Exploiting tRNAs to Boost Virulence
Abstract
:1. Introduction
2. Codon Usage and tRNA Concentrations
Virus Family | Virus | Genome Size [bp] | tRNA Species | No. of tRNAs | Reference |
---|---|---|---|---|---|
Myoviridae | Bacterio-phage T4 | 168,903 | tRNAIleGAU, tRNAIleCAU, tRNAArgUCU, tRNALeuUAA, tRNASerUGA, tRNAGlyUCC, tRNAProUGG, tRNAThrUGU, tRNAGlnUUG | 8 | [29] |
Siphoviridae | Bacterio-phage T5 | 121,752 | tRNAIle1, tRNAIle2, tRNAArg, tRNALeu, tRNASer1, tRNASer2, tRNAGly, tRNAPro, tRNAThr, tRNAGln, tRNAHis1, tRNAHis2, tRNAMet, tRNAfMet, tRNALys, tRNAVal, tRNAAla, tRNAPhe, tRNAAsn, tRNACys, tRNAGlu, tRNATrp, tRNATyr | >14 | [26,27,30,49,50] |
Mimiviridae | Acantha-moeba polyphagamimivirus | 1,181,404 | tRNALeuUAA, tRNALeuUAA2, tRNALeuCAA, tRNATrpCCA, tRNAHisGUG, tRNACysACA | 6 | [51,52] |
Herpesviridae | MHV 68 a | 118,237 | Identified: tRNAValAAC, tRNAMetCAU, tRNAThrAGU | 8 b | [53] |
Phycodna-viridae | PBCV-1 a | 330,740 | tRNALysCUU, tRNALysCUU2, tRNALysUUU, tRNAAsnGUU, tRNAAsnGUU2, tRNALeuCAA, tRNALeuUAA, tRNAArgUCU, tRNAIleUAU, tRNATyrGUA, tRNAValAAC | 11 | [36] |
ATCV-1 a | 288,047 | tRNAAsnGUU, tRNAAsnGUU2, tRNAValAAC, tRNAValAAC2, tRNALysCUU, tRNAArgUCU, tRNALeuUAA, tRNAAspGUC, tRNAGlyUCC, tRNATyrGUA, tRNASerACU | 11 | [44] | |
CVK 2 a | 330,000–380,000 | tRNALysCUU, tRNALysCUU2, tRNALysUUU, tRNAAsnGUU, tRNAAsnGUU2, tRNALeuUAA, tRNALeuCAA, tRNAArgUCU, tRNAAspGUC, tRNAGlyUCC, tRNAGlnCUG, tRNAIleUAU, tRNATyrGUA, tRNAValAAC | 14 | [36] |
3. tRNA-Like Structures (TLS)
4. tRNAs in Packaging and Priming
5. tRNA Modifications
6. Conclusions and Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Anderson, W.F. The effect of tRNA concentration on the rate of protein synthesis. Proc. Natl. Acad. Sci. USA 1969, 62, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Del Tito, B.J., Jr.; Ward, J.M.; Hodgson, J.; Gershater, C.J.; Edwards, H.; Wysocki, L.A.; Watson, F.A.; Sathe, G.; Kane, J.F. Effects of a minor isoleucyl tRNA on heterologous protein translation in Escherichia coli. J. Bacteriol. 1995, 177, 7086–7091. [Google Scholar] [PubMed]
- Zhang, G.; Hubalewska, M.; Ignatova, Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat. Struct. Mol. Biol. 2009, 16, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Czech, A.; Fedyunin, I.; Zhang, G.; Ignatova, Z. Silent mutations in sight: Co-variations in tRNA abundance as a key to unravel consequences of silent mutations. Mol. Biosyst. 2010, 6, 1767–1772. [Google Scholar] [CrossRef] [PubMed]
- Dittmar, K.A.; Mobley, E.M.; Radek, A.J.; Pan, T. Exploring the regulation of tRNA distribution on the genomic scale. J. Mol. Biol. 2004, 337, 31–47. [Google Scholar] [CrossRef] [PubMed]
- Dittmar, K.A.; Sorensen, M.A.; Elf, J.; Ehrenberg, M.; Pan, T. Selective charging of tRNA isoacceptors induced by amino-acid starvation. EMBO Rep. 2005, 6, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Zaborske, J.; Pan, T. Genome-wide analysis of aminoacylation (charging) levels of tRNA using microarrays. J. Vis. Exp. 2010, 40. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.L.; Abo, R.; Levine, S.S.; Dedon, P.C. Diverse cell stresses induce unique patterns of tRNA up- and down-regulation: tRNA-seq for quantifying changes in tRNA copy number. Nucleic Acids Res. 2014, 42, e170. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Qin, Y.; Clark, W.C.; Dai, Q.; Yi, C.; He, C.; Lambowitz, A.M.; Pan, T. Efficient and quantitative high-throughput tRNA sequencing. Nat. Methods 2015, 12, 835–837. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.; Mohr, I. Viral subversion of the host protein synthesis machinery. Nat. Rev. Microbiol. 2011, 9, 860–875. [Google Scholar] [CrossRef] [PubMed]
- Pavon-Eternod, M.; David, A.; Dittmar, K.; Berglund, P.; Pan, T.; Bennink, J.R.; Yewdell, J.W. Vaccinia and influenza a viruses select rather than adjust tRNAs to optimize translation. Nucleic Acids Res. 2013, 41, 1914–1921. [Google Scholar] [CrossRef] [PubMed]
- Bahir, I.; Fromer, M.; Prat, Y.; Linial, M. Viral adaptation to host: A proteome-based analysis of codon usage and amino acid preferences. Mol. Syst. Biol. 2009, 5, 311. [Google Scholar] [CrossRef] [PubMed]
- Lucks, J.B.; Nelson, D.R.; Kudla, G.R.; Plotkin, J.B. Genome landscapes and bacteriophage codon usage. PLoS Comput. Biol. 2008, 4, e1000001. [Google Scholar] [CrossRef] [PubMed]
- Barret, J.W.; Sun, Y.; Nazarian, S.H.; Belsito, T.A.; Brunetti, C.R.; McFadden, G. Optimization of codon usage of poxvirus genes allows for improved transient expression in mammalian cells. Virus Genes 2006, 33, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Carnero, E.; Li, W.; Borderia, A.V.; Moltedo, B.; Moran, T.; García-Sastre, A. Optimization of human immunodeficiency virus gag expression by newcastle disease virus vectors for the induction of potent immune responses. J. Virol. 2009, 83, 584–597. [Google Scholar] [CrossRef] [PubMed]
- Tenbusch, M.; Grunwald, T.; Niezold, T.; Storcksdieck, M.; Hannaman, D.; Norley, S.; Überla, K. Codon-optimization of the hemagglutinin gene from the novel swine origin h1n1 influenza virus has differential effects on cd4+ T-cell responses and immune effector mechanisms following DNA electroporation in mice. Vaccine 2010, 28, 3273–3277. [Google Scholar] [CrossRef] [PubMed]
- Zhi, N.; Wan, Z.; Liu, X.; Wong, S.; Kim, D.J.; Young, N.S.; Kajigaya, S. Codon optimization of human parvovirus b19 capsid genes greatly increases their expression in nonpermissive cells. J. Virol. 2010, 84, 13059–13062. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.; Papamichail, D.; Coleman, J.R.; Skiena, S.; Wimmer, E. Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J. Virol. 2006, 80, 9687–9696. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.H.; Gao, Z.L.; Zhang, J.; Ding, Y.Z.; Stipkovits, L.; Szathmary, S.; Pejsak, Z.; Liu, Y.S. The analysis of codon bias of foot-and-mouth disease virus and the adaptation of this virus to the hosts. Infect. Genet. Evol. 2013, 14, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Bovee, M.L.; Marissen, W.E.; Zamora, M.; Lloyd, R.E. The predominant eif4g-specific cleavage activity in poliovirus-infected hela cells is distinct from 2a protease. Virology 1998, 245, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Haghighat, A.; Svitkin, Y.; Novoa, I.; Kuechler, E.; Skern, T.; Sonenberg, N. The eif4g-eif4e complex is the target for direct cleavage by the rhinovirus 2a proteinase. J. Virol. 1996, 70, 8444–8450. [Google Scholar] [PubMed]
- Hambidge, S.J.; Sarnow, P. Translational enhancement of the poliovirus 5' noncoding region mediated by virus-encoded polypeptide 2a. Proc. Natl. Acad. Sci. USA 1992, 89, 10272–10276. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, E.; Borman, A.M.; Kirchweger, R.; Skern, T.; Kean, K.M. Foot-and-mouth disease virus lb proteinase can stimulate rhinovirus and enterovirus ires-driven translation and cleave several proteins of cellular and viral origin. J. Virol. 1995, 69, 3465–3474. [Google Scholar] [PubMed]
- Scherberg, N.H.; Weiss, S.B. Detection of bacteriophage t4- and t5-coded transfer RNAs. Proc. Natl. Acad. Sci. USA 1970, 67, 1164–1171. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.B.; Hsu, W.; Foft, J.W.; Scherberg, N.H. Transfer RNA coded by the t4 bacteriophage genome. Proc. Natl. Acad. Sci. USA 1968, 61, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Locker, J.; Weiss, S.B. The physical mapping of bacteriophage t5 transfer tRNAs. J. Biol. Chem. 1976, 251, 536–547. [Google Scholar] [PubMed]
- Hunt, C.; Desai, S.M.; Vaughan, J.; Weiss, S.B. Bacteriophage t5 transfer RNA. J. Biol. Chem. 1980, 255, 3164–3173. [Google Scholar] [PubMed]
- McClain, W.H.; Guthrie, C.; Barrell, B.G. Eight transfer RNAs induced by infection of Escherichia coli with bacteriophage t4. Proc. Natl. Acad. Sci. USA 1972, 69, 3703–3707. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.S.; Kutter, E.; Mosig, G.; Arisaka, F.; Kunisawa, T.; Ruger, W. Bacteriophage t4 genome. Microbiol Mol. Biol. Rev. 2003, 67, 86–156. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, Y.; Vincent, M.; Sun, Y.; Yu, H.; Wang, J.; Bao, Q.; Kong, H.; Hu, S. Complete genome sequence of bacteriophage t5. Virology 2005, 332, 45–65. [Google Scholar] [CrossRef] [PubMed]
- Bailly-Bechet, M.; Vergassola, M.; Rocha, E. Causes for the intriguing presence of tRNAs in phages. Genome Res. 2007, 17, 1486–1495. [Google Scholar] [CrossRef] [PubMed]
- Dreher, T.W. Viral tRNAs and tRNA-like structures. Wiley Interdiscip. Rev. RNA 2010, 1, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Hatfull, G.F.; Jacobs-Sera, D.; Lawrence, J.G.; Pope, W.H.; Russell, D.A.; Ko, C.C.; Weber, R.J.; Patel, M.C.; Germane, K.L.; Edgar, R.H.; et al. Comparative genomic analysis of 60 mycobacteriophage genomes: Genome clustering, gene acquisition, and gene size. J. Mol. Biol. 2010, 397, 119–143. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.M.; Petrov, V.; Bertrand, C.; Krisch, H.M.; Karam, J.D. Genetic diversity among five t4-like bacteriophages. Virol. J. 2006, 3, 30. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Park, H.; Kim, J.; Choi, T. Isolation and characterization of chlorella viruses from feshwater sources in korea. Mol. Cells 2002, 14, 168–176. [Google Scholar] [PubMed]
- Nishida, K.; Kawasaki, T.; Fujie, M.; Usami, S.; Yamada, T. Aminoacylation of tRNAs encoded by chlorella virus cvk2. Virology 1999, 263, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Bowden, R.J.; Simas, J.P.; Davis, A.J.; Efstathiou, S. Murine gammaherpesvirus 68 encodes tRNA-like sequences which are expressed during latency. J. Gen. Virol. 1997, 78, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Calin-Jageman, I.; Gurnon, J.R.; Choi, T.; Adams, B.; Nicholson, A.W.; Van Etten, J.L. Characterization of a chlorella virus pbcv-1 encoded ribonuclease iii. Virology 2003, 317, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Lukoszek, R.; Mueller-Roeber, B.; Ignatova, Z. Different sequence signatures in the upstream regions of plant and animal tRNA genes shape distinct modes of regulation. Nucleic Acids Res. 2011, 39, 3331–3339. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.N.; Stewart, A.J.; Huff, J.T.; Cairns, B.R. The RNA polymerase iii transcriptome revealed by genome-wide localization and activity-occupancy relationships. Proc. Natl. Acad. Sci. USA 2003, 100, 14695–14700. [Google Scholar] [CrossRef] [PubMed]
- Van Etten, J.L.; Meints, R.H. Giant viruses infecting algae. Annu. Rev. Microbiol. 1999, 53, 447–494. [Google Scholar] [CrossRef] [PubMed]
- Yanai-Balser, G.M.; Duncan, G.A.; Eudy, J.D.; Wang, D.; Li, X.; Agarkova, I.V.; Dunigan, D.D.; van Etten, J.L. Microarray analysis of paramecium bursaria chlorella virus 1 transcription. J. Virol. 2010, 84, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Byrne, D.; Grzela, R.; Lartigue, A.; Audic, S.; Chenivesse, S.; Encinas, S.; Claverie, J.M.; Abergel, C. The polyadenylation site of mimivirus transcripts obeys a stringent ‘hairpin rule’. Genome Res. 2009, 19, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, L.A.; Graves, M.V.; Li, X.; Hartigan, J.; Pfitzner, A.J.P.; Hoffart, E.; Van Etten, J.L. Sequence and annotation of the 288-kb atcv-1 virus that infects an endosymbiotic chlorella strain of the heliozoon acanthocystis turfacea. Virology 2007, 362, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Hames, D.; Hooper, N. Biochemistry; Garland Science: New York & Abington, 2011; Volume 4. [Google Scholar]
- Srivastava, A.K.; Schlessinger, D. Mechanism and regulation of bacterial ribosomal RNA processing. Annu. Rev. Microbiol. 1990, 44, 105–129. [Google Scholar] [CrossRef] [PubMed]
- Gurevitz, M.; Apirion, D. Interplay among processing and degradative enzymes and precursor ribonucleic acid in the selective maturation and maintenance of ribonucleic acid molecules. Biochemistry 1983, 22, 4000–4005. [Google Scholar] [CrossRef] [PubMed]
- McClain, W.H. A role for ribonuclease iii in synthesis of bacteriophage t4 transfer RNAs. Biochem. Biophys. Res. Commun. 1979, 86, 718–724. [Google Scholar] [CrossRef]
- Chen, M.J.; Shiau, R.P.; Hwang, L.T.; Vaughan, J.; Weiss, S.B. Methionine and formylmethionine specific tRNAs coded by bacteriophage t5. Proc. Natl. Acad. Sci. USA 1975, 72, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Kryukov, V.M.; Ksenzenko, V.N.; Kaliman, A.V.; Bayev, A.A. Cloning and DNA sequence of the genes for two bacteriophage t5 trnasser. FEBS Lett. 1983, 158, 123–127. [Google Scholar] [CrossRef]
- Claverie, J.; Abergel, C.; Ogata, H. Mimivirus. Curr. Top. Microbiol. Immunol. 2009, 328, 89–121. [Google Scholar] [PubMed]
- Colson, P.; Yutin, N.; Shabalina, S.A.; Robert, C.; Fournous, G.; La Scola, B.; Raoult, D.; Koonin, E.V. Viruses with more than 1,000 genes: Mamavirus, a new acanthamoeba polyphaga mimivirus strain, and reannotation of mimivirus genes. Genome Biol. Evol. 2011, 3, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Virgin, H.W.T.; Latreille, P.; Wamsley, P.; Hallsworth, K.; Weck, K.E.; Dal Canto, A.J.; Speck, S.H. Complete sequence and genomic analysis of murine gammaherpesvirus 68. J. Virol. 1997, 71, 5894–5904. [Google Scholar] [PubMed]
- Belfield, G.P.; Tuite, M.F. Translation elongation factor 3: A fungus-specific translation factor? Mol. Microbiol. 1993, 9, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Fukuda, T.; Tamura, K.; Furukawa, S.; Songsri, P. Expression of the gene encoding a translational elongation factor 3 homolog of chlorella virus cvk2. Virology 1993, 197, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.B.; Becker, T.; Blau, M.; Anand, M.; Halic, M.; Balar, B.; Mielke, T.; Boesen, T.; Pedersen, J.S.; Spahn, C.M.; et al. Structure of eef3 and the mechanism of transfer RNA release from the e-site. Nature 2006, 443, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Raoult, D.; Audic, S.; Robert, C.; Abergel, C.; Renesto, P.; Ogata, H.; La Scola, B.; Suzan, M.; Claverie, J. The 1.2-megabase genome sequence of mimivirus. Science 2004, 306, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.H. Function of bacteriophage t4 transfer RNAs. J. Mol. Biol. 1973, 74, 753–757. [Google Scholar] [CrossRef]
- Scherberg, N.H.; Weiss, S.B. T4 transfer RNAs: Codon recognition and translational properties. Proc. Natl. Acad. Sci. USA 1972, 69, 1114–1118. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, G. Anticodon nucleases. Trends Biochem. Sci. 2000, 25, 70–74. [Google Scholar] [CrossRef]
- Amitsur, M.; Levitz, R.; Kaufmann, G. Bacteriophage t4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. EMBO J. 1987, 6, 2499–2503. [Google Scholar] [PubMed]
- Czech, A.; Wende, S.; Morl, M.; Pan, T.; Ignatova, Z. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress. PLoS Genet. 2013, 9, e1003767. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lee, I.; Ren, J.; Ajay, S.S.; Lee, Y.S.; Bao, X. Identification and functional characterization of tRNA-derived RNA fragments (trfs) in respiratory syncytial virus infection. Mol. Ther. 2013, 21, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Dreher, T.W. Role of tRNA-like structures in controlling plant virus replication. Virus Res. 2009, 139, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Dreher, T.W.; Goodwin, J.B. Transfer RNA mimicry among tymoviral genomic RNAs ranges from highly efficient to vestigial. Nucleic Acids Res. 1998, 26, 4356–4364. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, J.B.; Dreher, T.W. Transfer RNA mimicry in a new group of positive-strand RNA plant viruses, the furoviruses: Differential aminoacylation between the RNA components of one genome. Virology 1998, 246, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Koenig, R.; Barends, S.; Gultyaev, A.P.; Lesemann, D.E.; Vetten, H.J.; Loss, S.; Pleij, C.W. Nemesia ring necrosis virus: A new tymovirus with a genomic RNA having a histidylatable tobamovirus-like 3' end. J. Gen. Virol. 2005, 86, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Mans, R.M.; Pleij, C.W.; Bosch, L. tRNA-like structures. Structure, function and evolutionary significance. Eur. J. Biochem. 1991, 201, 303–324. [Google Scholar] [CrossRef] [PubMed]
- Van Belkum, A.; Bingkun, J.; Rietveld, K.; Pleij, C.W.; Bosch, L. Structural similarities among valine-accepting tRNA-like structures in tymoviral RNAs and elongator tRNAs. Biochem. Biophys. Res. Commun. 1987, 26, 1144–1151. [Google Scholar] [CrossRef]
- Joshi, S.; Chapeville, F.; Haenni, A. Turnip yellow mosaic virus RNA is aminoacylated in vivo in chinese cabbage leaves. EMBO J. 1982, 1, 935–938. [Google Scholar] [PubMed]
- Yot, P.; Pinck, M.; Haenni, A.; Duranton, H.M.; Chapeville, F. Valine-specific tRNA-like structure in turnip yellow mosaic virus RNA. Proc. Natl. Acad. Sci. USA 1970, 67, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Öberg, B.; Philipson, L. Binding of histidine to tobacco mosaic virus RNA. Biochem. Biophys. Res. Commun. 1972, 48, 927–932. [Google Scholar] [CrossRef]
- Sela, I. Tobacco enzyme-cleaved fragments of tmv-RNA specifically accepting serine and methionine. Virology 1972, 49, 90–94. [Google Scholar] [CrossRef]
- Hall, T.C.; Shih, D.S.; Kaesberg, P. Enzyme-mediated binding of tyrosine to brome-mosaic-virus ribonucleic acid. Biochem. J. 1972, 129, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Shih, D.S.; Kaesberg, P. Translation of brome mosaic viral ribonucleic acid in a cell-free system derived from wheat embryo. Proc. Natl. Acad. Sci. USA 1973, 70, 1799–1803. [Google Scholar] [CrossRef] [PubMed]
- Giegé, R.; Briand, J.P.; Mengual, R.; Ebel, J.P.; Hirth, L. Valylation of the two RNA components of turnip-yellow mosaic virus and specificity of the tRNA aminoacylation reaction. Eur. J. Biochem. 1978, 84, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.T.; Dreher, T.W. Turnip yellow mosaic virus RNAs with anticodon loop substitutions that result in decreased valylation fail to replicate efficiently. J. Virol. 1991, 65, 3060–3067. [Google Scholar] [PubMed]
- Colussi, T.M.; Costantino, D.A.; Hammond, J.A.; Ruehle, G.M.; Nix, J.C.; Kieft, J.S. The structural basis of transfer RNA mimicry and conformational plasticity by a viral RNA. Nature 2014, 511, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.A.; Rambo, R.P.; Filbin, M.E.; Kieft, J.S. Comparison and functional implications of the 3d architectures of viral tRNA-like structures. RNA 2009, 15, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Rietveld, K.; Pleij, C.W.; Bosch, L. Three-dimensional models of the tRNA-like 3′-termini of some plant viral RNAs. EMBO J. 1983, 2, 1079–1085. [Google Scholar] [PubMed]
- Bastin, M.; Hall, T.C. Interaction of elongation factor 1 with aminoacylated brome mosaic virus and tRNA’s. J. Virol. 1976, 20, 117–122. [Google Scholar] [PubMed]
- Dreher, T.W. Functions of the 3´-untranslated regions of positive strand RNA viral genomes. Annu. Rev. Phytopathol. 1999, 37, 151–174. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.L.; Ravel, J.M.; Haenni, A. Interaction of turnip yellow mosaic virus val-RNA with eukaryotic elongation factor ef-1alpha. Search for a function. EMBO J. 1986, 5, 1143–1148. [Google Scholar] [PubMed]
- Litvak, S.; Tarragó, A.; Tarragó-Litvak, L.; Allende, J.E. Elongation factor-viral genome interaction dependent on the aminoacylation of tymv and tmv RNAs. Nat. New Biol. 1973, 241, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Zeenko, V.V.; Ryabova, L.A.; Spirin, A.S.; Rothnie, H.M.; Hess, D.; Browning, K.S.; Hohn, T. Eukaryotic elongation factor 1a interacts with the upstream pseudoknot domain in the 3' untranslated region of tobacco mosaic virus RNA. J. Virol. 2002, 76, 5678–5691. [Google Scholar] [CrossRef] [PubMed]
- Pinck, M.; Yot, P.; Chapeville, F.; Duranton, H.M. Enzymatic binding of valine to the 3′ end of tymv-RNA. Nature 1970, 226, 954–956. [Google Scholar] [CrossRef] [PubMed]
- Gale, M., Jr.; Tan, S.L.; Katze, M.G. Translational control of viral gene expression in eukaryotes. Microbiol. Mol. Biol. Rev. 2000, 64, 239–280. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.J.; Hellen, C.U.; Pestova, T.V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell. Biol. 2010, 11, 113–127. [Google Scholar] [CrossRef] [PubMed]
- van Regenmortel, M.H.V.; Fauquet, C.M.; Bishop, D.H.L.; Carstens, E.B.; Estes, M.K.; Lemon, S.M.; Maniloff, J.; Mayo, M.A.; McGeoch, D.J.; Pringle, C.R.; et al. Virus taxonomy: Seventh Report of the International Commitee on Taxonomy of Viruses; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Barends, S.; Rudinger-Thirion, J.; Florentz, C.; Giege, R.; Pleij, C.W.A.; Kraal, B. tRNA-like structure regulates translation of brome mosaic virus RNA. J. Virol. 2004, 78, 4003–4010. [Google Scholar] [CrossRef] [PubMed]
- Gallie, D.R.; Kobayashi, M. The role of the 3′-untranslated region of non-polyadenylated plant viral mRNAs in regulating translational efficiency. Gene 1994, 142, 159–165. [Google Scholar] [CrossRef]
- Gallie, D.R.; Walbot, V. RNA pseudoknot domain of tobacco mosaic virus can functionally substitute for a poly(a) tail in plant and animal cells. Genes 1990, 4, 1149–1157. [Google Scholar] [CrossRef]
- Florentz, C.; Briand, J.P.; Giegé, R. Possible functional role of viral tRNA-like structures. FEBS 1984, 176, 295–300. [Google Scholar] [CrossRef]
- Matsuda, D.; Dreher, T.W. The tRNA-like structure of turnip yellow mosaic virus RNA is a 3′-translational enhancer. Virology 2004, 321, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Rietveld, K.; Linschooten, K.; Pleij, C.W.; Bosch, L. The three-dimensional folding of the tRNA-like structure of tobacco mosaic virus RNA. A new building principle applied twice. EMBO J. 1984, 3, 2613–2619. [Google Scholar] [PubMed]
- Sonenberg, N.; Hinnebusch, A.G. Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. Cell 2009, 136, 731–745. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, I.S.; Bai, X.C.; Murshudov, G.; Scheres, S.H.; Ramakrishnan, V. Initiation of translation by cricket paralysis virus ires requires its translocation in the ribosome. Cell 2014, 157, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Koh, C.S.; Brilot, A.F.; Grigorieff, N.; Korostelev, A.A. Taura syndrome virus ires initiates translation by binding its tRNA-mRNA-like structural element in the ribosomal decoding center. Proc. Natl. Acad. Sci. USA 2014, 111, 9139–9144. [Google Scholar] [CrossRef] [PubMed]
- Hertz, M.I.; Thompson, S.R. Mechanism of translation initiation by dicistroviridae igr iress. Virology 2011, 411, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Kieft, J.S. Viral ires RNA structures and ribosome interactions. Trends Biochem. Sci. 2008, 33, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Lyons, A.J.; Robertson, H.D. Detection of tRNA-like structure through rnase p cleavage of viral internal ribosome entry site RNAs near the aug start triplet. J. Biol. Chem. 2003, 278, 26844–26850. [Google Scholar] [CrossRef] [PubMed]
- Nadal, A.; Robertson, H.D.; Guardia, J.; Gomez, J. Characterization of the structure and variability of an internal region of hepatitis c virus RNA for m1 RNA guide sequence ribozyme targeting. J. Gen. Virol. 2003, 84, 1545–1548. [Google Scholar] [CrossRef] [PubMed]
- Piron, M.; Beguiristain, N.; Nadal, A.; Martinez-Salas, E.; Gomez, J. Characterizing the function and structural organization of the 5' tRNA-like motif within the hepatitis c virus quasispecies. Nucleic Acids Res. 2005, 33, 1487–1502. [Google Scholar] [CrossRef] [PubMed]
- Boehringer, D.; Thermann, R.; Ostareck-Lederer, A.; Lewis, J.D.; Stark, H. Structure of the hepatitis c virus ires bound to the human 80s ribosome: Remodeling of the hcv ires. Structure 2005, 13, 1695–1706. [Google Scholar] [CrossRef] [PubMed]
- Marquet, R.; Isel, C.; Ehresmann, C.; Ehresmann, B. tRNAs as primer of reverse transcriptases. Biochimie 1995, 77, 113–124. [Google Scholar] [CrossRef]
- Christensen, T. Hervs in neuropathogenesis. J. Neuroimmune Pharmacol. 2010, 5, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Seif, E.; Niu, M.; Kleiman, L. In virio shape analysis of tRNA(lys3) annealing to hiv-1 genomic RNA in wild type and protease-deficient virus. Retrovirology 2015, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Cen, S.; Niu, M.; Yang, Y.; Gorelick, R.J.; Kleiman, L. The interaction of apobec3g with human immunodeficiency virus type 1 nucleocapsid inhibits tRNA3lys annealing to viral RNA. J. Virol. 2007, 81, 11322–11331. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Liang, C.; Kleiman, L. Coordinate roles of gag and RNA helicase a in promoting the annealing of formula to hiv-1 RNA. J. Virol. 2011, 85, 1847–1860. [Google Scholar] [CrossRef] [PubMed]
- Seif, E.; Niu, M.; Kleiman, L. Annealing to sequences within the primer binding site loop promotes an hiv-1 RNA conformation favoring RNA dimerization and packaging. RNA 2013, 19, 1384–1393. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.B.; Yildiz, F.Z.; Lo, J.A.; Wang, B.; D’Souza, V.M. A structure-based mechanism for tRNA and retroviral RNA remodelling during primer annealing. Nature 2014, 515, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Laughrea, M.; Jette, L. A 19-nucleotide sequence upstream of the 5' major splice donor is part of the dimerization domain of human immunodeficiency virus 1 genomic RNA. Biochemistry 1994, 33, 13464–13474. [Google Scholar] [CrossRef] [PubMed]
- Skripkin, E.; Paillart, J.C.; Marquet, R.; Ehresmann, B.; Ehresmann, C. Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. Proc. Natl. Acad. Sci. USA 1994, 91, 4945–4949. [Google Scholar] [CrossRef] [PubMed]
- Huthoff, H.; Berkhout, B. Two alternating structures of the hiv-1 leader RNA. RNA 2001, 7, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Cen, S.; Javanbakht, H.; Kim, S.; Shiba, K.; Craven, R.; Rein, A.; Ewalt, K.; Schimmel, P.; Musier-Forsyth, K.; Kleiman, L. Retrovirus-specific packaging of aminoacyl-tRNA synthetases with cognate primer tRNAs. J. Virol. 2002, 76, 13111–13115. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Mak, J.; Cao, Q.; Li, Z.; Wainberg, M.A.; Kleiman, L. Incorporation of excess wild-type and mutant tRNA(3lys) into human immunodeficiency virus type 1. J. Virol. 1994, 68, 7676–7683. [Google Scholar] [PubMed]
- Gabor, J.; Cen, S.; Javanbakht, H.; Niu, M.; Kleiman, L. Effect of altering the tRNA(lys)(3) concentration in human immunodeficiency virus type 1 upon its annealing to viral RNA, gagpol incorporation, and viral infectivity. J. Virol. 2002, 76, 9096–9102. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.P.; Saadatmand, J.; Kleiman, L.; Musier-Forsyth, K. Molecular mimicry of human trnalys anti-codon domain by hiv-1 RNA genome facilitates tRNA primer annealing. RNA 2013, 19, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.P.; Cantara, W.A.; Olson, E.D.; Musier-Forsyth, K. Small-angle x-ray scattering-derived structure of the hiv-1 5' utr reveals 3d tRNA mimicry. Proc. Natl. Acad. Sci. USA 2014, 111, 3395–3400. [Google Scholar] [CrossRef] [PubMed]
- Waters, L.C.; Mullin, B.C. Transfer RNA into RNA tumor viruses. Prog. Nucleic Acid Res. Mol. Biol. 1977, 20, 131–160. [Google Scholar] [PubMed]
- Palmer, M.T.; Kirkman, R.; Kosloff, B.R.; Eipers, P.G.; Morrow, C.D. tRNA isoacceptor preference prior to retrovirus gag-pol junction links primer selection and viral translation. J. Virol. 2007, 81, 4397–4404. [Google Scholar] [CrossRef] [PubMed]
- Pavon-Eternod, M.; Wei, M.; Pan, T.; Kleiman, L. Profiling non-lysyl tRNAs in hiv-1. RNA 2010, 16, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Gojobori, T.; Ikemura, T. Codon usage tabulated from international DNA sequence databases: Status for the year 2000. Nucleic Acids Res. 2000, 28, 292. [Google Scholar] [CrossRef] [PubMed]
- Cullen, B.R. Regulation of hiv-1 gene expression. FASEB J. 1991, 5, 2361–2368. [Google Scholar] [PubMed]
- van Weringh, A.; Ragonnet-Cronin, M.; Pranckeviciene, E.; Pavon-Eternod, M.; Kleiman, L.; Xia, X. Hiv-1 modulates the tRNA pool to improve translation efficiency. Mol. Biol. Evol. 2011, 28, 1827–1834. [Google Scholar] [CrossRef] [PubMed]
- Czerwoniec, A.; Dunin-Horkawicz, S.; Purta, E.; Kaminska, K.H.; Kasprzak, J.M.; Bujnicki, J.M.; Grosjean, H.; Rother, K. Modomics: A database of RNA modification pathways. 2008 update. Nucleic Acids Res. 2009, 37, D118–D121. [Google Scholar] [CrossRef] [PubMed]
- Dunin-Horkawicz, S.; Czerwoniec, A.; Gajda, M.J.; Feder, M.; Grosjean, H.; Bujnicki, J.M. Modomics: A database of RNA modification pathways. Nucleic Acids Res. 2006, 34, D145–D149. [Google Scholar] [CrossRef] [PubMed]
- Machnicka, M.A.; Milanowska, K.; Osman Oglou, O.; Purta, E.; Kurkowska, M.; Olchowik, A.; Januszewski, W.; Kalinowski, S.; Dunin-Horkawicz, S.; Rother, K.M.; et al. Modomics: A database of RNA modification pathways—2013 update. Nucleic Acids Res. 2013, 41, D262–D267. [Google Scholar] [CrossRef] [PubMed]
- Phizicky, E.M.; Hopper, A.K. tRNA biology charges to the front. Genes Dev. 2010, 24, 1832–1860. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, M.; Pollex, T.; Hanna, K.; Tuorto, F.; Meusburger, M.; Helm, M.; Lyko, F. RNA methylation by dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 2010, 24, 1590–1595. [Google Scholar] [CrossRef] [PubMed]
- Durdevic, Z.; Schaefer, M. tRNA modifications: Necessary for correct tRNA-derived fragments during the recovery from stress? Bioessays 2013, 35, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.T.; Dyavaiah, M.; DeMott, M.S.; Taghizadeh, K.; Dedon, P.C.; Begley, T.J. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet. 2010, 6, e1001247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, F.V.t.; Ramakrishnan, V.; Malkiewicz, A.; Agris, P.F. The role of modifications in codon discrimination by tRNA(lys)uuu. Nat. Struct. Mol. Biol. 2004, 11, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Phelps, S.S.; Malkiewicz, A.; Agris, P.F.; Joseph, S. Modified nucleotides in tRNA(lys) and tRNA(val) are important for translocation. J. Mol. Biol. 2004, 338, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Yarian, C.; Townsend, H.; Czestkowski, W.; Sochacka, E.; Malkiewicz, A.J.; Guenther, R.; Miskiewicz, A.; Agris, P.F. Accurate translation of the genetic code depends on tRNA modified nucleosides. J. Biol. Chem. 2002, 277, 16391–16395. [Google Scholar] [CrossRef] [PubMed]
- Laxman, S.; Sutter, B.M.; Wu, X.; Kumar, S.; Guo, X.; Trudgian, D.C.; Mirzaei, H.; Tu, B.P. Sulfur amino acids regulate translational capacity and metabolic homeostasis through modulation of tRNA thiolation. Cell 2013, 154, 416–429. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, K.; Pedrioli, P.G. Protein degradation and dynamic tRNA thiolation fine-tune translation at elevated temperatures. Nucleic Acids Res. 2015, 43, 4701–4712. [Google Scholar] [CrossRef] [PubMed]
- Maynard, N.D.; Macklin, D.N.; Kirkegaard, K.; Covert, M.W. Competing pathways control host resistance to virus via tRNA modification and programmed ribosomal frameshifting. Mol. Syst. Biol. 2012, 8, 567. [Google Scholar] [CrossRef] [PubMed]
- Madore, E.; Florentz, C.; Giege, R.; Sekine, S.; Yokoyama, S.; Lapointe, J. Effect of modified nucleotides on escherichia coli trnaglu structure and on its aminoacylation by glutamyl-tRNA synthetase. Predominant and distinct roles of the mnm5 and s2 modifications of u34. Eur. J. Biochem. 1999, 266, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Seno, T.; Agris, P.F.; Soll, D. Involvement of the anticodon region of Escherichia coli trnagln and trnaglu in the specific interaction with cognate aminoacyl-tRNA synthetase. Alteration of the 2-thiouridine derivatives located in the anticodon of the tRNAs by brcn or sulfur deprivation. Biochim. Biophys. Acta 1974, 349, 328–338. [Google Scholar] [CrossRef]
- Girstmair, H.; Saffert, P.; Rode, S.; Czech, A.; Holland, G.; Bannert, N.; Ignatova, Z. Depletion of cognate charged transfer RNA causes translational frameshifting within the expanded cag stretch in huntingtin. Cell Rep. 2013, 3, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Agris, P.F.; Vendeix, F.A.; Graham, W.D. tRNA’s wobble decoding of the genome: 40 years of modification. J. Mol. Biol. 2007, 366. [Google Scholar] [CrossRef] [PubMed]
- Stuart, J.W.; Gdaniec, Z.; Guenther, R.; Marszalek, M.; Sochacka, E.; Malkiewicz, A.; Agris, P.F. Functional anticodon architecture of human trnalys3 includes disruption of intraloop hydrogen bonding by the naturally occurring amino acid modification, t6a. Biochemistry 2000, 39, 13396–13404. [Google Scholar] [CrossRef] [PubMed]
- Graham, W.D.; Barley-Maloney, L.; Stark, C.J.; Kaur, A.; Stolarchuk, C.; Sproat, B.; Leszczynska, G.; Malkiewicz, A.; Safwat, N.; Mucha, P.; et al. Functional recognition of the modified human trnalys3(uuu) anticodon domain by hiv’s nucleocapsid protein and a peptide mimic. J. Mol. Biol. 2011, 410, 698–715. [Google Scholar] [CrossRef] [PubMed]
- Spears, J.L.; Xiao, X.; Hall, C.K.; Agris, P.F. Amino acid signature enables proteins to recognize modified tRNA. Biochemistry 2014, 53, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Hall, C.K.; Agris, P.F. The design of a peptide sequence to inhibit hiv replication: A search algorithm combining monte carlo and self-consistent mean field techniques. J. Biomol. Struct. Dyn. 2014, 32, 1523–1536. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albers, S.; Czech, A. Exploiting tRNAs to Boost Virulence. Life 2016, 6, 4. https://doi.org/10.3390/life6010004
Albers S, Czech A. Exploiting tRNAs to Boost Virulence. Life. 2016; 6(1):4. https://doi.org/10.3390/life6010004
Chicago/Turabian StyleAlbers, Suki, and Andreas Czech. 2016. "Exploiting tRNAs to Boost Virulence" Life 6, no. 1: 4. https://doi.org/10.3390/life6010004
APA StyleAlbers, S., & Czech, A. (2016). Exploiting tRNAs to Boost Virulence. Life, 6(1), 4. https://doi.org/10.3390/life6010004