The Diagnostic-Measurement Method—Resting Energy Expenditure Assessment of Polish Children Practicing Football
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Assessments
2.2.1. Resting Energy Expenditure Assessment by Indirect Calorimetry
2.2.2. Predictive REE Equation
2.2.3. Anthropometric Measurements, Body Composition and Body Mass Index
2.2.4. Arterial Blood Pressure
2.3. Statistical Analysis
2.4. Ethics
3. Results
3.1. Characteristics of the Study Group
3.2. The Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | Body mass index |
BMR | Basal metabolic rate |
BP | Blood pressure |
DXA | Dual Energy X-Ray Absorptiometry |
FFM | Fat free mass |
PCA | Principal components analysis |
NHBPEP | National High Blood Pressure Education Program Working Group in Children and Adolescents |
REE | Resting energy expenditure |
RQ | Respiratory quotient |
TEE | Total energy expenditure |
WHO | World Health Organization |
References
- Krauss, H. Fizjologia żywienia człowieka. Physiology of Human Nutrition, 1st ed.; PZWL: Warsaw, Poland, 2019; pp. 75–85. [Google Scholar]
- Chęcińska, Z.; Krauss, H.; Hajduk, M.; Białecka-Grabarz, K. Ocena sposobu żywienia młodzieży wielkomiejskiej i obszarów wiejskich. Assessment of nutrition in urban and rural youth. Probl. Hig. Epidemiol. 2013, 94, 780–785. [Google Scholar]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar] [CrossRef]
- Schmelzle, H.; Schröder, C.; Armbrust, S.; Unverzagt, S.; Fusch, C. Resting energy expenditure in obese children aged 4 to 15 years: Measured versus predicted data. Acta Paediatr. 2004, 93, 739–746. [Google Scholar] [CrossRef]
- Carpenter, A.; Pencharz, P.; Mouzaki, M. Accurate estimation of energy requirements of young patients. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Schlein, K.M.; Coulter, S.P. Best practices for determining resting energy expenditure in critically ill adults. Nutr. Clin. Pract. 2014, 29, 44–55. [Google Scholar] [CrossRef]
- Fukagawa, N.K.; Bandini, L.G.; Young, J.B. Effect of age on body composition and resting metabolic rate. Am. J. Physiol. 1990, 259, E233–E238. [Google Scholar] [CrossRef] [PubMed]
- Karhunen, L.; Franssila Kallunki, A.; Rissanen, A.; Kervinen, K.; Kesaniemi, Y.A.; Uusitupa, M. Determinants of resting energy expenditure in obese non- diabetic Caucasian women. Int. J. Obes. Relat. Metab. Disord. 1997, 21, 197–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, K.M.; Weinsier, R.L.; Long, C.L.; Schutz, Y. Prediction of resting energy expenditure from fat-free mass and fat mass. Am. J. Clin. Nutr. 1992, 56, 848–856. [Google Scholar] [CrossRef] [PubMed]
- Segal, K.R.; Gutin, B.; Albu, J.; Pi-Sunyer, F.X. Thermal effects of food and exercise in lean and obese men of similar lean body mass. Am. J. Physiol. 1987, 252, E110–E117. [Google Scholar] [PubMed]
- Luke, A.; Adebowale, A.; Kramer, H.; Forrester, T.; Cooper, R.S. Association between blood pressure and resting energy expenditure independent of body size. Hypertension 2004, 43, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, K.; Ito, C.; Koizumi, K.; Watanabe, S.; Umeda, Y.; Ishikawa-Takata, K. Resting energy expenditure (REE) in six- to seventeen-year-old Japanese children and adolescents. J. Nutr. Sci. Vitaminol. 2013, 59, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Broadney, M.M.; Shareef, F.; Marwitz, S.E.; Brady, S.M.; Yanovski, S.Z.; DeLany, J.P.; Yanovski, J.A. Evaluating the contribution of differences in lean mass compartments for resting energy expenditure in African American and Caucasian American children. Pediatr. Obes. 2018, 13, 413–420. [Google Scholar] [CrossRef]
- Herrmann, S.D.; McMurray, R.G.; Kim, Y.; Willis, E.A.; Kang, M.; McCurdy, T. The influence of physical characteristics on the resting energy expenditure of youth: A meta-analysis. Am. J. Hum. Biol. 2017, 29. [Google Scholar] [CrossRef]
- Oshima, T.; Graf, S.; Heidegger, C.P.; Genton, L.; Pugin, J.; Pichard, C. Can calculation of energy expenditure based on CO2 measurements replace indirect calorimetry? Crit. Care 2017, 21, 13. [Google Scholar] [CrossRef] [Green Version]
- Gurven, M.; Trumble, B.C.; Stieglitz, J.; Yetish, G.; Cummings, D.; Blackwell, A.D.; Beheim, B.; Kaplan, H.S.; Pontzer, H. High resting metabolic rate among Amazonian forager-horticulturalists experiencing high pathogen burden. Am. J. Phys. Anthropol. 2016, 161, 414–425. [Google Scholar] [CrossRef]
- Campbell, B.; Zito, G.; Colquhoun, R.; Martinez, N.; St Louis, C.; Johnson, M.; Buchanan, L.; Lehn, M.; Smith, Y.; Cloer, B.; et al. Inter- and intra-day test-retest reliability of the Cosmed Fitmate ProTM indirect calorimeter for resting metabolic rate. J. Int. Soc. Sports Nutr. 2014, 11, 46. [Google Scholar] [CrossRef] [Green Version]
- Nieman, D.C.; Austin, M.D.; Benezra, L.; Pearce, S.; McInnis, T.; Unick, J.; Gross, S.J. Validation of Cosmed’s FitMate in measuring oxygen consumption and estimating resting metabolic rate. Res. Sports Med. 2006, 14, 89–96. [Google Scholar] [CrossRef]
- Harris, J.A.; Benedict, F.G. A Biometric Study of Human Basal Metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Tanita. Professional Product Guide. Available online: https://tanita.eu/media/wysiwyg/catalogue/tanita_pro_product-guide_april_2017.pdf (accessed on 10 November 2020).
- Pietrobelli, A.; Rubiano, F.S.; Onge, M.P.; Heymsfield, S.B. New bioimpedance analysis system: Improved phenotyping with whole-body analysis. Eur. J. Clin. Nutr. 2004, 58, 1479–1484. [Google Scholar] [CrossRef] [Green Version]
- Pietrobelli, A.; Rubiano, F.; Wang, J.; Wang, Z.; Heymsfield, S.M. Validation of contact electrode bioimpedance analysis in a pediatric population. Obes. Rev. 2005, 6 S1, P132. [Google Scholar]
- Meredith-Jones, K.A.; Williams, S.M.; Taylor, R.W. Bioelectrical impedance as a measure of change in body composition in young children. Pediatr. Obes. 2015, 10, 252–259. [Google Scholar] [CrossRef]
- Kabiri, L.S.; Hernandez, D.C.; Mitchell, K. Reliability, Validity, and Diagnostic Value of a Pediatric Bioelectrical Impedance Analysis Scale. Child. Obes. 2015, 11, 650–655. [Google Scholar] [CrossRef]
- Kułaga, Z.; Różańska, A.; Palczewska, I. Percentile charts of height, body mass and body mass index in children and adolescents in Poland—Results of the OLAF study. Stand. Med. 2010, 7, 690–700. [Google Scholar]
- Barlow, S.E. Expert Committee. Expert committee recommendations regarding the prevention, assessment and treatment of child and adolescent overweight and obesity: Summary report. Pediatrics 2007, 120, 164–192. [Google Scholar] [CrossRef] [Green Version]
- National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (NHBPEP). Fourth report on thediagnosis, evaluation and treatment of high blood pressurein children and adolescents. Pediatrics 2004, 114, 555–576. [Google Scholar] [CrossRef]
- Waluga, M.; Zahorska-Markiewicz, B.; Janusz, M.; Słabiak, Z.; Chełmicka, A. Resting energy expenditure in patients with cirrhosis of the liver measured by indirect calorimetry, anthropometry and bioelectrical impedance analysis. Experientia 1996, 52, 591–596. [Google Scholar] [CrossRef]
- Kocelak, P.; Żak-Gołąb, A.; Zahorska-Markiewicz, B.; Aptekorz, M.; Zientara, M.; Martirosian, G.; Chudek, J.; Olszanecka-Glinianowicz, M. Resting energy expenditure and gut microbiota in obese and normal weight subject. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2816–2821. [Google Scholar]
- Lazzer, S.; Patrizi, A.; De Col, A.; Saezza, A.; Sartorio, A. Prediction of basal metabolic rate in obese children and adolescents considering pubertal stages and anthropometric characteristics or body composition. Eur. J. Clin. Nutr. 2014, 68, 695–699. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, R.; Li, R.; Chen, M.Y.; Huang, R.; Li, X.N. Evaluating the predictive factors of resting energy expenditure and validating predictive equations for Chinese obese children. World J. Pediatr. 2018, 14, 160–167. [Google Scholar] [CrossRef]
- Mellecker, R.R.; McManus, A.M. Measurement of resting energy expenditure in healthy children. JPEN J. Parenter. Enteral Nutr. 2009, 33, 640–645. [Google Scholar] [CrossRef]
- Sun, M.; Gower, B.A.; Nagy, T.R.; Trowbridge, C.A.; Dezenberg, C.; Goran, M.I. Total, resting, and activity-related energy expenditures are similar in Caucasian and African-American children. Am. J. Physiol. 1998, 274, E232–E237. [Google Scholar] [CrossRef]
- Sun, M.; Gower, B.A.; Bartolucci, A.A.; Hunter, G.R.; Figueroa-Colon, R.; Goran, M.I. A longitudinal study of resting energy expenditure relative to body composition during puberty in African American and white children. Am. J. Clin. Nutr. 2001, 73, 308–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, G.; Moreno, L.A.; Sarría, A.; Pineda, I.; Fleta, J.; Pérez-González, J.M.; Bueno, M. Determinants of resting energy expenditure in obese and non-obese children and adolescents. J. Physiol. Biochem. 2002, 58, 9–15. [Google Scholar] [CrossRef]
- Seravalle, G.; Grassi, G. Sympathetic Nervous System, Hypertension, Obesity and Metabolic Syndrome. High. Blood Press Cardiovasc. Prev. 2016, 23, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Loredo, J.S.; Ziegler, M.G.; Ancoli-Israel, S.; Clausen, J.L.; Dimsdale, J.E. Relationship of arousals from sleep to sympathetic nervous system activity and BP in obstructive sleep apnea. Chest 1999, 116, 655–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegler, M.G.; Nelesen, R.; Mills, P.; Ancoli-Israel, S.; Kennedy, B.; Dimsdale, J.E. Sleepapnea, norepinephrine-release rate, and daytime hypertension. Sleep 1997, 20, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Kotsis, V.; Stabouli, S.; Papakatsika, S.; Rizos, Z.; Parati, G. Mechanisms of obesity-induced hypertension. Hypertens. Res. 2010, 33, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, A.; Coveney, S.; Despres, J.P.; Nadeau, A.; Prud’homme, D. Increased resting metabolic rate and lipid oxidation in exercise-trained individuals: Evidence for a role of beta-adrenergic stimulation. Can. J. Physiol. Pharmacol. 1992, 70, 1342–1347. [Google Scholar] [CrossRef]
- Toth, M.J.; Gardner, A.W.; Poehlman, E.T. Training status, resting metabolic rate, and cardiovascular disease risk in middle-aged men. Metabolism 1995, 44, 340–347. [Google Scholar] [CrossRef]
- Weinsier, R.L.; Schutz, Y.; Bracco, D. Reexamination of the relationship of resting metabolic rate to fat-free mass and to the metabolically active components of fat-free mass in humans. Am. J. Clin. Nutr. 1992, 55, 790–794. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, J.J. Body composition as a determinant of energy expenditure: A synthetic review and a proposed general prediction equation. Am. J. Clin. Nutr. 1991, 54, 963–969. [Google Scholar] [CrossRef]
- Webb, P. Energy expenditure and fat-free mass in men and women. Am. J. Clin. Nutr. 1981, 34, 1816–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, J.J. A reanalysis of the factors influencing basal metabolic rate in normal adults. Am. J. Clin. Nutr. 1980, 33, 2372–2374. [Google Scholar] [CrossRef]
- Lazzer, S.; Bedogni, G.; Lafortuna, C.L.; Marazzi, N.; Busti, C.; Galli, R.; De Col, A.; Agosti, F.; Sartorio, A. Relationship between basal metabolic rate, gender, age, and body composition in 8,780 white obese subjects. Obesity (Silver Spring) 2010, 18, 71–78. [Google Scholar] [CrossRef]
- MacKenzie-Shalders, K.L.; Byrne, N.M.; King, N.A.; Slater, G.J. Are increases in skeletal muscle mass accompanied by changes to resting metabolic rate in rugby athletes over a pre-season training period? Eur. J. Sport Sci. 2019, 19, 885–892. [Google Scholar] [CrossRef] [Green Version]
- Svendsen, O.L.; Hassager, C.; Christiansen, C. Impact of regional and total body composition and hormones on resting energy expenditure in overweight postmenopausal women. Metabolism 1993, 42, 1588–1591. [Google Scholar] [CrossRef]
- Ferraro, R.; Ravussin, E. Fat mass in predicting resting metabolic rate. Am. J. Clin. Nutr. 1992, 56, 460–461. [Google Scholar] [CrossRef]
- Bogardus, C.; Lillioja, S.; Ravussin, E.; Abbott, W.; Zawadzki, J.K.; Young, A.; Knowler, W.C.; Jacobowitz, R.; Moll, P.P. Familial dependence of the resting metabolic rate. N. Engl. J. Med. 1986, 315, 96–100. [Google Scholar] [CrossRef]
- Censi, L.; Toti, E.; Pastore, G.; Ferro-Luzzi, A. The basal metabolic rate and energy cost of standardised walking of short and tall men. Eur. J. Clin. Nutr. 1998, 52, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Goran, M.I.; Kaskoun, M.; Johnson, R. Determinants of resting energy expenditure in young children. J. Pediatr. 1994, 125, 362–367. [Google Scholar] [CrossRef]
- Simoneau, J.A.; Bouchard, C. Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am. J. Physiol. 1989, 257, E567–E572. [Google Scholar] [CrossRef]
- Simat, B.M.; Mayrand, R.R.; From, A.H.; Morley, J.E.; Billington, C.; Fullerton, D.S.; Ahmed, K. Is the erythrocyte sodium pump altered in human obesity? J. Clin. Endocrinol. Metab. 1983, 56, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, R.; Lillioja, S.; Fontvieille, A.M.; Rising, R.; Bogardus, C.; Ravuss, E. Lower sedentary metabolic rate in women compared with men. J. Clin. Investig. 1992, 90, 780–784. [Google Scholar] [CrossRef] [PubMed]
REE [kcal/day] | BMR Harris Benedict Formula [kcal/day] | Body Height [cm] | Body Weight [kg] | BMI Centiles | Fat Tissue [%] | Total Body Water [kg] | Muscle Mass [kg] | Systolic Pressure | Diastolic Pressure | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Girls | |||||||||||
Average | 1616.71 | 1417.02 | 163.66 | 54.05 | 50.63 | 25.36 | 29.53 | 38.28 | 111.91 | 67.89 | |
SD | 219.42 | 85.00 | 9.18 | 8.01 | 23.68 | 4.10 | 4.18 | 5.41 | 11.84 | 5.90 | |
Me | 1673.00 | 1419.43 | 164.00 | 54.00 | 45.00 | 25.20 | 29.20 | 37.90 | 110.00 | 69.00 | |
Min | 1219.00 | 1093.19 | 127.00 | 24.60 | 8.00 | 12.90 | 14.30 | 18.60 | 91.00 | 54.00 | |
Max | 1913.00 | 1577.71 | 181.00 | 69.80 | 90.00 | 34.50 | 37.50 | 48.60 | 141.00 | 83.00 | |
Boys | |||||||||||
Average | 1844.42 | 1512.43 | 162.91 | 52.37 | 49.47 | 17.58 | 31.84 | 40.96 | 113.09 | 63.63 | |
SD | 327.97 | 255.80 | 14.90 | 14.44 | 23.20 | 3.76 | 9.10 | 11.49 | 13.43 | 7.04 | |
Me | 1883.00 | 1552.16 | 166.00 | 53.85 | 49.00 | 16.90 | 32.75 | 42.10 | 113.00 | 63.00 | |
Min | 1183.00 | 1004.97 | 132.00 | 24.80 | 1.00 | 8.80 | 15.10 | 19.40 | 85.00 | 44.00 | |
Max | 2639.00 | 2318.72 | 191.00 | 102.20 | 96.00 | 34.00 | 58.80 | 75.70 | 158.00 | 83.00 | |
Total | |||||||||||
Average | 1808.03 | 1497.18 | 163.03 | 52.64 | 49.66 | 18.82 | 31.47 | 40.53 | 112.90 | 64.31 | |
SD | 323.72 | 239.34 | 14.12 | 13.61 | 23.22 | 4.76 | 8.54 | 10.79 | 13.17 | 7.04 | |
Me | 1807.00 | 1487.35 | 165.00 | 53.90 | 49.00 | 17.30 | 31.40 | 40.30 | 112.00 | 64.00 | |
Min | 1183.00 | 1004.97 | 127.00 | 24.60 | 1.00 | 8.80 | 14.30 | 18.60 | 85.00 | 44.00 | |
Max | 2639.00 | 2318.72 | 191.00 | 102.20 | 96.00 | 34.50 | 58.80 | 75.70 | 158.00 | 83.00 | |
p | 0.0001 * | 0.0171 * | 0.7888 | 0.5704 | 0.8866 | 0.0000 * | 0.1358 | 0.1673 | 0.5323 | 0.0007 * |
Value | Girls | Boys | |
---|---|---|---|
BMR Harris Benedict formula [kcal/day] | rho | 0.541 | 0.843 |
p | 0.0008 * | 0.0000 * | |
Age [years] | rho | 0.130 | 0.707 |
p | 0.4574 | 0.0000 * | |
Body height [cm] | rho | 0.304 | 0.815 |
p | 0.0757 | 0.0000 * | |
Body weight [kg] | rho | 0.526 | 0.835 |
p | 0.0012 * | 0.0000 * | |
BMI Centiles | rho | 0.367 | 0.376 |
p | 0.0303 * | 0.0000 * | |
Fat tissue [%] | rho | −0.026 | −0.142 |
p | 0.8828 | 0.0539 | |
Total body water [kg] | rho | 0.636 | 0.822 |
p | 0.0000 * | 0.0000 * | |
Muscle mass [kg] | rho | 0.639 | 0.850 |
p | 0.0000 * | 0.0000 * | |
Systolic pressure | rho | 0.283 | 0.514 |
p | 0.0996 | 0.0000 * | |
Diastolic pressure | rho | 0.434 | 0.233 |
p | 0.0092 * | 0.0015 * |
Non-Standardized Coefficients | Standardized Coefficients | t | p | R2 | |||
---|---|---|---|---|---|---|---|
B | SE | β | |||||
Total | (Constant) | 732.91 | 116.78 | 6.28 | 0.0000 * | 0.735 | |
Muscle mass [kg] | 37.33 | 4.55 | 1.24 | 8.21 | 0.0000 * | ||
Sex | 125.82 | 35.68 | 0.14 | 3.53 | 0.0005 * | ||
Age | −22.15 | 9.74 | −0.15 | −2.28 | 0.0239 * | ||
Total body water [kg] | −11.88 | 5.33 | −0.31 | −2.23 | 0.0269 * | ||
Girls | (Constant) | 2118.01 | 667.75 | 3.17 | 0.0033 * | 0.478 | |
Muscle mass [kg] | 45.16 | 10.01 | 1.11 | 4.51 | 0.0001 * | ||
Body height [cm] | −13.63 | 5.90 | −0.57 | −2.31 | 0.0274 * | ||
Boys | (Constant) | 851.56 | 46.42 | 18.35 | 0.0000 * | 0.736 | |
Muscle mass [kg] | 33.40 | 4.26 | 1.17 | 7.85 | 0.0000 * | ||
Total body water [kg] | −11.78 | 5.37 | −0.33 | −2.19 | 0.0296 * | ||
Total (PCA) | (Constant) | 1517.96 | 60.28 | 25.18 | 0.0000 * | 0.716 | |
Body mass components | 262.05 | 11.80 | 0.81 | 22.20 | 0.0000 * | ||
Sex | 157.63 | 32.13 | 0.18 | 4.91 | 0.0000 * | ||
Girls (PCA) | (Constant) | 1671.41 | 33.04 | 50.59 | 0.0000 * | 0.349 | |
Body mass components | 243.45 | 57.87 | 0.59 | 4.21 | 0.0002 * | ||
Boys (PCA) | (Constant) | 1833.18 | 12.74 | 143.89 | 0.0000 * | 0.724 | |
Body mass components | 262.92 | 12.02 | 0.85 | 21.87 | 0.0000 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łuszczki, E.; Bartosiewicz, A.; Dereń, K.; Kuchciak, M.; Oleksy, Ł.; Stolarczyk, A.; Mazur, A. The Diagnostic-Measurement Method—Resting Energy Expenditure Assessment of Polish Children Practicing Football. Diagnostics 2021, 11, 340. https://doi.org/10.3390/diagnostics11020340
Łuszczki E, Bartosiewicz A, Dereń K, Kuchciak M, Oleksy Ł, Stolarczyk A, Mazur A. The Diagnostic-Measurement Method—Resting Energy Expenditure Assessment of Polish Children Practicing Football. Diagnostics. 2021; 11(2):340. https://doi.org/10.3390/diagnostics11020340
Chicago/Turabian StyleŁuszczki, Edyta, Anna Bartosiewicz, Katarzyna Dereń, Maciej Kuchciak, Łukasz Oleksy, Artur Stolarczyk, and Artur Mazur. 2021. "The Diagnostic-Measurement Method—Resting Energy Expenditure Assessment of Polish Children Practicing Football" Diagnostics 11, no. 2: 340. https://doi.org/10.3390/diagnostics11020340
APA StyleŁuszczki, E., Bartosiewicz, A., Dereń, K., Kuchciak, M., Oleksy, Ł., Stolarczyk, A., & Mazur, A. (2021). The Diagnostic-Measurement Method—Resting Energy Expenditure Assessment of Polish Children Practicing Football. Diagnostics, 11(2), 340. https://doi.org/10.3390/diagnostics11020340