Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth
Abstract
:1. Introduction
2. Geochemical and Historical Contexts
3. Classification of Prebiotic Amphiphilic Material as “Incomplete” and “Complete” Lipids
3.1. Abiotic Retrosynthetic Analysis
3.2. Prebiotic Formation of ILs
3.3. Prebiotic Formation of CLs and APs: Role of the Phosphorylating Agent
4. Availability and Role of Phosphorylating Agents in the Formation of Phosphorous Containing Amphiphiles
4.1. Condensed Phosphates
4.2. Reduced Oxidation State Phosphorous Compounds
5. Cyanamide as an Universal Condensing Agent
5.1. Geochemistry of Cyanamide (Hypothesis)
>2000 °C | CaO + 3 C ⥂ CaC2 + CO | (3) |
≈1000 °C | CaC2 + N2⥂ CaCN2 + C | (4) |
≤100 °C | CaCN2 + H2O + CO2⥂ CaCO3 + H2N–CN | (5) |
Overall: | CaO + 2 C + N2 + H2CO3 → CaCO3 + CO + H2N–CN | (6) |
5.2. Reactivity of Cyanamide and Its Homologues
5.3. Kinetic Stability of Cyanamide and Dehydration Power of Urea
5.4. Geochemistry of Urea and Phosphate (Hypothesis)
6. Conclusion and Perspectives
6.1. Conclusions
6.2. Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kennedy, E.P. The biological synthesis of phospholipids. Can. J. Biochem. Physiol. 1956, 34, 334–348. [Google Scholar] [CrossRef] [PubMed]
- Walde, P. Surfactant assemblies and their various possible roles for the origin(s) of life. Orig. Life Evol. Biosph. 2006, 36, 109–150. [Google Scholar] [CrossRef] [PubMed]
- Edidin, M. Lipids on the frontier: A century of cell membrane bilayers. Nat. Rev. Mol. Cell Biol. 2003, 4, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Oró, J.; Lazcano, A. A minimal living system and the origin of a protocell. Adv. Space Res. 1984, 12, 167–176. [Google Scholar] [CrossRef]
- Deamer, D.W. Boundary structures are formed by organic components of the Murchinson carbonaceous chondrite. Nature 1985, 31, 317–319. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y.; Alexandre, M.R.; Lee, T.; Rose-Petruck, C.; Fuller, M.; Pizzarello, S. Molecular and compound-specific isotopic characterization of monocarboxylic acids in carbonaceous meteorites. Geochim. Cosmochim. Acta 2005, 69, 1073–1084. [Google Scholar] [CrossRef]
- Schmitt-Kopplin, P.; Gabelicab, Z.; Gougeon, R.D.; Fekete, A.; Kanawati, B.; Harir, M.; Gebefuegi, I.; Eckel, G.; Hertkorn, N. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. USA 2010, 107, 2763–2768. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, D.C.; Deamer, D.W. Lipids as universal biomarkers of extraterrestrial Life. Astrobiology 2014, 14, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Lombard, J.; López García, P.; Moreira, D. The early evolution of lipid membranes and the three domains of Life. Nat. Rev. Microbiol. 2012, 10, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Deamer, D.W. Role of amphiphilic compounds in the evolution of membrane structure on early Earth. Orig. Life 1986, 17, 3–25. [Google Scholar] [CrossRef]
- Oró, J. Chemical synthesis of lipids and the origin of life. J. Biol. Phys. 1994, 20, 135–147. [Google Scholar] [CrossRef]
- Segré, D.; Ben-Eli, D.; Deamer, D.W.; Lancet, D. The lipid world. Orig. Life Evol. Biosph. 2001, 31, 119–145. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.L. Production of amino acids under possible primitive Earth conditions. Science 1953, 117, 528–529. [Google Scholar] [CrossRef] [PubMed]
- Eschenmoser, A. The search for the chemistry of life’s origin. Tetrahedron 2007, 63, 12821–12844. [Google Scholar] [CrossRef]
- Knoll, A.; Barghoorn, E.S. Archean microfossils showing cell division from the Swaziland system of South Africa. Science 1977, 198, 396–398. [Google Scholar] [CrossRef] [PubMed]
- David Wacey, D.; Kilburn, M.R.; Saunders, M.; Cliff, J.; Brasier, M.D. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat. Geosci. 2011, 4, 698–702. [Google Scholar] [CrossRef]
- Chang, S. Prebiotic organic matter: Possible pathways for synthesis in a geological context. Phys. Earth Planet. Inter. 1982, 29, 261–280. [Google Scholar] [CrossRef]
- Oró, J. Chemical evolution and the origin of life. Adv. Space Res. 1983, 3, 77–94. [Google Scholar] [CrossRef]
- Lazcano, A. Prebiotic evolution and the origin of life. Treballs Societat Catalana Biol. 1986, 39, 73–103. [Google Scholar]
- Pace, N.R. Origin of life—Facing up to the physical setting. Cell 1991, 65, 531–533. [Google Scholar] [CrossRef]
- Eschenmoser, A.; Loewenthal, E. Chemistry of potentially prebiological natural products. Chem. Soc. Rev. 1992, 21, 1–16. [Google Scholar] [CrossRef]
- Orgel, L.E. The Origin of Life—A review of facts and speculation. Trends Biochem. Sci. 1998, 23, 491–495. [Google Scholar] [CrossRef]
- Bada, J.L. How life began on Earth: A status report. Earth Planet. Sci. Lett. 2004, 226, 1–15. [Google Scholar] [CrossRef]
- Snooks, G.D. The origin of life on Earth: A new general dynamic theory. Adv. Space Res. 2005, 36, 226–234. [Google Scholar] [CrossRef]
- Hunding, A.; Kepes, F.; Lancet, D.; Minsky, A.; Norris, V.; Raine, D.; Sriram, K.; Root-Bernstein, R. Compositional complementarity and prebiotic ecology in the origin of life. BioEssays 2006, 28, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, H. Is the transition from chemistry to biology a mystery? J. Syst. Chem. 2010, 1. [Google Scholar] [CrossRef]
- Pross, A. Toward general theory of evolution: Extending Darvinian theory to inanimate matter. J. Syst. Chem. 2011, 2. [Google Scholar] [CrossRef]
- Pross, A. Physical organic chemistry and the origin of life problem: A personal perspective. Isr. J. Chem. 2015, 56, 83–88. [Google Scholar] [CrossRef]
- Pascal, R.; Pross, A. Stability and its manifestation in the chemical and biological world. Chem. Commun. 2015, 51, 16160–16165. [Google Scholar] [CrossRef] [PubMed]
- Luisi, P.L. Chemistry constraints on the origin of life. Isr. J. Chem. 2015, 55, 905–918. [Google Scholar] [CrossRef]
- Strazewski, P. Omne vivum ex vivo omne? How to feed an inanimate evolvable chemical system so as to let it self-evolve into increased complexity and life-like behaviour. Isr. J. Chem. 2015, 55, 851–864. [Google Scholar] [CrossRef]
- Kaiser, R.I.; Maity, S.; Jones, B.M. Synthesis of prebiotic glycerol in interstellar ices. Angew. Chem. Int. Ed. 2015, 54, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Damer, B.; Deamer, D.W. Coupled phases and combinatorial selection in fluctuating hydrothermal pools: A scenario to guide experimental approaches to the origin of cellular life. Life 2015, 5, 872–887. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.L.; Schlesinger, G. The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds. Adv. Space Res. 1983, 3, 47–53. [Google Scholar] [CrossRef]
- Cleaves, H.J., II. Prebiotic chemistry, geochemical context and reaction screening. Life 2013, 3, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Lazcano, A.; Oró, J.; Miller, S.L. Primitive Earth environments: Organic synthesis and the origin and early evolution of life. Precambrian Res. 1983, 20, 259–282. [Google Scholar] [CrossRef]
- Patel, B.H.; Percivalle, C.; Ritson, D.J.; Duffy, C.D.; Sutherland, J.D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 2015, 7, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, J.D. The origin of Life—Out of the blue. Angew. Chem. Int. Ed. 2015, 54, 2–20. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.E.; Pilpel, N. Oxidation of n-alkanes photosinsetized by 1-naphthol. J. Chem. Soc. Faraday I 1973, 55, 1729–1736. [Google Scholar] [CrossRef]
- Simionescu, C.I.; Dénes, F.; Totolin, M. The synthesis of lipid like structures in simulated primeval Earth conditions. BioSystems 1981, 13, 149–156. [Google Scholar] [CrossRef]
- McCollom, T.M.; Ritter, G.; Simoneit, B.R.T. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Orig. Life Evol. Biosph. 1998, 29, 153–166. [Google Scholar] [CrossRef]
- McCollom, T.M.; Simoneit, B.R.T. Abiotic formation of hydrocarbons and oxygenated compounds during thermal decomposition of iron oxalate. Orig. Life Evol. Biosph. 1999, 29, 167–186. [Google Scholar] [CrossRef] [PubMed]
- Rabeau, A. The role of hydrothermal synthesis in preparative chemistry. Angew. Chem. Int. Ed. 1985, 24, 1026–1040. [Google Scholar] [CrossRef]
- Simoneit, B.R.T. Prebiotic organic synthesis under hydrothermal conditions: An overview. Adv. Space Res. 2003, 33, 88–94. [Google Scholar] [CrossRef]
- Eichberg, J.; Shervood, E.; Epps, D.E.; Oró, J. Cyanamide mediated synthesis under plausible primitive Earth conditions IV. The Synthesis of acylglycerols. J. Mol. Evol. 1977, 10, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Rushdi, A.; Simoneit, B.R.T. Abiotic condensation synthesis of glyceride lipids and wax esters under simulated hydrothermal conditions. Orig. Life Evol. Biosph. 2006, 36, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Simoneit, B.R.T.; Rushdi, A.I.; Deamer, D.W. Abiotic formation of acylglycerols under simulated hydrothermal conditions and self-assembly properties of such lipid products. Adv. Space Res. 2007, 40, 1649–1656. [Google Scholar] [CrossRef]
- Hargreaves, W.R.; Mulvhill, S.J.; Deamer, D.W. Synthesis of phospholipids and membranes in prebiotic conditions. Nature 1977, 266, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Epps, D.E.; Sherwood, E.; Eichberg, J.; Oró, J. Cyanamide mediated synthesis under plausible primitive Earth conditions, V. The synthesis of phosphatidic acid. J. Mol. Evol. 1978, 11, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Epps, D.E.; Nooner, D.W.; Eichberg, J.; Sherwood, E.; Oró, J. Cyanamide mediated synthesis under plausible primitive Earth conditions VI. The synthesis of glycerol and glycerol phosphate. J. Mol. Evol. 1979, 12, 235–241. [Google Scholar] [CrossRef]
- Rao, M.; Eichberg, J.; Oró, J. Synthesis of phosphatidylcholine under possible primitive Earth conditions. J. Mol. Evol. 1982, 18, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Gull, M.; Zhou, M.; Fernandez, F.M.; Pasek, M.A. Prebiotic phosphate ester syntheses in a deep eutectic solvent. J. Mol. Evol. 2014, 78, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Gull, M.; Tian, G.; Wang, Y.; He, C.; Shi, Z.; Yuan, H.; Feng, S. Resolving the enigma of prebiotic C-O-P bond formation: Prebiotic hydrothermal synthesis of important biological phosphate esters. Heteroatom Chem. 2010, 21, 161–167. [Google Scholar] [CrossRef]
- Hargreaves, W.R.; Deamer, D.W. Liposomes from ionic, single chain amphiphiles. Biochemistry 1978, 17, 3759–3568. [Google Scholar] [CrossRef] [PubMed]
- Albertsen, A.N.; Duffy, C.D.; Sutherland, J.D.; Monnard, P.A. Self-assembly of phosphate amphiphiles in mixtures of prebiotically plausible surfactants. Astrobiology 2014, 14, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Powner, M.W.; Sutherland, J.D. Prebiotic chemistry: A new modus operandi. Philos. Trans. R. Soc. B 2011, 366, 2870–2877. [Google Scholar] [CrossRef] [PubMed]
- Conde-Frieboes, K.; Blöchliger, E. Synthesis of lipids on the micelle-water interface using inorganic phosphate and alkene oxide. Biosystems 2001, 61, 109–114. [Google Scholar] [CrossRef]
- Morowitz, H.J.; Heinz, B.; Deamer, D.W. The chemical logic of a minimum protocell. Orig. Life Evol. Biosph. 1988, 18, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Lohrmann, R.; Orgel, L.E. Prebiotic activation processes. Nature 1973, 244, 418–420. [Google Scholar] [CrossRef] [PubMed]
- Yagamata, Y.; Watanabe, H.; Saitoh, M.; Namba, T. Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 1991, 352, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Benitez-Nelson, C.R. The biogeochemical cycling of phosphorus in marine systems. Earth-Sci. Rev. 2000, 51, 109–135. [Google Scholar] [CrossRef]
- Schwartz, A.W. Phosphorus in prebiotic chemistry. Philos. Trans. R. Soc. B 2006, 361, 1743–1749. [Google Scholar] [CrossRef] [PubMed]
- Kee, T.P.; Bryant, D.E.; Herschy, B.; Marriott, K.E.R.; Cosgrove, N.E.; Pasek, M.A.; Atlas, D.Z.; Cousins, C.R. Phosphate activation via reduced oxidation state phosphorous (P). Mild routes to condensed-P energy currency molecules. Life 2015, 3, 386–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasek, M.A.; Lauretta, D.S. Aqueous corrosion of phosphide minerals from iron meteorites: A highly reactive source of prebiotic phosphorus on the surface of the early Earth. Astrobiology 2005, 5, 515–535. [Google Scholar] [CrossRef] [PubMed]
- Pasek, M.A.; Dworkin, J.P.; Lauretta, D.S. A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim. Cosmochim. Ac. 2007, 71, 1721–1736. [Google Scholar] [CrossRef]
- Pasek, M.A.; Kee, T.P.; Bryant, D.E.; Pavlov, A.A.; Lunine, J.I. Production of potentially prebiotic condensed phosphates by phosphorous redox chemistry. Angew. Chem. Int. Ed. 2008, 47, 7918–7920. [Google Scholar] [CrossRef] [PubMed]
- Pasek, M.A.; Harnmrjier, J.P.; Buick, R.; Gull, M.; Atlas, Z. Evidence for reactive reduced phosphorous species in early Archean ocean. Proc. Natl. Acad. Sci. USA 2013, 110, 10089–10094. [Google Scholar] [CrossRef] [PubMed]
- Pasek, M.; Hershy, B.; Kee, T.P. Phosphorous: A case for mineral-organic reactions in prebiotic chemistry. Orig. Life Evol. Biosph. 2015, 45, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Gull, M. Prebiotic phosphorylation reactions on the early Earth. Challenges 2014, 5, 193–212. [Google Scholar] [CrossRef]
- Hulshof, J.; Ponnamperuma, C. Prebiotic condensation reactions in an aqueous medium: A review on condensing agents. Orig. Life 1976, 7, 197–224. [Google Scholar] [CrossRef] [PubMed]
- Steinman, G.; Lemmon, R.M.; Calvin, M. Cyanamide: A possible key compound in chemical evolution. Proc. Natl. Acad. Sci. USA 1964, 52, 27–30. [Google Scholar] [PubMed]
- Schimpl, A.; Lemmon, R.M.; Calvin, M. Cyanamide formation under primitive Earth conditions. Science 1968, 147, 149–150. [Google Scholar] [CrossRef] [PubMed]
- Eschenmoser, A. The TNA-family of nucleic acid systems: Properties and prospects. Orig. Life Evol. Biosph. 2004, 34, 277–306. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, M.; Fujita, Y.; McLean, A.; Iwase, M. A thermodynamic study on CaCN2. High Temp. Mater. Processes 2000, 19, 275–279. [Google Scholar] [CrossRef]
- Omura, A.; Nonaka, T.; Fuchigami, T.; Ichikawa, E.; Odo, E. Cyanamide derivatives. Part 106. The preparation of 15N-labeled cyanoguanidines. Bull. Chem. Soc. Jpn. 1977, 40, 914–916. [Google Scholar] [CrossRef]
- Bann, B.; Miller, S.A. Melamines and derivatives of melamine. Chem. Rev. 1958, 58, 131–172. [Google Scholar] [CrossRef]
- Cafferty, B.J.; Fialho, D.M.; Khanam, J.; Krishnamurthy, R.; Hud, N.V. Spontaneous formation and base pairing of plausible prebiotic nucleotides in water. Nat. Commun. 2016. [Google Scholar] [CrossRef]
- Hud, N.V.; Cafferty, B.J.; Krishnamurthy, R.; Williams, L.D. The origin of RNA and “my grandfather’s axe”. Chem. Biol. 2013, 20, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Danger, G.; Michaut, A.; Bucchi, M.; Boiteau, L.; Canal, J.; Plasson, R.; Pascal, R. 5(4H)-Oxazolones as intermediates in the carbodiimide- and cyanamide-promoted peptide activations in aqueous solution. Angew. Chem. Int. Ed. 2013, 52, 611–614. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.T.; Zhou, M.; Burton, A.S.; Glavin, D.P.; Dworkin, J.P.; Krishnamurthy, R.; Fernández, F.M.; Bada, J.L. A plausible simultaneous synthesis of amino acids and simple peptides on the primordial earth. Angew. Chem. Int. Ed. 2014, 53, 8132–8136. [Google Scholar] [CrossRef]
- Jauker, M.; Griesser, H.; Richert, C. Spontaneous formation of RNA strands, peptidyl RNA and cofactors. Angew. Chem. Int. Ed. 2015, 54, 14564–14569. [Google Scholar] [CrossRef] [PubMed]
- Lohrmann, R.; Orgel, L.E. Urea-inorganic phosphate mixtures as prebiotic phosphorylating agents. Science 1971, 171, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Hill, S.V.; Williams, A.; Longridge, J. Acid-catalysed hydrolysis of cyanamide: Estimates of carbodiimide basicity and tautomeric equilibrium constant between carbodiimide and cyanamide. J. Chem. Soc. Perkin. Trans. II 1984, 1009–1013. [Google Scholar] [CrossRef]
- Tordini, F.; Bencini, A.; Bruschi, M.; De Gioia, L.; Zampella, G.; Fantucci, P. Theoretical study of hydration of cyanamide and carbodiimide. J. Phys. Chem. A. 2003, 107, 1188–1196. [Google Scholar] [CrossRef]
- Soloway, S.; Lipschitz, A. Basicity of some nitrilated amines. J. Org. Chem. 1958, 23, 613–615. [Google Scholar] [CrossRef]
- Förstel, M.; Maksyutenko, P.; Jones, B.M.; Sun, B.-J.; Chang, A.H.H.; Kaiser, R.I. Synthesis of urea in cometary model ices and implications for Comet 67P/Churyumov-Gerasimenko. Chem. Commun. 2016, 52, 741–744. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, K.; Okura, Y.; Matsuo, M.; Toyota, T.; Suzuki, K.; Sugawara, T. A recursive vesicle-based model protocell with a primitive model cell cycle. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, G.; Fuji, S.; Sunami, T.; Yomo, T. Sustainable proliferation of liposomes compatible with inner RNA replication. Proc. Natl. Acad. Sci. USA 2016, 113, 590–595. [Google Scholar] [CrossRef] [PubMed]
Complete Lipids (CLs) | ||
---|---|---|
R3 in Figure 1 | Acronym | Head Name |
H or neg. charge | PA | phosphatidic acid/phosphatidylate |
| PE | phosphoethanolamine |
| PC | phosphatidyl choline |
| PG | phosphatidyl glycerol (glycerophosphate) |
| PGP | phosphatidyl glycerophosphate |
| cPGP | cyclic phosphatidyl glycerophosphate |
Any sugars | P(sugar) | phosphatidyl glycosides |
Entry | Lipid Source | Condensing Agent/Promoter/Catalyst | Conditions | Products Types and Yields (%) | Analysis | Ref. |
---|---|---|---|---|---|---|
1 | C10-C16 n-alkanes | 1-naphthol | photochemical oxidation, 4 h, r.t | C10-C16 n-alcohols (90%) | IR; NMR and GC-MS | [39] |
2 | CH4/NH3/H2O | - | condensation 24 h, 60 °C | keto groups –CH2-C=O– (10%–13%) | [40] | |
3 | 13C oxalic or formic acid | - | Fischer-Tropsch type, 2–3 days, 175 °C | C2-C35 n-alcohols, n-aldehydes, n-ketones, and n-acids | GC-MS | [41] |
4 | Siderite (FeC2O4.2H2O) | - | Fischer-Tropsch type, 3–4 days, 330 °C | C19-C23 n-alkanes containing oxygen (“CnH2n-6O“) | [42] | |
5 | 14C-glycerol, ammonium palmitate | cyanamide/imidazole | condensation, 16 h, 60–100 °C | mono-; 1,2-di-; 1,3-tri and tri palmitoyl glycerol (5%–57%) | TLC; enzymatic reactions | [45] |
6 | C7-C11 n-alkanoic acids | oxalic acid | simulated hydrothermal conditions, 72 h, 150–300 °C | monoacyl-; 1,2-di- and 1,3-diacylglycerols isomers (5.9%–59.9%) | GC-MS | [46,47] |
Entry | Lipid/Alcohol Source and Phosphate/Phosphite Source (a–d) | Condensing Agent/Catalyst | Conditions | Products Types and Yields (%) | Analysis | Ref. |
---|---|---|---|---|---|---|
7 | 14C-glycerol, C12 fatty acids or aldehydes (a) | dicyanamide or silica/kaolinite; | condensation, 12 h, 65 °C | PA, PG, PGP (0.015%–0.2%) | TLC | [48] |
8 | 14C-sn-glycero-1-phosphate, ammonium palmitate | cyanamide/imidazole | condensation, 8 h, 60–100 °C | MPGP, DPGP and cMPGP (45% of total conversion) | TLC, enzymatic characterization | [49] |
9 | dl-glyceraldehyde (b) | cyanamide/urea | reduction, 16 h, 85 °C | glycerol-phosphate (30%) | GC-MS | [50] |
10 | choline chloride (a) | cyanamide/acid traces | condensation, 7 h, 25–100 °C | PC (15%, at 80 ° C) | TLC, enzymatic characterization | [51] |
11 | glycerol, ethanolamine (a, c) | choline chloride:urea 2:1 | condensation, 7 days, 65 °C | phosphate/phosphite esters (90%–98%) | UPLC-MS-MS 31P-NMR | [52] |
12 | glycerol, ethanolamine (d) | zeolite, andradite, quarz, hematite, perlite, kaolinite | 3–4 days, 100–200 °C | phosphate esters (0.02%–0.98%) | LC-MS | [53] |
13 | C10 n-alcohols (b) | urea | condensation, 48 h, 100 °C | corresponding C10 monoalkyl phosphate (AP) and dialkyl pyrophosphate (AP)2 | MS | [55,56] |
14 | dodecene (dodecyl epoxide), dodecyl phosphate | - | epoxide coupling, 24 h, r.t. | corresponding C12 dialkyl phosphate A2P | NMR | [57] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiore, M.; Strazewski, P. Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth. Life 2016, 6, 17. https://doi.org/10.3390/life6020017
Fiore M, Strazewski P. Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth. Life. 2016; 6(2):17. https://doi.org/10.3390/life6020017
Chicago/Turabian StyleFiore, Michele, and Peter Strazewski. 2016. "Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth" Life 6, no. 2: 17. https://doi.org/10.3390/life6020017
APA StyleFiore, M., & Strazewski, P. (2016). Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth. Life, 6(2), 17. https://doi.org/10.3390/life6020017