Machine Learning Model to Identify Sepsis Patients in the Emergency Department: Algorithm Development and Validation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sepsis Definitions
2.3. Predictor Variables
2.4. Model Development and Validation
2.5. Evaluating Model Performance
2.6. Feature Selection
2.7. External Validation
2.8. Statistical Analysis
2.9. Promoting Interoperability
3. Results
3.1. Patient Characteristics
3.2. Model Performance for Identifying Sepsis Patients
3.3. Most Important Predictors of Sepsis as Assessed with the XGBoost Model
3.4. Potential Clinical Confounders of Model Performance
4. Discussion
4.1. Main Findings
4.2. The Pivotal Role of the ED in Developing a Sepsis Identification Model
4.3. Machine Learning Might Help Shorten the Triage-to-Antibiotic Time
4.4. Factors Associated with the Heterogeneity of Model Performance
4.5. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.C.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Rodríguez, F.; Barrera, L.; De La Rosa, G.; Dennis, R.J.; Dueñas, C.; Granados, M.; Londoño, D.; Molina, F.; Ortiz, G.; Jaimes, F. The epidemiology of sepsis in Colombia: A prospective multicenter cohort study in ten university hospitals*. Crit. Care Med. 2011, 39, 1675–1682. [Google Scholar] [CrossRef]
- Silva, E.; Pedro, M.D.A.; Sogayar, A.C.B.; Mohovic, T.; Silva, C.L.D.O.; Janiszewski, M.; Cal, R.G.R.; de Sousa, E.F.; Abe, T.P.; de Andrade, J.; et al. Brazilian Sepsis Epidemiological Study (BASES study). Crit. Care 2004, 8, R251–R260. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Xie, G.; Yao, S.; Wu, X.; Guo, Q.; Gu, M.; Fang, Q.; Xu, Q.; Wang, D.; Jin, Y.; et al. Epidemiology of severe sepsis in critically ill surgical patients in ten university hospitals in China*. Crit. Care Med. 2007, 35, 2538–2546. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, C.; Scherag, A.; Adhikari, N.K. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef]
- Gaieski, D.F.; Edwards, J.M.; Kallan, M.J.; Carr, B.G. Benchmarking the Incidence and Mortality of Severe Sepsis in the United States*. Crit. Care Med. 2013, 41, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Torio, C.M.; Moore, B.J. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2013: Statistical Brief# 204; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2016. [Google Scholar]
- Alsolamy, S.; Al Salamah, M.; Al Thagafi, M.; Al-Dorzi, H.M.; Marini, A.M.; Aljerian, N.; Al-Enezi, F.; Al-Hunaidi, F.; Mahmoud, A.M.; Alamry, A.; et al. Diagnostic accuracy of a screening electronic alert tool for severe sepsis and septic shock in the emergency department. BMC Med. Inform. Decis. Mak. 2014, 14, 105. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, S.Q.; Mwakalindile, E.; Booth, J.S. Automated electronic medical record sepsis detection in the emergency de-partment. Peer J. 2014, 2, e343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, C.; Patel, K.; Vincent, A.; Verzosa, N.; Norris, D.; Tillis, W.; Hafner, J. 253 Electronic Best Practice Advisories’ Effectiveness in Detecting Sepsis in the Emergency Department. Ann. Emerg. Med. 2015, 66, S91–S92. [Google Scholar] [CrossRef] [Green Version]
- Burdick, H.; Pino, E.; Gabel-Comeau, D.; Gu, C.; Roberts, J.; Le, S.; Slote, J.; Saber, N.; Pellegrini, E.; Green-Saxena, A.; et al. Validation of a machine learning algorithm for early severe sepsis prediction: A retrospective study predicting severe sepsis up to 48 h in advance using a diverse dataset from 461 US hospitals. BMC Med. Inform. Decis. Mak. 2020, 20, 1–10. [Google Scholar] [CrossRef]
- Usman, O.A.; Usman, A.; Ward, M.A. Comparison of SIRS, qSOFA, and NEWS for the early identification of sepsis in the Emergency Department. Am. J. Emerg. Med. 2019, 37, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
- Petit, J.; Passerieux, J.; Maître, O. Impact of a qSOFA-based triage procedure on antibiotic timing in ED patients with sepsis: A prospective interventional study. Am. J. Emerg. Med. 2020, 38, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Jouffroy, R.; Saade, A.; Ellouze, S.; Carpentier, A.; Michaloux, M.; Carli, P.; Vivien, B. Prehospital triage of septic patients at the SAMU regulation: Comparison of qSOFA, MRST, MEWS and PRESEP scores. Am. J. Emerg. Med. 2018, 36, 820–824. [Google Scholar] [CrossRef]
- Kalil, A.C.; Machado, F.R. Quick Sequential Organ Failure Assessment Is Not Good for Ruling Sepsis in or out. Chest 2019, 156, 197–199. [Google Scholar] [CrossRef]
- Amland, R.C.; Hahn-Cover, K.E. Clinical Decision Support for Early Recognition of Sepsis. Am. J. Med. Qual. 2016, 31, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.; Nasrin, T.; Walther, B.A.; Wu, C.C.; Yang, H.-C.; Li, Y.-C. Prediction of sepsis patients using machine learning approach: A meta-analysis. Comput. Methods Programs Biomed. 2019, 170, 1–9. [Google Scholar] [CrossRef]
- Hwang, M.I.; Bond, W.F.; Powell, E.S. Sepsis Alerts in Emergency Departments: A Systematic Review of Accuracy and Quality Measure Impact. West. J. Emerg. Med. 2020, 21, 1201–1210. [Google Scholar] [CrossRef]
- Kam, H.J.; Kim, H.Y. Learning representations for the early detection of sepsis with deep neural networks. Comput. Biol. Med. 2017, 89, 248–255. [Google Scholar] [CrossRef]
- Calvert, J.S.; Price, D.A.; Chettipally, U.K.; Barton, C.W.; Feldman, M.D.; Hoffman, J.L.; Jay, M.; Das, R. A computational approach to early sepsis detection. Comput. Biol. Med. 2016, 74, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Nemati, S.; Holder, A.; Razmi, F.; Stanley, M.D.; Clifford, G.; Buchman, T.G. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Crit. Care Med. 2018, 46, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Kong, G.; Lin, K.; Hu, Y. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. BMC Med. Inform. Decis. Mak. 2020, 20, 1–10. [Google Scholar] [CrossRef]
- Ibrahim, Z.M.; Wu, H.; Hamoud, A.; Stappen, L.; Dobson, R.; Agarossi, A. On classifying sepsis heterogeneity in the ICU: Insight using machine learning. J. Am. Med. Inform. Assoc. 2020, 27, 437–443. [Google Scholar] [CrossRef]
- Rhee, C.; Dantes, R.; Epstein, L.; Murphy, D.J.; Seymour, C.W.; Iwashyna, T.J.; Kadri, S.S.; Angus, D.C.; Danner, R.L.; Fiore, A.E.; et al. Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 2009–2014. JAMA 2017, 318, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Moons, K.G.; Altman, D.G.; Reitsma, J.B.; Ioannidis, J.P.; Macaskill, P.; Steyerberg, E.W.; Vickers, A.J.; Ransohoff, D.F.; Collins, G.S. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and Elaboration. Ann. Intern. Med. 2015, 162, W1–W73. [Google Scholar] [CrossRef] [Green Version]
- Fleuren, L.M.; Klausch, T.L.; Zwager, C.L. Machine learning for the prediction of sepsis: A systematic review and me-ta-analysis of diagnostic test accuracy. Intensive Care Med. 2020, 46, 383–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.E.; Jones, A.R.; Donnelly, J. Revised National Estimates of Emergency Department Visits for Sepsis in the United States*. Crit. Care Med. 2017, 45, 1443–1449. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. BJS 2015, 102, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Roberts, D.; Wood, K.E. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006, 34, 1589–1596. [Google Scholar] [CrossRef]
- Ferrer, R.; Martin-Loeches, I.; Phillips, G. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: Results from a guideline-based performance improvement program. Crit. Care Med. 2014, 42, 1749–1755. [Google Scholar] [CrossRef] [PubMed]
- Peltan, I.D.; Mitchell, K.H.; Rudd, K.; Mann, B.A.; Carlbom, D.J.; Hough, C.L.; Rea, T.D.; Brown, S. Physician Variation in Time to Antimicrobial Treatment for Septic Patients Presenting to the Emergency Department. Crit. Care Med. 2017, 45, 1011–1018. [Google Scholar] [CrossRef]
- Mok, K.; Christian, M.; Nelson, S.; Burry, L. Time to Administration of Antibiotics among Inpatients with Severe Sepsis or Septic Shock. Can. J. Hosp. Pharm. 2014, 67, 213–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appelboam, R.; Tilley, R.; Blackburn, J. Time to antibiotics in sepsis. Crit. Care 2010, 14, P50. [Google Scholar] [CrossRef] [Green Version]
- Shimabukuro, D.W.; Barton, C.W.; Feldman, M.D.; Mataraso, S.; Das, R. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: A randomised clinical trial. BMJ Open Respir. Res. 2017, 4, e000234. [Google Scholar] [CrossRef]
- Sawyer, A.M.; Deal, E.N.; Labelle, A.J.; Witt, C.; Thiel, S.W.; Heard, K.; Reichley, R.M.; Micek, S.T.; Kollef, M.H. Implementation of a real-time computerized sepsis alert in nonintensive care unit patients*. Crit. Care Med. 2011, 39, 469–473. [Google Scholar] [CrossRef] [Green Version]
- Birnbaum, A.; Bijur, P.; Kuperman, G.; Gennis, P.; Berger, T. A Computerized Alert Screening for Severe Sepsis in Emergency Department Patients Increases Lactate Testing but Does Not Improve Inpatient Mortality. Appl. Clin. Inform. 2010, 01, 394–407. [Google Scholar] [CrossRef] [Green Version]
- Debray, T.P.; Vergouwe, Y.; Koffijberg, H.; Nieboer, D.; Steyerberg, E.W.; Moons, K.G. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J. Clin. Epidemiol. 2015, 68, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.; Debray, T.P.; Moons, K.G. Developing and validating risk prediction models in an individual participant data meta-analysis. BMC Med. Res. Methodol. 2014, 14, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennells, L.; Kaptoge, S.; White, I.R. Assessing risk prediction models using individual participant data from multiple studies. Am. J. Epidemiol. 2014, 179, 621–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, R.D.; Ensor, J.; Snell, K.; Debray, T.; Altman, D.G.; Moons, K.G.M.; Collins, G. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: Opportunities and challenges. BMJ 2016, 353, i3140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvert, J.; Hoffman, J.; Barton, C.; Shimabukuro, D.; Ries, M.; Chettipally, U.; Kerem, Y.; Jay, M.; Mataraso, S.; Das, R. Cost and mortality impact of an algorithm-driven sepsis prediction system. J. Med. Econ. 2017, 20, 646–651. [Google Scholar] [CrossRef]
- McCoy, A.; Das, R. Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis pre-diction in the emergency department, intensive care unit and hospital floor units. BMJ Open Qual. 2017, 6, e000158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, Q.; Jay, M.; Hoffman, J.L.; Calvert, J.; Barton, C.; Shimabukuro, D.; Shieh, L.; Chettipally, U.; Fletcher, G.; Kerem, Y.; et al. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. BMJ Open 2018, 8, e017833. [Google Scholar] [CrossRef] [Green Version]
- Giannini, H.M.; Ginestra, J.C.; Chivers, C. A machine learning algorithm to predict severe sepsis and septic shock: Development, implementation, and impact on clinical practice. Crit. Care Med. 2019, 47, 1485–1492. [Google Scholar] [CrossRef] [PubMed]
- Faisal, M.; Scally, A.; Richardson, D.; Beatson, K.; Howes, R.; Speed, K.; Mohammed, M.A. Development and External Validation of an Automated Computer-Aided Risk Score for Predicting Sepsis in Emergency Medical Admissions Using the Patient’s First Electronically Recorded Vital Signs and Blood Test Results*. Crit. Care Med. 2018, 46, 612–618. [Google Scholar] [CrossRef]
- Fang, W.; Chen, C.; Song, B.; Wang, L.; Zhou, J.; Zhu, K.Q. Adapted Tree Boosting for Transfer Learning. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 741–750. [Google Scholar]
- Fleischmann-Struzek, C.; Thomas-Rüddel, D.O.; Schettler, A.; Schwarzkopf, D.; Stacke, A.; Seymour, C.W.; Haas, C.; Dennler, U.; Reinhart, K. Comparing the validity of different ICD coding abstraction strategies for sepsis case identification in German claims data. PLoS ONE 2018, 13, e0198847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heldens, M.; Schout, M.; Hammond, N.E.; Bass, F.; Delaney, A.; Finfer, S.R. Sepsis incidence and mortality are underestimated in Australian intensive care unit administrative data. Med. J. Aust. 2018, 209, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.M.; Jones, J.; Kuttler, K.G.; Keddington, R.K.; Allen, T.L.; Haug, P. Prospective evaluation of an automated method to identify patients with severe sepsis or septic shock in the emergency department. BMC Emerg. Med. 2016, 16, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horng, S.; Sontag, D.A.; Halpern, Y. Creating an automated trigger for sepsis clinical decision support at emergency de-partment triage using machine learning. PLoS ONE 2017, 12, e0174708. [Google Scholar] [CrossRef] [Green Version]
- Delahanty, R.J.; Alvarez, J.; Flynn, L.M.; Sherwin, R.L.; Jones, S.S. Development and Evaluation of a Machine Learning Model for the Early Identification of Patients at Risk for Sepsis. Ann. Emerg. Med. 2019, 73, 334–344. [Google Scholar] [CrossRef]
- Rico, P.M.; Pérez, A.V.; Martínez, J.M.L. Electronic alerting and decision support for early sepsis detection and management: Impact on clinical outcomes. Eur. J. Clin. Pharm. Atención Farm. 2017, 19, 33–40. [Google Scholar]
Traditional Definition | Sepsis-3 Definition | |
---|---|---|
Sepsis | Suspicious/known infection + ≥2 SIRS | Suspicious/known infection + rise in SOFA score ≥2 |
Severe sepsis | Sepsis + SBP < 90 mmHg or MAP < 65 mmHg, lactate > 2 mmol/L (18 mg/dL) INR > 1.5 or a PTT > 60 s Bilirubin > 34 μmol/L Urine output < 0.5 mL/kg/h for 2 h Creatinine > 177 μmol/L Platelets < 100 × 109/L SpO2 < 90%on room air | Not a category |
Septic Shock | Sepsis + hypotension after adequate fluid resuscitation | Sepsis + Vasopressors needed for MAP >65 mmHg + Lactate >2 mmol/L after adequate fluid resuscitation |
Development Dataset | Validation Dataset | |||
---|---|---|---|---|
Case number | 8296 | 1744 | ||
Geographical region | Southern Taiwan | Northern Taiwan | ||
Data collection period | 1 July 2016 to 31 October 2016 | 1 January 2018 to 31 March 2018 | ||
Study design | Retrospective | Retrospective | ||
Setting | A tertiary teaching hospital | A regional hospital | ||
Inclusion criteria | All the adult ED visits (≥20 years old) admitted as inpatient without further transferring during the whole hospitalisation | |||
Reference standard for sepsis | Sepsis-3 definition | |||
Prevalence of sepsis | 21% | 29% | ||
Mortality for sepsis | 13.5% | 17% | ||
Meanlength of stay (days) | 9.8 | 6.3 | ||
Model predictors | mean | s.d. | mean | s.d. |
Average of SIRS | 1.22 | 1.02 | 1.71 | 1.04 |
Average of qSOFA | 0.33 | 0.62 | 0.57 | 0.76 |
Vital signs at triage | ||||
SBP | 142.2 | 33.21 | 132.5 | 36.94 |
DBP | 84.57 | 17.94 | 76.52 | 23.62 |
RR | 18.24 | 3.48 | 20.30 | 3.83 |
GCS | 14.27 | 2.23 | 13.65 | 2.99 |
BT | 36.93 | 0.96 | 36.46 | 3.42 |
HR | 92.80 | 21.74 | 93.44 | 25.54 |
Initial lab results at ED | ||||
WBC | 10.94 | 6.14 | 11.45 | 5.74 |
Segment | 76.30 | 15.77 | 76.84 | 13.07 |
Band | 0.45 | 2.28 | 0.15 | 1.26 |
Eosinophil | 1.38 | 2.38 | 1.21 | 1.95 |
Basophil | 0.34 | 0.36 | 0.34 | 0.41 |
Lymphocyte | 16.45 | 11.14 | 15.32 | 11.07 |
Platelet | 232.6 | 96.85 | 247.6 | 121.9 |
Haemoglobin | 12.52 | 2.87 | 12.04 | 2.91 |
Haematocrit | 36.77 | 7.53 | 37.01 | 8.38 |
MCH | 29.45 | 3.3 | 29.24 | 3.46 |
MCHC | 33.16 | 1.64 | 32.34 | 1.74 |
MCV | 88.76 | 8.45 | 90.25 | 8.87 |
RBC | 4.16 | 0.90 | 4.135 | 1.00 |
RDW | 14.24 | 2.39 | 11.29 | 2.34 |
Lactate | 3.02 | 2.80 | 3.15 | 4.01 |
CRP | 60.08 | 74.65 | 67.66 | 66.87 |
Glucose | 159.2 | 104.2 | 171.6 | 130.8 |
Na | 142.3 | 29.38 | 137 | 6.50 |
K | 4.08 | 1.37 | 4.14 | 0.73 |
BUN | 30.17 | 27.10 | 29.80 | 27.36 |
Cr | 1.39 | 1.80 | 1.67 | 2.07 |
GOT | 87.29 | 187 | 61.68 | 225.7 |
GPT | 42.1 | 114.2 | 42.91 | 104.4 |
T.bil | 2.95 | 4.98 | 1.43 | 1.91 |
hsTnI | 1043.8 | 21569.8 | 811.8 | 20073.5 |
CK-MB | 8.24 | 32.53 | 6.10 | 22.46 |
Model Performance | XGBoost | SIRS | qSOFA |
---|---|---|---|
Internal validation | |||
Accuracy | 0.78 | 0.69 | 0.79 |
Sensitivity | 0.80 | 0.64 | 0.35 |
Specificity | 0.78 | 0.66 | 0.96 |
PPV | 0.47 | 0.37 | 0.53 |
NPV | 0.94 | 0.88 | 0.81 |
External validation | |||
Accuracy | 0.70 | 0.34 | 0.75 |
Sensitivity | 0.67 | 0.66 | 0.36 |
Specificity | 0.70 | 0.47 | 0.89 |
PPV | 0.48 | 0.34 | 0.76 |
NPV | 0.84 | 0.77 | 0.79 |
TP | FN | p-Value | TN | FP | p-Value | |
---|---|---|---|---|---|---|
Age (years) | 74.4 | 67.8 | <0.001 | 61.8 | 59.9 | 0.1063 |
Presence of comorbidity (%) | ||||||
Diabetes mellitus | 40.18 | 36.36 | 0.4097 | 27.75 | 29.23 | 0.5967 |
Hypertension | 49.56 | 49.09 | 0.9212 | 41.63 | 36.89 | 0.1204 |
Coronary artery disease | 14.37 | 13.33 | 0.7531 | 15.6 | 9.02 | 0.0021 |
Chronic kidney disease | 12.02 | 9.7 | 0.4378 | 8.6 | 5.19 | 0.0388 |
End-stage renal disease | 7.62 | 5.45 | 0.3671 | 4.93 | 5.74 | 0.5586 |
Cerebrovascular accident | 19.35 | 16.36 | 0.4154 | 5.05 | 7.38 | 0.1074 |
Congestive heart failure | 9.09 | 7.27 | 0.4917 | 5.16 | 3.55 | 0.2216 |
Malignancy | 11.14 | 10.91 | 0.9317 | 8.37 | 11.2 | 0.116 |
Presence of infection focus (%) | ||||||
Urinary tract infection | 28.45 | 20.61 | 0.0591 | 6.65 | 19.13 | <0.0001 |
Cellulitis | 3.52 | 3.03 | 0.7749 | 6.77 | 7.1 | 0.8302 |
Pneumonia | 24.05 | 8.48 | <0.0001 | 4.93 | 24.32 | <0.0001 |
Intra-abdominal infection | 2.93 | 6.06 | 0.0905 | 6.31 | 6.28 | 0.9878 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, P.-C.; Chen, K.-T.; Chen, H.-C.; Islam, M.M.; Lin, M.-C. Machine Learning Model to Identify Sepsis Patients in the Emergency Department: Algorithm Development and Validation. J. Pers. Med. 2021, 11, 1055. https://doi.org/10.3390/jpm11111055
Lin P-C, Chen K-T, Chen H-C, Islam MM, Lin M-C. Machine Learning Model to Identify Sepsis Patients in the Emergency Department: Algorithm Development and Validation. Journal of Personalized Medicine. 2021; 11(11):1055. https://doi.org/10.3390/jpm11111055
Chicago/Turabian StyleLin, Pei-Chen, Kuo-Tai Chen, Huan-Chieh Chen, Md. Mohaimenul Islam, and Ming-Chin Lin. 2021. "Machine Learning Model to Identify Sepsis Patients in the Emergency Department: Algorithm Development and Validation" Journal of Personalized Medicine 11, no. 11: 1055. https://doi.org/10.3390/jpm11111055
APA StyleLin, P.-C., Chen, K.-T., Chen, H.-C., Islam, M. M., & Lin, M.-C. (2021). Machine Learning Model to Identify Sepsis Patients in the Emergency Department: Algorithm Development and Validation. Journal of Personalized Medicine, 11(11), 1055. https://doi.org/10.3390/jpm11111055