Open Prebiotic Environments Drive Emergent Phenomena and Complex Behavior
Abstract
:1. Introduction
2. Minimal Self-Replication and Catalytic Reaction Networks
3. Emergent Phenomena
3.1. Cooperation and Competition
3.2. Chemical Computation and Logic Operations
3.3. Bistability and Bifurcations
3.4. Chemical Oscillations
4. Conclusions
Funding
Conflicts of Interest
References
- Barabasi, A.-L.; Albert, R. Emergence of Scaling in Random Networks. Science 1999, 286, 509–512. [Google Scholar] [PubMed] [Green Version]
- Pross, A. The Driving Force for Life’s Emergence: Kinetic and Thermodynamic Considerations. J. Theor. Biol. 2003, 220, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Pross, A. What is Life? How Chemistry Becomes Biology; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Wagner, N.; Pross, A. The Nature of Stability in Replicating Systems. Entropy 2011, 13, 518–527. [Google Scholar] [CrossRef]
- Ruiz-Mirazo, K.; Briones, C.; de la Escosura, A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chem. Rev. 2014, 114, 285–366. [Google Scholar] [CrossRef]
- Mattia, E.; Otto, S. Supramolecular Systems Chemistry. Nat. Nanotechnol. 2015, 10, 111–119. [Google Scholar] [CrossRef]
- Ashkenasy, G.; Hermans, T.M.; Otto, S.; Taylor, A.F. Systems Chemistry. Chem. Soc. Rev. 2017, 46, 2543–2554. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, J.T.; Mehta, A.K.; Lynn, D.G. Digital and Analog Chemical Evolution. Acc. Chem. Res. 2012, 45, 2189–2199. [Google Scholar] [CrossRef] [PubMed]
- Vidonne, A.; Philp, D. Making Molecules Make Themselves – the Chemistry of Artificial Replicators. Eur. J. Org. Chem. 2009, 5, 583. [Google Scholar] [CrossRef]
- Dadon, Z.; Wagner, N.; Ashkenasy, G. Angew. The Road to Non-enzymatic Molecular Networks. Chem. Int. Ed. Engl. 2008, 47, 6128–6136. [Google Scholar] [CrossRef]
- Wagner, N.; Alesebi, S.; Ashkenasy, G. How Symmetry and Order Affect Logic Operations and Computation in Catalytic Chemical Networks. J. Comp. Theor. Nanosci. 2011, 8, 471–480. [Google Scholar] [CrossRef]
- Ashkenasy, G.; Dadon, Z.; Alesebi, S.; Wagner, N.; Ashkenasy, N. Building Logic into Peptide Networks: Bottom-Up and Top-Down. Israel J. Chem. 2011, 51, 106–117. [Google Scholar] [CrossRef]
- von Kiedrowski, G. Systems Chemistry: European Center of Living Technology; Venice International University: Venice, Italy, 2005. [Google Scholar]
- Kindermann, M.; Stahl, I.; Reimold, M.; Pankau, W.M.; von Kiedrowski, G. Systems Chemistry: Kinetic and Computational Analysis of a Nearly Exponential Organic Replicator. Angew. Chem. Int. Ed. 2005, 44, 6750–6755. [Google Scholar] [CrossRef] [PubMed]
- Corbett, P.T.; Sanders, J.K.M.; Otto, S. Systems Chemistry: Pattern Formation in Random Dynamic Combinatorial Libraries. Agnew. Chem. Int. Ed. 2007, 46, 8858–8861. [Google Scholar] [CrossRef] [PubMed]
- Ludlow, R.F.; Otto, S. Systems Chemistry. Chem. Soc. Rev. 2008, 37, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Peyralans, J.J.P.; Otto, S. Recent Highlights in Systems Chemistry. Curr. Opin. Chem. Biol. 2009, 13, 705–713. [Google Scholar] [CrossRef]
- von Kiedrowski, G. Minimal Replicator Theory I: Parabolic Versus Exponential Growth. Bioorg. Chem. Front. 1993, 3, 113–146. [Google Scholar]
- Szathmary, E.; Smith, J.M. From Replicators to Reproducers: The First Major Transitions Leading to Life. J. Theor. Biol. 1997, 187, 555–571. [Google Scholar] [CrossRef] [PubMed]
- Wills, P.R.; Kauffman, S.A.; Stadler, B.M.R.; Stadler, P.F. Selection Dynamics in Autocatalytic Systems: Templates Replicating through Binary Ligation. Bull. Math. Biol. 1998, 60, 1073–1098. [Google Scholar] [CrossRef]
- Stadler, B.M.R.; Stadler, P.F.; Schuster, P. Dynamics of Autocatalytic Replicator Networks Based on Higher-order Ligation Reactions. Bull. Math. Biol. 2000, 62, 1061–1086. [Google Scholar] [CrossRef] [Green Version]
- Assouline, S.; Nir, S.; Lahav, N. Simulation of Non-enzymatic Template-directed Synthesis of Oligonucleotides and Peptides. J. Theor. Biol. 2001, 208, 117–125. [Google Scholar] [CrossRef]
- Jesus, R.I.; Pimienta, V.; Micheau, J.-C.; Buhse, T. Kinetic Analysis of Artificial Peptide Self-Replication. Part II: The Heterochiral Case. Biophys. Chem. 2003, 103, 201–211. [Google Scholar]
- Jesus, R.I.; Pimienta, V.; Micheau, J.-C.; Buhse, T. Kinetic Analysis of Artificial Peptide Self-Replication. Part I: The Homochiral Case. Biophys. Chem. 2003, 103, 191–200. [Google Scholar]
- Islas, J.R.; Micheau, J.-C.; Buhse, T. Kinetic Analysis of Self-Replicating Peptides: Possibility of Chiral Amplification in Open Systems. Orig. Life Evol. Biosph. 2004, 34, 497–512. [Google Scholar] [CrossRef]
- Queeney, K.L.; Marin, E.P.; Campbell, C.M.; Peacock-Lopez, E. Chemical Oscillations in Enzyme Kinetics. Chem. Educator 1996, 1, 1–17. [Google Scholar] [CrossRef]
- Peacock-Lopez, E.; Radov, D.B.; Flesner, C.S. Mixed-mode Oscillations in a Self-Replicating Dimerization Mechanism. Biophys. Chem. 1997, 65, 171–178. [Google Scholar] [CrossRef]
- Beutel, K.M.; Peacock-Lopez, E. Chemical Oscillations and Turing Patterns in a Generalized Two-variable Model of Chemical Self-Replication. J. Chem. Phys. 2006, 125, 024908. [Google Scholar] [CrossRef]
- Beutel, K.M.; Peacock-Lopez, E. Complex Dynamics in a Cross-catalytic Self-Replication Mechanism. J. Chem. Phys. 2007, 126, 125104. [Google Scholar] [CrossRef] [PubMed]
- Szathmary, E. The Origin of Replicators and Reproducers. Phil. Trans. R. Soc. B 2006, 361, 1761–1776. [Google Scholar] [CrossRef] [PubMed]
- Wagner, N.; Ashkenasy, G. Systems Chemistry: Logic Gates, Arithmetic Units, and Network Motifs in Small Networks. Chem. Eur. J. 2009, 15, 1765–1775. [Google Scholar] [CrossRef] [PubMed]
- Wagner, N.; Ashkenasy, G. Symmetry and Order in Systems Chemistry. J. Chem. Phys. 2009, 130, 164907. [Google Scholar] [CrossRef]
- Shenhav, B.; Bar-Even, A.; Kafri, R.; Lancet, D. Polymer Gard: Computer Simulation of Covalent Bond Formation in Reproducing Molecular Assemblies. Orig. Life. Evol. Biosph. 2005, 35, 111–133. [Google Scholar] [CrossRef] [PubMed]
- von Kiedrowski, G. A Self-Replicating Hexadeoxynucleotide. Angew. Chem. Int. Ed. 1986, 98, 932–935. [Google Scholar] [CrossRef]
- Zielinski, W.S.; Orgel, L.E. Autocatalytic Synthesis of a Tetranucleotide Analogue. Nature 1987, 327, 346–347. [Google Scholar] [CrossRef] [PubMed]
- Orgel, L.E. Molecular Replication. Nature 1992, 358, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Nicolaou, K.C. Chemical Self-Replication of Palindromic Duplex DNA. Nature 1994, 369, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Paul, N.; Joyce, G.F. A Self-Replicating Ligase Ribozyme. Proc. Natl. Acad. Sci. USA 2002, 99, 12733–12740. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.; Ellington, A.D. Peptide-templated Nucleic Acid Ligation. J. Mol. Evol. 2003, 56, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Wintner, E.A.; Rebek, J.J. Autocatalysis and the Generation of Self-Replicating Systems. Acta Chim. Scand. 1996, 50, 469. [Google Scholar] [CrossRef]
- Lee, D.H.; Granja, J.R.; Martinez, J.A.; Severin, K.; Ghadiri, M.R. A Self-Replicating peptide. Nature 1996, 382, 525–528. [Google Scholar] [CrossRef]
- Severin, K.; Lee, D.H.; Martinez, J.A.; Ghadiri, M.R. Peptide Self-Replication Via Template-Directed Ligation. Chem. Eur. J. 1997, 3, 1017–1024. [Google Scholar] [CrossRef]
- Yao, S.; Ghosh, I.; Zutshi, R.; Chmielewski, J. A pH-modulated, Self-Replicating peptide. J. Am. Chem. Soc. 1997, 119, 10559–10560. [Google Scholar] [CrossRef]
- Yao, S.; Ghosh, I.; Zutshi, R.; Chmielewski, J. A Self-Replicating Peptide under Ionic Control. Angew. Chem. Int. Ed. 1998, 37, 478–481. [Google Scholar] [CrossRef]
- Danger, G.; Plasson, R.; Pascal, R. Pathways for the Formation and Evolution of Peptides in Prebiotic Environments. Chem. Soc. Rev. 2012, 41, 5416–5429. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Sutherland, I.O. Self-Replication in a Diels-Alder Reaction. Chem. Commun. 1997, 1495–1496. [Google Scholar] [CrossRef]
- Kassianidis, E.; Philp, D. Design and Implementation of a Highly Selective Minimal Self-Replicating System. Angew. Chem. Int. Ed. 2006, 45, 6344–6348. [Google Scholar] [CrossRef]
- del Amo, V.; Philp, D. Integrating Replication-Based Selection Strategies in Dynamic Covalent Systems. Chem. Eur. J. 2010, 16, 13304–13318. [Google Scholar] [CrossRef]
- Bissette, A.J.; Fletcher, S.P. Mechanisms of Autocatalysis. Angew. Chem. Int. Ed. 2013, 52, 12800–12826. [Google Scholar] [CrossRef]
- Semenov, S.N.; Wong, A.S.Y.; van der Made, R.M.; Postma, S.G.J.; Groen, J.; van Roekel, H.W.H.; de Greef, T.F.A.; Huck, W.T.S. Rational Design of Functional and Tunable Oscillating Enzymatic Networks. Nat. Chem. 2015, 7, 160–165. [Google Scholar] [CrossRef]
- Guet, C.C.; Elowitz, C.C.M.B.; Hsing, W.; Leibler, S. Combinatorial Synthesis of Genetic Networks. Science 2002, 296, 1466–1470. [Google Scholar] [CrossRef] [Green Version]
- Saghatelian, A.; Volcker, N.H.; Guckian, K.M.; Lin, V.S.-Y.; Ghadiri, M.R. DNA-Based Photonic Logic Gates: AND, NAND, and INHIBIT. J. Am. Chem. Soc. 2003, 125, 346–347. [Google Scholar] [CrossRef]
- Ashkenasy, G.; Ghadiri, M.R. Boolean Logic Functions of a Synthetic Peptide Network. J. Am. Chem. Soc. 2004, 126, 11140–11141. [Google Scholar] [CrossRef] [Green Version]
- de Silva, A.P. Molecular Computation: Molecular Logic Gets Loaded. Nat. Mater. 2005, 4, 15–16. [Google Scholar] [CrossRef]
- Margulies, D.; Melman, G.; Shanzer, A. Fluorescein as a Model Molecular Calculator with Reset Capability. Nat. Mater. 2005, 4, 768–771. [Google Scholar] [CrossRef]
- Margulies, D.; Melman, G.; Shanzer, A. A Molecular Full-adder and Full-subtractor, an Additional Step Toward a Moleculator. J. Am. Chem. Soc. 2006, 128, 4865–4871. [Google Scholar] [CrossRef] [PubMed]
- Margulies, D.; Hamilton, A.D. Digital Analysis of Protein Properties by an Ensemble of DNA Quadruplexes. J. Am. Chem. Soc. 2009, 131, 9142–9143. [Google Scholar] [CrossRef]
- Gust, D.; Moore, T.A.; Moore, A.L. Molecular Switches Controlled by Light. Chem. Commun. 2006, 1169–1178. [Google Scholar] [CrossRef]
- Seelig, G.; Soloveichik, D.; Zhang, D.Y.; Winfree, E. Enzyme-free Nucleic Acid Logic Circuits. Science 2006, 314, 1585–1588. [Google Scholar] [CrossRef] [PubMed]
- de Silva, A.P.; Uchiyama, S. Molecular Logic and Computing. Nat. Nanotech. 2007, 2, 399–410. [Google Scholar] [CrossRef]
- Credi, A. Molecules that Make Decisions. Angew. Chem. Int. Ed. 2007, 46, 5472–5475. [Google Scholar] [CrossRef] [PubMed]
- Pischel, U. Chemical Approaches to Molecular Logic Elements for Addition and Subtraction. Angew. Chem. Int. Ed. 2007, 46, 4026–4040. [Google Scholar] [CrossRef] [PubMed]
- de Silva, A.P.; Vance, T.P.; West, M.E.S.; Wright, G.D. Bright Molecules with Sense, Logic, Numeracy and Utility. Org. Biomol. Chem. 2008, 6, 2468–2480. [Google Scholar] [CrossRef] [PubMed]
- Katz, E.; Privman, V. Enzyme-based Logic Systems for Information Processing. Chem. Soc. Rev. 2010, 39, 1835–1857. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, M.N. Some Experiments and Directions in Molecular Computing and Robotics. Israel J. Chem. 2011, 51, 99–105. [Google Scholar] [CrossRef]
- Gentili, P.L. Molecular Processors: From Qubits to Fuzzy Logic. ChemPhysChem 2011, 12, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Dadon, Z.; Wagner, N.; Cohen-Luria, R.; Ashkenasy, G. Reaction Networks. In Supramolecular Chemistry: From Molecules to Nanomaterials; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Alon, U. Network Motifs: Theory and Experimental Approaches. Nat. Rev. Genet. 2007, 8, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits; Chapman and Hall: London, UK, 2007. [Google Scholar]
- Wagner, N.; Alasibi, S.; Peacock-Lopez, E.; Ashkenasy, G. Coupled Oscillations and Circadian Rhythms in Molecular Replication Networks. J. Phys. Chem. Lett. 2015, 6, 60–65. [Google Scholar] [CrossRef]
- Gurevich, L.; Cohen-Luria, R.; Wagner, N.; Ashkenasy, G. Robustness of Synthetic Circadian Clocks to Multiple Environmental Changes. Chem. Commun. 2015, 51, 5672–5675. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, R.; Cohen-Luria, R.; Wagner, N.; Ashkenasy, G. A Bistable Switch in Dynamic Thiodepsipeptide Folding and Template-Directed Ligation. Angew. Chem. Int. Ed. 2015, 54, 12452–12456. [Google Scholar] [CrossRef] [PubMed]
- Wagner, N.; Mukherjee, R.; Maity, I.; Peacock-Lopez, E.; Ashkenasy, G. Bistability and Bifurcation in Minimal Self-Replication and Nonenzymatic Catalytic Networks. Chem. Phys. Chem. 2017, 18, 1842–1850. [Google Scholar] [CrossRef] [Green Version]
- Edelstein, B.B. Biochemical Model with Multiple Steady States and Hysteresis. J. Theor. Biol. 1970, 29, 57–62. [Google Scholar] [CrossRef]
- Dadon, Z.; Samiappan, M.; Wagner, N.; Ashkenasy, G. Chemical and Light Triggering of Peptide Networks under Partial Thermodynamic Control. Chem. Commun. 2012, 48, 1419–1421. [Google Scholar] [CrossRef] [PubMed]
- Dadon, Z.; Wagner, N.; Alasibi, S.; Samiappan, M.; Mukherjee, R.; Ashkenasy, G. Competition and Cooperation in Dynamic Replication Networks. Chem. Eur. J. 2015, 21, 648–654. [Google Scholar] [CrossRef]
- Wagner, N.; Ashkenasy, G. How Catalytic Order Drives the Complexification of Molecular Replication Networks. Israel J. Chem. 2015, 5i5, 880–890. [Google Scholar] [CrossRef]
- Blackmond, D. “If Pigs Could Fly” Chemistry: A Tutorial on the Principle of Microscopic Reversibility. Angew. Chem. Int. Ed. 2009, 48, 2648–2654. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.H.G.; Hochberg, D. Open Flow Non-enzymatic Template Catalysis and Replication. Phys. Chem. Chem. Phys. 2018, 20, 14864–14875. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, R.; Schuster, S. The Regulation of Cellular Systems; Chapman and Hall: London, UK, 1996. [Google Scholar]
- Dadon, Z.; Samiappan, M.; Safranchik, E.Y.; Ashkenasy, G. Light-Induced Peptide Replication Controls Logic Operations in Small Networks. Chem. Eur. J. 2010, 16, 12096–12099. [Google Scholar] [CrossRef]
- Nakajima, M.; Imai, K.; Ito, H.; Nishiwaki, T.; Murayama, Y.; Iwasaki, H.; Oyama, T.; Kondo, T. Reconstitution of Circadian Oscillation of Cyanobacterial KaiC Phosphorylation in Vitro. Science 2005, 308, 414–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markson, J.S.; O’Shea, E.K. The Molecular Clockwork of a Protein-based Circadian Oscillator. FEBS Lett. 2009, 583, 3938–3947. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Kim, Y.-I.; Golden, S.S. Simplicity and Complexity in the Cyanobacterial Circadian Clock Mechanism. Curr. Opin. Gen. Dev. 2010, 20, 619–625. [Google Scholar] [CrossRef]
- Epstein, I.R.; Pojman, J.A. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Blanco, C.; Hochberg, D. Chiral Polymerization: Symmetry Breaking and Entropy Production in Closed Systems. Phys. Chem. Chem. Phys. 2011, 13, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Tsokolov, S. A Theory of Circular Organization and Negative Feedback: Defining Life in a Cybernetic Context. Astrobiology 2010, 10, 1031. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, N.; Hochberg, D.; Peacock-Lopez, E.; Maity, I.; Ashkenasy, G. Open Prebiotic Environments Drive Emergent Phenomena and Complex Behavior. Life 2019, 9, 45. https://doi.org/10.3390/life9020045
Wagner N, Hochberg D, Peacock-Lopez E, Maity I, Ashkenasy G. Open Prebiotic Environments Drive Emergent Phenomena and Complex Behavior. Life. 2019; 9(2):45. https://doi.org/10.3390/life9020045
Chicago/Turabian StyleWagner, Nathaniel, David Hochberg, Enrique Peacock-Lopez, Indrajit Maity, and Gonen Ashkenasy. 2019. "Open Prebiotic Environments Drive Emergent Phenomena and Complex Behavior" Life 9, no. 2: 45. https://doi.org/10.3390/life9020045
APA StyleWagner, N., Hochberg, D., Peacock-Lopez, E., Maity, I., & Ashkenasy, G. (2019). Open Prebiotic Environments Drive Emergent Phenomena and Complex Behavior. Life, 9(2), 45. https://doi.org/10.3390/life9020045