What Does “the RNA World” Mean to “the Origin of Life”?
Abstract
:1. What Does “the Origin of Life” Mean?
2. What Does “the RNA World” Mean?
2.1. About the Idea of the RNA World
2.2. The RNA World as a Scenario in the Very Beginning of Life
3. What Does “the RNA World” Mean to “the Origin of Life”?
3.1. Did the RNA World Start at the Level of Molecule or Cell-Like Vesicle?
3.2. From Molecular Form to Cellular Form
3.3. From Pseudo-Protocell to True-Protocell, then to Unitary-Protocell
3.4. About the Origin of Darwinian Evolution
3.5. About the Arising of Self-Sustainment
3.6. Comments
Acknowledgments
Conflicts of Interest
References
- Deamer, D. Special Collection of Essays: What Is Life?—Introduction. Astrobiology 2010, 10, 1001–1002. [Google Scholar] [CrossRef] [PubMed]
- Trifonov, E.N. Vocabulary of Definitions of Life Suggests a Definition. J. Biomol. Struct. Dyn. 2011, 29, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.T. The Essence of Life. Biol. Direct 2016, 11, 49. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, R. A Replicator Was Not Involved in the Origin of Life. LUBMB Life 2000, 49, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Pross, A. Causation and the Origin of Life. Metabolism or Replication First? Orig. Life Evol. Biosph. 2004, 34, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Anet, F.A. The Place of Metabolism in the Origin of Life. Curr. Opin. Chem. Biol. 2004, 8, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Moore, A. The Mark of Metabolism: Another Nail in the Coffin of Nucleic-Acids-First in the Origin of Life? Bioessays 2014, 36, 221–222. [Google Scholar] [CrossRef] [PubMed]
- Segre, D.; Lancet, D.; Kedem, O.; Pilpel, Y. Graded Autocatalysis Replication Domain (GARD): Kinetic Analysis of Self-Replication in Mutually Catalytic Sets. Orig. Life Evol. Biosph. 1998, 28, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, S. Molecular Autonomous Agents. Philos Trans A Math Phys Eng Sci. 2003, 361, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Bada, J.L.; Lazcano, A. Origin of Life—Some Like It Hot, but Not the First Biomolecules. Science 2002, 296, 1982–1983. [Google Scholar] [CrossRef] [PubMed]
- Woese, C. The Genetic Code; Harper & Row: New York, NY, USA, 1967; pp. 179–195. [Google Scholar]
- Crick, F.H.C. The Origin of the Genetic Code. J. Mol. Biol. 1968, 38, 367–379. [Google Scholar] [CrossRef]
- Orgel, L.E. Evolution of the Genetic Apparatus. J. Mol. Biol. 1968, 38, 381–393. [Google Scholar] [CrossRef]
- Kruger, K.; Grabowski, P.E.; Zaug, A.J.; Sands, J.; Gottschling, D.E.; Cech, T.R. Self-Splicing RNA: Autoexcision and Autocyclization of Ribosomal RNA Intervening Sequence of Tetrahymena. Cell 1982, 31, 147–157. [Google Scholar] [CrossRef]
- Guerrier-Takada, C.; Gardiner, K.; Marsh, T.; Pace, N.; Altman, S. The RNA Moiety of Ribonuclease P Is the Catalytic Subunit of the Enzyme. Cell 1983, 35, 849–857. [Google Scholar] [CrossRef]
- Gilbert, W. The RNA World. Nature 1986, 319, 618. [Google Scholar] [CrossRef]
- Joyce, G.F. The Antiquity of RNA-Based Evolution. Nature 2002, 418, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, H.S. The RNA World Hypothesis: The Worst Theory of the Early Evolution of Life (Except for All the Others). Biol. Direct 2012, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Higgs, P.G.; Lehman, N. The RNA World: Molecular Cooperation at the Origins of Life. Nat. Rev. Genet. 2015, 16, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Nissen, P.; Hansen, J.; Ban, N.; Moore, P.B.; Steitz, T.A. The Structural Basis of Ribosome Activity in Peptide Bond Synthesis. Science 2000, 289, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Yusupov, M.M.; Yusupova, G.Z.; Baucom, A.; Lieberman, K.; Earnest, T.N.; Cate, J.H. D.; Noller, H.F. Crystal Structure of the Ribosome at 5.5 Angstrom Resolution. Science 2001, 292, 883–896. [Google Scholar] [CrossRef] [PubMed]
- Joyce, G.F.; Orgel, L.E. Prospects for Understanding the Origin of the RNA World. In The RNA World; Gesteland, R.F., Cech, T.R., Atkins, J.F., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1999; Chapter 2; pp. 49–77. [Google Scholar]
- Powner, M.W.; Gerland, B.; Sutherland, J.D. Synthesis of Activated Pyrimidine Ribonucleotides in Prebiotically Plausible Conditions. Nature 2009, 459, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Joyce, G.F.; Orgel, L.E. Progress toward Understanding the Origin of the RNA World. In The RNA World; Gesteland, R.F., Cech, T.R., Atkins, J.F., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2006; Chapter 2; pp. 23–56. [Google Scholar]
- Powner, M.W.; Sutherland, J.D.; Szostak, J.W. Chemoselective Multicomponent One-Pot Assembly of Purine Precursors in Water. J. Am. Chem. Soc. 2010, 132, 16677–16688. [Google Scholar] [CrossRef] [PubMed]
- Powner, M.W.; Sutherland, J.D.; Szostak, J.W. The Origin of Nucleotides. Synlett 2011, 14, 1956–1964. [Google Scholar] [CrossRef]
- Robertson, M.P.; Joyce, G.F. The Origins of the RNA World. Cold Spring Harb. Perspect. Biol. 2012, 4, a003608. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.T.; Yu, C.W.; Zhang, W.T.; Wu, S.M.; Feng, Y. The Emergence of DNA in the RNA World: An in Silico Simulation Study of Genetic Takeover. BMC Evol. Biol. 2015, 15, 272. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, T. Instability and Decay of the Primary Structure of DNA. Nature 1993, 362, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Bashkin, J.K. DNA Enzymes: New-Found Chemical Reactivity. Curr. Biol. 1997, 7, R286–R288. [Google Scholar] [CrossRef]
- Leu, K.; Obermayer, B.; Rajamani, S.; Gerland, U.; Chen, I.A. The Prebiotic Evolutionary Advantage of Transferring Genetic Information from RNA to DNA. Nucleic Acids Res. 2011, 39, 8135–8147. [Google Scholar] [CrossRef] [PubMed]
- Powner, M.W.; Sutherland, J.D. Prebiotic Chemistry: A New Modus Operandi. Phil. Trans. R. Soc. B Biol. Sci. 2011, 366, 2870–2877. [Google Scholar] [CrossRef] [PubMed]
- Trevino, S.G.; Zhang, N.; Elenko, M.P.; Luptak, A.; Szostak, J.W. Evolution of Functional Nucleic Acids in the Presence of Nonheritable Backbone Heterogeneity. Proc. Natl. Acad. Sci. USA 2011, 108, 13492–13497. [Google Scholar] [CrossRef] [PubMed]
- Van Der Gulik, P.T. S.; Speijer, D. How Amino Acids and Peptides Shaped the RNA World. Life 2015, 5, 230–246. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.W. What RNA World? Why a Peptide/RNA Partnership Merits Renewed Experimental Attention. Life 2015, 5, 294–320. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Matsuda, T.; Takeyama, T.; Hino, T. Solubilities Studies of Basic Amino Acids. Agric. Biol. Chem. 1966, 30, 378–384. [Google Scholar] [CrossRef]
- Segvich, S.J.; Smith, H.C.; Kohn, D.H. The Adsorption of Preferential Binding Peptides to Apatite-Based Materials. Biomaterials 2009, 30, 1287–1298. [Google Scholar] [CrossRef] [PubMed]
- De Barros, D.P.; Campos, S.R.; Madeira, P.P.; Azevedo, A.M.; Baptista, A.M.; Raquel Aires-Barros, M. Modeling the Partitioning of Amino Acids in Aqueous Two Phase Systems. J. Chromatogr. A 2014, 1329, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Aumiller, W.M.; Keating, C.D. Phosphorylation-Mediated RNA/Peptide Complex Coacervation As a Model for Intracellular Liquid Organelles. Nat. Chem. 2016, 8, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Jia, T.Z.; Fahrenbach, A.C.; Kamat, N.P.; Adamala, K.P.; Szostak, J.W. Oligoarginine Peptides Slow Strand Annealing and Assist Non-Enzymatic RNA Replication. Nat. Chem. 2016, 8, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Yarus, M. Amino Acids as RNA Ligands: A Direct-RNA-Template Theory for the Code’s Origin. J. Mol. Evol. 1998, 47, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Yarus, M.; Caporaso, J.G.; Knight, R. Origins of the Genetic Code: The Escaped Triplet Theory. Ann. Rev. Biochem. 2005, 74, 179–198. [Google Scholar] [CrossRef] [PubMed]
- Yarus, M.; Widmann, J.J.; Knight, R. RNA-Amino Acid Binding: A Stereochemical Era for the Genetic Code. J. Mol. Evol. 2009, 69, 429. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.T. The Scenario on the Origin of Translation in the RNA World: In Principle of Replication Parsimony. Biol. Direct 2010, 5, 65. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.W., Jr.; Wills, P.R. Interdependence, Reflexivity, Fidelity, Impedance Matching, and the Evolution of Genetic Coding. Mol. Biol. Evol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Wills, P.R.; Carter, C.W., Jr. Insuperable problems of the genetic code initially emerging in an RNA World. Biosystems 2017. [Google Scholar] [CrossRef] [PubMed]
- Kervio, E.; Hochgesand, A.; Steiner, U.E.; Richert, C. Templating Efficiency of Naked DNA. Proc. Natl. Acad. Sci. USA 2010, 107, 12074–12079. [Google Scholar] [CrossRef] [PubMed]
- Deck, D.; Jauker, M.; Richert, C. Efficient Enzyme-Free Copying of All Four Nucleobases Templated by Immobilized RNA. Nat. Chem. 2011, 3, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, A.; Richert, C. Nucleotide-Based Copying of Nucleic Acid Sequences without Enzymes. J. Org. Chem. 2013, 78, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Prywes, N.; Tam, C.P.; O’Flaherty, D.K.; Lelyveld, V.S.; Izgu, E.C.; Pal, A.; Szostak, J.W. Enhanced Nonenzymatic RNA Copying With 2-Aminoimidazole Activated Nucleotides. J Am. Chem. Soc. 2017, 139, 1810–1813. [Google Scholar] [CrossRef] [PubMed]
- Unrau, P.J.; Bartel, D.P. RNA-Catalyzed Nucleotide Synthesis. Nature 1998, 395, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.T.; Yu, C.W.; Zhang, W.T.; Hu, J.M. Nucleotide Synthetase Ribozymes May Have Emerged First in the RNA World. RNA 2007, 13, 2012–2019. [Google Scholar] [CrossRef] [PubMed]
- Boerlijst, M.C.; Hogeweg, P. Spiral Wave Structure in Prebiotic Evolution: Hypercycles Stable against Parasites. Physica D 1991, 48, 17–28. [Google Scholar] [CrossRef]
- Szabo, P.; Scheuring, I.; Czaran, T.; Szathmary, E. In Silico Simulations Reveal That Replicators With Limited Dispersal Evolve Towards Higher Efficiency and Fidelity. Nature 2002, 420, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Szathmary, E. The Origin of Replicators and Reproducers. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1761–1776. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, N.; Hogeweg, P. Evolutionary Dynamics of RNA-Like Replicator Systems: A Bioinformatic Approach to the Origin of Life. Phys. Life Rev. 2012, 9, 219–263. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, O.L.; Orgel, L.E. Template-directed Oligonucleotide Ligation on Hydroxylapatite. Nature 1986, 321, 790–792. [Google Scholar] [CrossRef] [PubMed]
- Ferris, J.P. Montmorillonite Catalysis of 30–50 Mer Oligonucleotides: Laboratory Demonstration of Potential Steps in the Origin of the RNA World. Orig. Life Evol. Biosph. 2002, 32, 311–332. [Google Scholar] [CrossRef] [PubMed]
- Franchi, M.; Gallori, E. A Surface-Mediated Origin of the RNA World: Biogenic Activities of Clay-Adsorbed RNA Molecules. Gene 2005, 346, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Vlassov, A.V.; Kazakov, S.A.; Johnston, B.H.; Landweber, L.F. The RNA World on Ice: A New Scenario for the Emergence of RNA Information. J. Mol. Evol. 2005, 61, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Trinks, H.; Schroder, W.; Biebricher, C.K. Ice and the Origin of Life. Orig. Life Evol. Biosph. 2005, 35, 429–445. [Google Scholar] [CrossRef] [PubMed]
- Attwater, J.; Wochner, A.; Pinheiro, V.B.; Coulson, A.; Holliger, P. Ice As a Protocellular Medium for RNA Replication. Nat. Commun. 2010, 1, 76. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.J.; Hall, A.J.; Cairns-Smith, A.G.; Braterman, P.S. Submarine Hot Spring and Origin of Life. Nature 1988, 336, 117. [Google Scholar] [CrossRef]
- Koonin, E.V.; Martin, W. On the Origin of Genomes and Cells within Inorganic Compartments. Trends Genet. 2005, 21, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.; Baross, J.; Kelley, D.; Russell, M.J. Hydrothermal Vents and the Origin of Life. Nat. Rev. Microbiol. 2008, 6, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Weiner, A.M.; Maizels, N. 3′ Terminal tRNA-Like Structures Tag Genomic RNA Molecules for Replication: Implications for the Origin of Protein Synthesis. Proc. Natl. Acad. Sci. USA 1987, 84, 7383–7387. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.T.; Yu, C.W. Intramolecular RNA Replicase: Possibly the First Self-Replicating Molecule in the RNA World. Orig. Life Evol. Biosph. 2006, 36, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Yu, C.; Zhang, W.; Yin, S.; Chen, Y.; Feng, Y.; Ma, W. Tag Mechanism As a Strategy for the RNA Replicase to Resist Parasites in the RNA World. PLoS ONE 2017, 12, e0172702. [Google Scholar] [CrossRef] [PubMed]
- Szostak, J.W.; Bartel, D.P.; Luisi, P.L. Synthesizing Life. Nature 2001, 409, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Bansho, Y.; Furubayashi, T.; Ichihashi, N.; Yomo, T. Host-Parasite Oscillation Dynamics and Evolution in a Compartmentalized RNA Replication System. Proc. Natl. Acad. Sci. USA 2016, 113, 4045–4050. [Google Scholar] [CrossRef] [PubMed]
- Mansy, S.S.; Szostak, J.W. Reconstructing the Emergence of Cellular Life through the Synthesis of Model Protocells. Cold Spring Harb. Symp. Quant. Biol. 2009, 74, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Mansy, S.S. Membrane Transport in Primitive Cells. Cold Spring Harb. Perspect. Biol. 2010, 2, a002188. [Google Scholar] [CrossRef] [PubMed]
- Schrum, J.P.; Zhu, T.F.; Szostak, J.W. The Origins of Cellular Life. Cold Spring Harb. Perspect. Biol. 2010, 2, a002212. [Google Scholar] [CrossRef] [PubMed]
- Szostak, J.W. The Eightfold Path to Non-Enzymatic RNA Replication. J. Syst. Chem. 2012, 3, 2. [Google Scholar] [CrossRef]
- Adamala, K.; Szostak, J.W. Nonenzymatic Template-Directed RNA Synthesis Inside Model Protocells. Science 2013, 342, 1098–1100. [Google Scholar] [CrossRef] [PubMed]
- Mansy, S.S.; Schrum, J.P.; Krishnamurthy, M.; Tobe, S.; Treco, D.A.; Szostak, J.W. Template-Directed Synthesis of a Genetic Polymer in a Model Protocell. Nature 2008, 454, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. Re-Creating an RNA Replicase. In The RNA World; Gesteland, R.F., Cech, T.R., Atkins, J.F., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1999; Chapter 5. [Google Scholar]
- Johnston, W.K.; Unrau, P.J.; Lawrence, M.S.; Glasner, M.E.; Bartel, D.P. RNA-Catalyzed RNA Polymerization: Accurate and General RNA-Templated Primer Extension. Science 2001, 292, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Zaher, H.S.; Unrau, P.J. Selection of an Improved RNA Polymerase Ribozyme with Superior Extension and Fidelity. RNA 2007, 13, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.K.L.; Unrau, P.J. Closing the Circle: Replicating RNA with RNA. Cold Spring Harb. Perspect. Biol. 2010, 2, a002204. [Google Scholar] [CrossRef] [PubMed]
- Wochner, A.; Attwater, J.; Coulson, A.; Holliger, P. Ribozyme-Catalyzed Transcription of an Active Ribozyme. Science 2011, 332, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Attwater, J.; Wochner, A.; Holliger, P. In-Ice Evolution of RNA Polymerase Ribozyme Activity. Nat. Chem. 2013, 5, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.T. The Origin of Life: A Problem of History, Chemistry, and Evolution. Chem. Biodiver. 2014, 11, 1998–2010. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.T.; Hu, J.M. Computer Simulation on the Cooperation of Functional Molecules during the Early Stages of Evolution. PLoS ONE 2012, 7, e35454. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.E.; Higgs, P.G. Co-Operation between Polymerases and Nucleotide Synthetases in the RNA World. PLoS Comput. Biol. 2016, 12, e1005161. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.A.; Roberts, R.W.; Szostak, J.W. The Emergence of Competition between Model Protocells. Science 2004, 305, 1474–1476. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.A.; Walde, P. From Self-Assembled Vesicles to Protocells. Cold Spring Harb. Perspect. Biol. 2010, 2, a002170. [Google Scholar] [CrossRef] [PubMed]
- Szathmary, E.; Smith, J.M. From Replicators to Reproducers: The First Major Transitions Leading to Life. J. Theor. Biol. 1997, 187, 555–571. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.T.; Yu, C.W.; Zhang, W.T.; Zhou, P.; Hu, J.M. The Emergence of Ribozymes Synthesizing Membrane Components in RNA-Based Protocells. Biosystems 2010, 99, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Maynard-Smith, J.; Szathmary, E. The Origin of Chromosomes I. Selection for Linkage. J. Theor. Biol. 1993, 164, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Diener, T.O. Circular RNAs: Relics of Precellular Evolution? Proc. Natl. Acad. Sci. USA 1989, 86, 9370–9374. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.T.; Feng, Y. Protocells: At the Interface of Life and Non-Life. Life 2015, 5, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Ferris, J.P.; Hill, A.R.; Liu, R.; Orgel, L.E. Synthesis of Long Prebiotic Oligomers on Mineral Surfaces. Nature 1996, 381, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, N.; Hogeweg, P. Multilevel Selection in Models of Prebiotic Evolution II: A Direct Comparison of Compartmentalization and Spatial Self-Organization. PLoS Comput. Biol. 2009, 5, e1000542. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, N.; Kaneko, K.; Hogeweg, P. Evolutionarily Stable Disequilibrium: Endless Dynamics of Evolution in a Stationary Population. Proc. R. Soc. B Biol. Sci. 2016, 283, 20153109. [Google Scholar] [CrossRef] [PubMed]
- Dawkins, R. The Selfish Gene; Oxford University Press: Oxford, UK, 1976. [Google Scholar]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W. What Does “the RNA World” Mean to “the Origin of Life”? Life 2017, 7, 49. https://doi.org/10.3390/life7040049
Ma W. What Does “the RNA World” Mean to “the Origin of Life”? Life. 2017; 7(4):49. https://doi.org/10.3390/life7040049
Chicago/Turabian StyleMa, Wentao. 2017. "What Does “the RNA World” Mean to “the Origin of Life”?" Life 7, no. 4: 49. https://doi.org/10.3390/life7040049
APA StyleMa, W. (2017). What Does “the RNA World” Mean to “the Origin of Life”? Life, 7(4), 49. https://doi.org/10.3390/life7040049