Profiling Patients by Intensity of Nursing Care: An Operative Approach Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. The Barthel Index Scale
2.3. Ethics
2.4. Statistical Analysis
2.5. Machine Learning Classification
2.5.1. Cluster Analysis
2.5.2. Gold Standard Creation
2.5.3. Machine Learning Technique Classifiers Applied to Doubtful Cases
3. Results
3.1. Machine Learning Classifiers Results
3.2. Descriptive Results According to the Two-Step Algorithm
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- U.S. Department of Health and Human Services FDA Center for Drug Evaluation and Research; U.S. Department of Health and Human Services FDA Center for Biologics Evaluation and Research; U.S. Department of Health and Human Services FDA Center for Devices and Radiological Health. Guidance for industry: Patient-reported outcome measures: Use in medical product development to support labeling claims: Draft guidance. Health Qual. Life Outcomes 2006, 4, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hood, L. A systems approach to medicine will transform healthcare. In Physical Biology: From Atoms to Medicine; World Scientific, Imperial College Press: London, UK, 2008; pp. 337–366. [Google Scholar]
- Giang, P.; Williams, A.; Argyros, L. Automated Extraction of the Barthel Index from Clinical Texts. AMIA Annu. Symp. Proc. 2013, 2013, 486–495. [Google Scholar] [PubMed]
- de Rekeneire, N.; Volpato, S. Physical Function and Disability in Older Adults with Diabetes. Clin. Geriatr. Med. 2015, 31, 51–65. [Google Scholar] [CrossRef]
- Buyser, S.L.D.; Petrovic, M.; Taes, Y.E.; Vetrano, D.L.; Onder, G. A Multicomponent Approach to Identify Predictors of Hospital Outcomes in Older In-Patients: A Multicentre, Observational Study. PLoS ONE 2014, 9, e115413. [Google Scholar] [CrossRef]
- Definizione dei valori minimi di riferimento per il personale di assistenza del comparto dedicato alle aree di degenza ospedaliera. Articolo 8, comma 1, della L.R. 29 giugno 2012, n. 23. Deliberazione n. 179/ CR del 30 dicembre 2013. Available online: http://bur.regione.veneto.it/BurvServices/Pubblica/DettaglioDgr.aspx?id=273829 (accessed on 14 December 2020).
- Ball, J.E.; Bruyneel, L.; Aiken, L.H.; Sermeus, W.; Sloane, D.M.; Rafferty, A.M.; Lindqvist, R.; Tishelman, C.; Griffiths, P. Post-operative mortality, missed care and nurse staffing in nine countries: A cross-sectional study. Int. J. Nurs. Stud. 2018, 78, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Sasso, L.; Bagnasco, A.; Zanini, M.; Catania, G.; Aleo, G.; Santullo, A.; Spandonaro, F.; Icardi, G.; Watson, R.; Sermeus, W. The general results of the RN4CAST survey in Italy. J. Adv. Nurs. 2017, 73, 2028–2030. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.-H.; Beam, A.L.; Kohane, I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef]
- Robert, N. How artificial intelligence is changing nursing. Nurs. Manag. (Harrow) 2019, 50, 30–39. [Google Scholar] [CrossRef]
- Liao, P.-H.; Hsu, P.-T.; Chu, W. Applying artificial intelligence technology to support decision-making in nursing: A case study in Taiwan. Health Inform. J. 2015, 21, 137–148. [Google Scholar] [CrossRef]
- Fritz, R.L.; Dermody, G. A nurse-driven method for developing artificial intelligence in “smart” homes for aging-in-place. Nurs. Outlook 2019, 67, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar] [PubMed]
- Dagani, J.; Boero, M.E.; Geroldi, C.; Giobbio, G.M.; Maggi, P.; Melegari, A.L.; Sattin, G.; Signorini, M.; Volpe, D.; Zanetti, O.; et al. A prospective, multidimensional follow-up study of a geriatric hospitalised population: Predictors of discharge and well-being. Aging Clin. Exp. Res. 2013, 25, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 344, ISBN 0-470-31748-5. [Google Scholar]
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions, R package version 2.0.1. 2015; CRAN: Zürich, Switzerland, 2017. [Google Scholar]
- R Core Team. R: A language and Environment for Statistical Computing; R. Core Team: Vienna, Austria, 2019. [Google Scholar]
- Bergstrom, N. The Braden Scale for predicting pressure sore risk. Nurs. Res. 1987, 36, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Conley, D.; Schultz, A.A.; Selvin, R. The challenge of predicting patients at risk for falling: Development of the Conley Scale. Medsurg. Nurs. 1999, 8, 348. [Google Scholar] [PubMed]
- Breiman, L.; Friedman, J.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Chapman & Hall: New York, NY, USA, 1984. [Google Scholar]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 2010, 33, 1. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Baldi, I.; Vicari, P.; Cuonzo, D.D.; Zanetti, R.; Pagano, E.; Rosato, R.; Sacerdote, C.; Segnan, N.; Merletti, F.; Ciccone, G. A high positive predictive value algorithm using hospital administrative data identified incident cancer cases. J. Clin. Epidemiol. 2008, 61, 373–379. [Google Scholar] [CrossRef]
- Sasso, L.; Bagnasco, A.; Aleo, G.; Catania, G.; Dasso, N.; Zanini, M.P.; Watson, R. Incorporating nursing complexity in reimbursement coding systems: The potential impact on missed care. BMJ Qual. Saf. 2017, 26, 929–932. [Google Scholar] [CrossRef] [Green Version]
- Tilquin, C. PRN 80: Measuring the Level of Nursing Care Required; Équipe de recherche opérationnelle en santé: Montreal, QC, Canada, 1981. [Google Scholar]
- Galimberti, S.; Rebora, P.; Di Mauro, S.; D’Ilio, I.; Viganò, R.; Moiset, C.; Valsecchi Maria, G. The SIPI for measuring complexity in nursing care: Evaluation study. Int. J. Nurs. Stud. 2012, 49, 320–326. [Google Scholar] [CrossRef]
- Silvestro, A. La Complessità Assistenziale: Concettualizzazione, Modello di Analisi e Metodologia Applicativa; McGraw-Hill: Milano, Italia, 2009; ISBN 88-386-3664-8. [Google Scholar]
- Rauhala, A.; Fagerström, L. Determining optimal nursing intensity: The RAFAELA method. J. Adv. Nurs. 2004, 45, 351–359. [Google Scholar] [CrossRef]
- Bai, Y.; Yao, A.; Song, Y.; Xu, G. Redesigning the patient classification system in China: A pilot study. Nurs. Health Sci. 2018, 20, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Dunn, H.; Quinn, L.; Corbridge, S.J.; Eldeirawi, K.; Kapella, M.; Collins, E.G. Cluster Analysis in Nursing Research: An Introduction, Historical Perspective, and Future Directions. West. J. Nurs. Res. 2018, 40, 1658–1676. [Google Scholar] [CrossRef] [PubMed]
- Tighe, P.J.; Harle, C.A.; Hurley, R.W.; Aytug, H.; Boezaart, A.P.; Fillingim, R.B. Teaching a Machine to Feel Postoperative Pain: Combining High-Dimensional Clinical Data with Machine Learning Algorithms to Forecast Acute Postoperative Pain. Pain Med. Malden Mass. 2015, 16, 1386–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bose, E.; Maganti, S.; Bowles, K.; Brueshoff, B.; Monsen, K. Machine Learning Methods for Identifying Critical Data Elements in Nursing Documentation. Nurs. Res. 2019, 68, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Brom, H.; Carthon, J.B.; Ikeaba, U.; Chittams, J. Leveraging Electronic Health Records and Machine Learning to Tailor Nursing Care for Patients at High Risk for Readmissions. J. Nurs. Care Qual. 2020, 35, 27–33. [Google Scholar] [CrossRef] [PubMed]
Variable | Level | N = 74,514 |
---|---|---|
Feeding | 0 | 8% (5785) |
5 | 12% (9284) | |
10 | 80% (59,445) | |
Bowel control | 0 | 10% (7602) |
5 | 7% (5353) | |
10 | 83% (61,559) | |
Bladder control | 0 | 15% (11,097) |
5 | 7% (5018) | |
10 | 78% (58,399) | |
Mobility | 0 | 15% (11,384) |
5 | 8% (6008) | |
10 | 14% (10,574) | |
15 | 63% (46,548) | |
Bathing | 0 | 36% (26,559) |
5 | 64% (47,955) | |
Grooming | 0 | 19% (14,077) |
5 | 81% (60,437) | |
Stair climbing | 0 | 28% (20,723) |
5 | 20% (15,009) | |
10 | 52% (38,782) | |
Bed to chair transfers | 0 | 12% (8658) |
5 | 10% (7508) | |
10 | 11% (8595) | |
15 | 67% (49,753) | |
Toilet use | 0 | 16% (12,292) |
5 | 12% (8877) | |
10 | 72% (53,345) | |
Dressing | 0 | 14% (10,473) |
5 | 19% (14,207) | |
10 | 67% (49,834) | |
Age | 45/64/77 | |
Age category | <65 | 51% (38,043) |
>65 | 49% (36,471) | |
Gender | Female | 52% (38,768) |
Male | 48% (35,746) | |
Department | S | 28% (20,955) |
CTV | 15% (10,807) | |
W-C | 13% (9903) | |
E-U | 0% (240) | |
M | 30% (22,348) | |
N-SO | 13% (9610) | |
MH | 1% (651) |
Accuracy | Sensibility | Specificity | AUC | F1 | |
---|---|---|---|---|---|
Random forest | 0.62 | 0.42 | 0.81 | 0.69 | 0.51 |
(0.56, 0.70) | (0.31, 0.53) | (0.72, 0.89) | (0.62, 0.78) | (0.40, 0.62) | |
GLMNet | 0.66 | 0.57 | 0.74 | 0.72 | 0.62 |
(0.56, 0.72) | (0.45, 0.67) | (0.63, 0.82) | (0.64, 0.76) | (0.50, 0.68) | |
Support vector machine | 0.66 | 0.62 | 0.72 | 0.72 | 0.63 |
(0.59, 0.75) | (0.51, 0.74) | (0.62, 0.83) | (0.63, 0.8) | (0.54, 0.73) |
Variables | 2-Step Algorithm | Variable Levels | Combined | ||||||
---|---|---|---|---|---|---|---|---|---|
Functional area | S (N = 20,955) | CTV (N = 10,807) | W-C (N = 9903) | E-U (N = 240) | M (N = 22,348) | N-SO (N = 9610) | MH (N = 651) | N = 74,514 | |
High | 14% (3019) | 18% (1950) | 1% (70) | 76% (182) | 42% (9436) | 15% (1448) | 6% (41) | 22% (16,146) | |
Low | 86% (17,936) | 82% (8857) | 99% (9833) | 24% (58) | 58% (12,912) | 85% (8162) | 94% (610) | 78% (58,368) | |
Year | 2015 (N = 523) | 2016 (N = 31,829) | 2017 (N = 22,322) | 2018 (N = 19,840) | N = 74,514 | ||||
High | 48% (249) | 22% (7014) | 22% (4929) | 20% (3954) | 22% (16,146) | ||||
Low | 52% (274) | 78% (24,815) | 78% (17,393) | 80% (15,886) | 78% (58,368) | ||||
Age | <65 (N = 38,043) | >65 (N = 36,471) | N = 74,514 | ||||||
High | 7% (2618) | 37% (13,528) | 22% (16,146) | ||||||
Low | 93% (35,425) | 63% (22,943) | 78% (58,368) | ||||||
Gender | female (N = 38,768) | male (N = 35,746) | N = 74,514 | ||||||
High | 22% (8616) | 21% (7530) | 22% (16,146) | ||||||
Low | 78% (30,152) | 79% (28,216) | 78% (58,368) | ||||||
Barthel index levels | |||||||||
Feeding | 0 (N = 5785) | 5 (N = 9284) | 10 (N = 59,445) | N = 74,514 | |||||
High | 96% (5553) | 76% (7046) | 6% (3547) | 22% (16,146) | |||||
Low | 4% (232) | 24% (2238) | 94% (55,898) | 78% (58,368) | |||||
Bowel control | 0 (N = 7602) | 5 (N = 5353) | 10 (N = 61,559) | N = 74,514 | |||||
High | 95% (7235) | 87% (4643) | 7% (4268) | 22% (16,146) | |||||
Low | 5% (367) | 13% (710) | 93% (57,291) | 78% (58,368) | |||||
Bladder control | 0 (N = 11,097) | 5 (N = 5018) | 10 (N = 58,399) | N = 74,514 | |||||
High | 91% (10,140) | 70% (3516) | 4% (2490) | 22% (16,146) | |||||
Low | 9% (957) | 30% (1502) | 96% (55,909) | 78% (58,368) | |||||
Walking | 0 (N = 11,384) | 5 (N = 6008) | 10 (N = 10,574) | 15 (N = 46,548) | N = 74,514 | ||||
High | 98% (11,201) | 64% (3825) | 10% (1093) | 0% (27) | 22% (16,146) | ||||
Low | 2% (183) | 36% (2183) | 90% (9481) | 100% (46,521) | 78% (58,368) | ||||
Bathing | 0 (N = 26,559) | 5 (N = 47,955) | N = 74,514 | ||||||
High | 60% (15,914) | 0% (232) | 22% (16,146) | ||||||
Low | 40% (10,645) | 100% (47,723) | 78% (58,368) | ||||||
Grooming | 0 (N = 14,077) | 5 (N = 60,437) | N = 74,514 | ||||||
High | 87% (12,317) | 6% (3829) | 22% (16,146) | ||||||
Low | 13% (1760) | 94% (56,608) | 78% (58,368) | ||||||
Climbing scale | 0 (N = 20,723) | 5 (N = 15,009) | 10 (N = 38,782) | N = 74,514 | |||||
High | 74% (15,426) | 5% (705) | 0% (15) | 22% (16,146) | |||||
Low | 26% (5297) | 95% (14,304) | 100% (38,767) | 78% (58,368) | |||||
Bed-to-chair transfers | 0 (N = 8658) | 5 (N = 7508) | 10 (N = 8595) | 15 (N = 49,753) | N = 74,514 | ||||
High | 100% (8628) | 85% (6393) | 13% (1075) | 0% (50) | 22% (16,146) | ||||
Low | 0% (30) | 15% (1115) | 87% (7520) | 100% (49,703) | 78% (58,368) | ||||
Toilet use | 0 (N = 12,292) | 5 (N = 8877) | 10 (N = 53,345) | N = 74,514 | |||||
High | 99% (12,132) | 44% (3894) | 0% (120) | 22% (16,146) | |||||
Low | 1% (160) | 56% (4983) | 100% (53,225) | 78% (58,368) | |||||
Dressing | 0 (N = 10,473) | 5 (N = 14,207) | 10 (N = 49,834) | N = 74,514 | |||||
High | 98% (10,269) | 40% (5680) | 0% (197) | 22% (16,146) | |||||
Low | 2% (204) | 60% (8527) | 100% (49,637) | 78% (58,368) |
Department | Combined | ||||||||
---|---|---|---|---|---|---|---|---|---|
2-Step Algorithm | S | CTV | W-C | E-U | M | N-SO | MH | ||
2016 | N | (N = 8552) | (N = 4432) | (N = 4376) | (N = 113) | (N = 10,244) | (N = 3891) | (N = 221) | (N = 31,829) |
High | 16% (1334) | 18% (807) | 1% (29) | 68% (77) | 41% (4170) | 15% (578) | 9% (19) | 22% (7014) | |
Low | 84% (7218) | 82% (3625) | 99% (4347) | 32% (36) | 59% (6074) | 85% (3313) | 91% (202) | 78% (24,815) | |
2017 | N | (N = 6441) | (N = 3320) | (N = 3032) | (N = 68) | (N = 6273) | (N = 2966) | (N = 222) | (N = 22,322) |
High | 15% (950) | 20% (678) | 1% (22) | 87% (59) | 43% (2726) | 16% (482) | 5% (12) | 22% (4929) | |
Low | 85% (5491) | 80% (2642) | 99% (3010) | 13% (9) | 57% (3547) | 84% (2484) | 95% (210) | 78% (17,393) | |
2018 | N | (N = 5872) | (N = 2967) | (N = 2495) | (N = 49) | (N = 5543) | (N = 2707) | (N = 207) | (N = 19,840) |
High | 12% (701) | 15% (442) | 1% (19) | 78% (38) | 43% (2374) | 14% (371) | 4% (9) | 20% (3954) | |
Low | 88% (5171) | 85% (2525) | 99% (2476) | 22% (11) | 57% (3169) | 86% (2336) | 96% (198) | 80% (15,886) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ocagli, H.; Lanera, C.; Lorenzoni, G.; Prosepe, I.; Azzolina, D.; Bortolotto, S.; Stivanello, L.; Degan, M.; Gregori, D. Profiling Patients by Intensity of Nursing Care: An Operative Approach Using Machine Learning. J. Pers. Med. 2020, 10, 279. https://doi.org/10.3390/jpm10040279
Ocagli H, Lanera C, Lorenzoni G, Prosepe I, Azzolina D, Bortolotto S, Stivanello L, Degan M, Gregori D. Profiling Patients by Intensity of Nursing Care: An Operative Approach Using Machine Learning. Journal of Personalized Medicine. 2020; 10(4):279. https://doi.org/10.3390/jpm10040279
Chicago/Turabian StyleOcagli, Honoria, Corrado Lanera, Giulia Lorenzoni, Ilaria Prosepe, Danila Azzolina, Sabrina Bortolotto, Lucia Stivanello, Mario Degan, and Dario Gregori. 2020. "Profiling Patients by Intensity of Nursing Care: An Operative Approach Using Machine Learning" Journal of Personalized Medicine 10, no. 4: 279. https://doi.org/10.3390/jpm10040279
APA StyleOcagli, H., Lanera, C., Lorenzoni, G., Prosepe, I., Azzolina, D., Bortolotto, S., Stivanello, L., Degan, M., & Gregori, D. (2020). Profiling Patients by Intensity of Nursing Care: An Operative Approach Using Machine Learning. Journal of Personalized Medicine, 10(4), 279. https://doi.org/10.3390/jpm10040279