum mediates symbiosis. Science 2009, 323, 1574. [Google Scholar]
- Zolghadr, B.; Klingl, A.; Koerdt, A.; Driessen, A.J.; Rachel, R.; Albers, S.V. Appendage-mediated surface adherence of Sulfolobus. solfataricus. J. Bacteriol. 2010, 192, 104–110. [Google Scholar] [CrossRef]
- Weiss, R.L. Attachment of bacteria to sulfur in extreme environments. J. Gen. Microbiol. 1973, 77, 501–507. [Google Scholar]
- Doddema, H.J.; Derksen, J.W.M.; Vogels, G.D. Fimbriae and flagella of methanogenic bacteria. FEMS Microbiol. Lett. 1979, 5, 135–138. [Google Scholar] [CrossRef]
- Burrows, L.L. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu. Rev. Microbiol. 2012, 66, 493–520. [Google Scholar] [CrossRef]
- Pelicic, V. Type IV pili: e pluribus unum? Mol. Microbiol. 2008, 68, 827–837. [Google Scholar] [CrossRef]
- Thoma, C.; Frank, M.; Rachel, R.; Schmid, S.; Nather, D.; Wanner, G.; Wirth, R. The Mth60-fimbriae of Methanothermobacter. thermoautotrophicus are functional adhesins. Environ. Microbiol. 2008, 10, 2785–2795. [Google Scholar] [CrossRef]
- Wirth, R.; Bellack, A.; Bertl, M.; Bilek, Y.; Heimerl, T.; Herzog, B.; Leisner, M.; Probst, A.; Rachel, R.; Sarbu, C.; Schopf, S.; Wanner, G. The mode of cell wall growth in selected archaea is similar to the general mode of cell wall growth in bacteria as revealed by fluorescent dye analysis. Appl. Environ. Microbiol. 2011, 77, 1556–1562. [Google Scholar]
- Nakamura, K.; Takahashi, A.; Mori, C.; Tamaki, H.; Mochimaru, H.; Nakamura, K.; Takamizawa, K.; Kamagata, Y. Methanothermobacter. tenebrarum sp. nov., a hydrogenotrophic thermophilic methanogen isolated from gas-associated formation water of a natural gas field in Japan. Int. J. Syst. Evol. Microbiol. 2012. [Google Scholar] [CrossRef]
- Kachlany, S.C.; Planet, P.J.; DeSalle, R.; Fine, D.H.; Figurski, D.H. Genes for tight adherence of Actinobacillus. actinomycetemcomitans: from plaque to plague to pond scum. Trends Microbiol. 2001, 9, 429–437. [Google Scholar] [CrossRef]
- Vassart, A.; van Wolferen, M.; Orell, A.; Hong, Y.; Peeters, E.; Albers, S.V.; Charlier, D. Sa-Lrp from Sulfolobus. acidocaldarius is a versatile, glutamine-responsive, and architectural transcriptional regulator. Microbiology Open 2012. [Google Scholar] [CrossRef]
- Frols, S.; Gordon, P.M.; Panlilio, M.A.; Duggin, I.G.; Bell, S.D.; Sensen, C.W.; Schleper, C. Response of the hyperthermophilic archaeon Sulfolobus. solfataricus to UV damage. J. Bacteriol. 2007, 189, 8708–8718. [Google Scholar] [CrossRef]
- Huber, H.; Küper, U.; Daxer, S.; Rachel, R. The unusual cell biology of the hyperthermophilic Crenarchaeon Ignicoccus. hospitalis. Antonie. van Leeuwenhoek 2012, 102, 203–219. [Google Scholar] [CrossRef]
- Giannone, R.J.; Huber, H.; Karpinets, T.; Heimerl, T.; Küper, U.; Rachel, R.; Keller, M.; Hettich, R.L.; Podar, M. Proteomic characterization of cellular and molecular processes that enable the Nanoarchaeum. equitans—Ignicoccus. hospitalis relationship. PloS One 2011. [Google Scholar] [CrossRef] [Green Version]
- Magidovich, H.; Eichler, J. Glycosyltransferases and oligosaccharyltransferases in Archaea: putative components of the N-glycosylation pathway in the third domain of life. FEMS Microbiol. Lett. 2009, 300, 122–130. [Google Scholar] [CrossRef]
- Nickell, S.; Hegerl, R.; Baumeister, W.; Rachel, R. Pyrodictium. cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography. J. Struct. Biol. 2003, 141, 34–42. [Google Scholar] [CrossRef]
- Barton, N.R.; O'Donoghue, E.; Short, R.; Frey, G.; Weiner, D.; Robertson, D.E.; Briggs, S.; Zorner, P. Chimeric cannulae proteins, nucleic acids encoding them and methods for making and using them. International Patent Applic. WO 2005/094543 A2, 2005. [Google Scholar]
- Horn, C.; Paulmann, B.; Kerlen, G.; Junker, N.; Huber, H. In vivo observation of cell division of anaerobic hyperthermophiles by using a high-intensity dark-field microscope. J. Bacteriol. 1999, 181, 5114–5118. [Google Scholar]
- Moissl, C.; Rudolph, C.; Huber, R. Natural communities of novel archaea and bacteria with a string-of-pearls-like morphology: molecular analysis of the bacterial partners. Appl. Environ. Microbiol. 2002, 68, 933–937. [Google Scholar] [CrossRef]
- Moissl-Eichinger, C.; Huber, H. Archaeal symbionts and parasites. Curr. Opin. Microbiol. 2011, 14, 364–370. [Google Scholar] [CrossRef]
- Henneberger, R.; Moissl, C.; Amann, T.; Rudolph, C.; Huber, R. New insights into the lifestyle of the cold-loving SM1 euryarchaeon: natural growth as a monospecies biofilm in the subsurface. Appl. Environ. Microbiol. 2006, 72, 192–199. [Google Scholar] [CrossRef]
- Albers, S.V.; Elferink, M.G.; Charlebois, R.L.; Sensen, C.W.; Driessen, A.J.M.; Konings, W.N. Glucose transport in the extremely thermoacidophilic Sulfolobus. solfataricus involves a high-affinity membrane-integrated binding protein. J. Bacteriol. 1999, 181, 4285–4291. [Google Scholar]
- Elferink, M.G.; Albers, S.V.; Konings, W.N.; Driessen, A.J. Sugar transport in Sulfolobus. solfataricus is mediated by two families of binding protein-dependent ABC transporters. Mol. Microbiol. 2001, 39, 1494–1503. [Google Scholar] [CrossRef]
- Zolghadr, B.; Klingl, A.; Rachel, R.; Driessen, A.J.; Albers, S.V. The bindosome is a structural component of the Sulfolobus. solfataricus cell envelope. Extremophiles. 2011, 15, 235–244. [Google Scholar] [CrossRef]
- Lassak, K.; Ghosh, A.; Albers, S.V. Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures. Res. Microbiol. 2012, 163, 630–644. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Jarrell, K.F.; Ding, Y.; Nair, D.B.; Siu, S. Surface Appendages of Archaea: Structure, Function, Genetics and Assembly. Life 2013, 3, 86-117. https://doi.org/10.3390/life3010086
Jarrell KF, Ding Y, Nair DB, Siu S. Surface Appendages of Archaea: Structure, Function, Genetics and Assembly. Life. 2013; 3(1):86-117. https://doi.org/10.3390/life3010086
Chicago/Turabian StyleJarrell, Ken F., Yan Ding, Divya B. Nair, and Sarah Siu. 2013. "Surface Appendages of Archaea: Structure, Function, Genetics and Assembly" Life 3, no. 1: 86-117. https://doi.org/10.3390/life3010086
APA StyleJarrell, K. F., Ding, Y., Nair, D. B., & Siu, S. (2013). Surface Appendages of Archaea: Structure, Function, Genetics and Assembly. Life, 3(1), 86-117. https://doi.org/10.3390/life3010086