Appetite and Nutritional Status as Potential Management Targets in Patients with Heart Failure with Reduced Ejection Fraction—The Relationship between Echocardiographic and Biochemical Parameters and Appetite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical, Laboratory, and Echocardiographic Data
2.3. Nutrition Evaluation
2.4. Appetite Evaluation
2.5. Statistical Analysis
3. Results
3.1. Baseline Study Population Characteristics
3.2. Nutrition Assessment
3.3. Correlation Analysis
3.4. ROC Curve Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Cook, C.; Cole, G.; Asaria, P.; Jabbour, R.; Francis, D.P. The annual global economic burden of heart failure. Int. J. Cardiol. 2014, 171, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Chioncel, O.; Lainscak, M.; Seferovic, P.M.; Anker, S.D.; Crespo-Leiro, M.G.; Harjola, V.-P.; Parissis, J.; Laroche, C.; Piepoli, M.F.; Fonseca, C.; et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: An analysis of the ESC Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2017, 19, 1574–1585. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Chai, X.; Shen, J. Pancreatic exocrine insufficiency in patients with chronic heart failure and its possible association with appetite loss. PLoS ONE 2017, 12, e0187804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalantar-Zadeh, K.; Anker, S.D.; Horwich, T.B.; Fonarow, G.C. Nutritional and Anti-Inflammatory Interventions in Chronic Heart Failure. Am. J. Cardiol. 2008, 101, S89–S103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemp, C.D.; Conte, J.V. The pathophysiology of heart failure. Cardiovasc. Pathol. 2012, 21, 365–371. [Google Scholar] [CrossRef]
- Sargento, L.; Simões, A.V.; Rodrigues, J.; Longo, S.; Lousada, N.; dos Reis, R.P. Geriatric nutritional risk index as a nutritional and survival risk assessment tool in stable outpatients with systolic heart failure. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 430–437. [Google Scholar] [CrossRef]
- Narumi, T.; Arimoto, T.; Funayama, A.; Kadowaki, S.; Otaki, Y.; Nishiyama, S.; Takahashi, H.; Shishido, T.; Miyashita, T.; Miyamoto, T.; et al. The prognostic importance of objective nutritional indexes in patients with chronic heart failure. J. Cardiol. 2013, 62, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Bonilla-Palomas, J.L.; Gámez-López, A.L.; Anguita-Sánchez, M.P.; Castillo-Domínguez, J.C.; García-Fuertes, D.; Crespin-Crespin, M.; López-Granados, A.; de Lezo, J.S. Impact of Malnutrition on Long-Term Mortality in Hospitalized Patients with Heart Failure. Rev. Española Cardiol. 2011, 64, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, A.; Kumar, A.; Gregory, M.P.; Blair, C.; Pauwaa, S.; Tatooles, A.J.; Pappas, P.S.; Bhat, G. Nutrition assessment in advanced heart fail-ure patients evaluated for ventricular assist devices or cardiac transplantation. Nutr. Clin. Pract. 2013, 28, 112–119. [Google Scholar] [CrossRef]
- Yost, G.; Gregory, M.; Bhat, G. Short-form nutrition assessment in patients with advanced heart failure evaluated for ven-tricular assist device placement or cardiac transplantation. Nutr. Clin. Pract. 2014, 29, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Aziz, E.F.; Javed, F.; Pratap, B.; Musat, D.; Nader, A.; Pulimi, S.; Alivar, C.L.; Herzog, E.; Kukin, M.L. Malnutrition as assessed by nutritional risk index is associated with worse outcome in patients admitted with acute decompensated heart failure: An ACAP-HF data analysis. Heart Int. 2011, 6, 3–8. [Google Scholar] [CrossRef]
- Kałużna-Oleksy, M.; Krysztofiak, H.; Migaj, J.; Wleklik, M.; Dudek, M.; Uchmanowicz, I.; Lesiak, M.; Straburzyńska-Migaj, E. Relationship between Nutritional Status and Clinical and Biochemical Parameters in Hospitalized Patients with Heart Failure with Reduced Ejection Fraction, with 1-Year Follow-Up. Nutrients 2020, 12, 2330. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.-J.; Song, E.K. High nutritional risk is associated with worse health-related quality of life in patients with heart failure beyond sodium intake. Eur. J. Cardiovasc. Nurs. 2013, 12, 184–192. [Google Scholar] [CrossRef]
- Goates, S.; Du, K.; Braunschweig, C.A.; Arensberg, M.B. Economic Burden of Disease-Associated Malnutrition at the State Level. PLoS ONE 2016, 11, e0161833. [Google Scholar] [CrossRef]
- Saitoh, M.; Dos Santos, M.R.; Emami, A.; Ishida, J.; Ebner, N.; Valentova, M.; Bekfani, T.; Sandek, A.; Lainscak, M.; Doehner, W.; et al. Anorexia, functional capacity, and clinical outcome in patients with chronic heart failure: Results from the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). ESC Heart Fail. 2017, 4, 448–457. [Google Scholar] [CrossRef]
- Emami, A.; Saitoh, M.; Valentova, M.; Sandek, A.; Evertz, R.; Ebner, N.; Loncar, G.; Springer, J.; Doehner, W.; Lainscak, M.; et al. Comparison of sarcopenia and cachexia in men with chronic heart failure: Results from the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Eur. J. Heart Fail. 2018, 20, 1580–1587. [Google Scholar] [CrossRef] [Green Version]
- Andreae, C. Appetite in Patients with Heart Failure: Assessment, Prevalence and Related Factors; Linköping University: Linköping, Sweden, 2018; Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-145533 (accessed on 14 April 2020).
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef]
- World Health Organisation. Obesity and Overweight. Available online: https://www.who.int/westernpacific/health-topics/obesity (accessed on 13 February 2021).
- Otterstad, J.E. Measuring left ventricular volume and ejection fraction with the biplane Simpson’s method. Heart 2002, 88, 559–560. [Google Scholar] [CrossRef] [PubMed]
- Joaquín, C.; Puig, R.; Gastelurrutia, P.; Lupón, J.; de Antonio, M.; Domingo, M.; Moliner, P.; Zamora, E.; Martin, M.; Alonso, N.; et al. Mini nutritional assessment is a better predictor of mortality than subjective global assessment in heart failure outpatients. Clin. Nutr. 2019, 38, 2740–2746. [Google Scholar] [CrossRef] [PubMed]
- Guigoz, Y.; Vallas, B.; Garry, P. Mini Nutritional Assessment: A practical assessment tool for grading the nutritional state of elderly patients. Facts Res. Gerontol. 1994, 4, 15–59. [Google Scholar]
- Guigoz, Y.; Vellas, B.; Garry, P.J. Assessing the Nutritional Status of the Elderly: The Mini Nutritional Assessment as Part of the Geriatric Evaluation. Nutr. Rev. 2009, 54, S59–S65. [Google Scholar] [CrossRef]
- Donini, L.M.; Marrocco, W.; Marocco, C.; Lenzi, A. Validity of the Self-Mini Nutritional Assessment (Self-MNA) for the Evaluation of Nutritional Risk. A Cross-Sectional Study Conducted in General Practice. J. Nutr. Health Aging 2018, 22, 44–52. [Google Scholar] [CrossRef]
- Vellas, B.; Guigoz, Y.; Garry, P.J.; Nourhashemi, F.; Bennahum, D.; Lauque, S.; Albarede, J.-L. The mini nutritional assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrients 1999, 15, 116–122. [Google Scholar] [CrossRef]
- Kaiser, M.J.; Bauer, J.M.; Ramsch, C.; Uter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D.R.; Anthony, P.; Charlton, K.E.; Maggio, M.; et al. Validation of the Mini Nutritional Assessment short-form (MNA®-SF): A practical tool for identification of nutritional status. J. Nutr. Health Aging 2009, 13, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Wleklik, M.; Lisiak, M.; Andreae, C.; Uchmanowicz, I. Psychometric Evaluation of Appetite Questionnaires in Elderly Polish Patients with Heart Failure. Patient Prefer. Adherence 2019, 13, 1751–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.-P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A new index for evaluating at-risk elderly medical patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreae, C.; Strömberg, A.; Sawatzky, R.; Årestedt, K. Psychometric Evaluation of Two Appetite Questionnaires in Patients with Heart Failure. J. Card. Fail. 2015, 21, 954–958. [Google Scholar] [CrossRef]
- Wilson, M.-M.G.; Thomas, D.R.; Rubenstein, L.; Chibnall, J.T.; Anderson, S.; Baxi, A.; Diebold, M.R.; Morley, J.E. Appetite assessment: Simple appetite questionnaire predicts weight loss in community-dwelling adults and nursing home residents. Am. J. Clin. Nutr. 2005, 82, 1074–1081. [Google Scholar] [CrossRef]
- Lena, A.; Coats, A.J.; Anker, M.S. Metabolic disorders in heart failure and cancer. ESC Heart Fail. 2018, 5, 1092–1098. [Google Scholar] [CrossRef] [Green Version]
- Muscaritoli, M.; Anker, S.; Argiles, J.M.; Aversa, Z.; Bauer, J.; Biolo, G.; Boirie, Y.; Bosaeus, I.; Cederholm, T.; Costelli, P.; et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin. Nutr. 2010, 29, 154–159. [Google Scholar] [CrossRef]
- Andreae, C.; Strömberg, A.; Årestedt, K. Prevalence and associated factors for decreased appetite among patients with stable heart failure. J. Clin. Nurs. 2016, 25, 1703–1712. [Google Scholar] [CrossRef] [Green Version]
- Song, E.K.; Moser, D.K.; Rayens, M.K.; Lennie, T.A. Symptom Clusters Predict Event-Free Survival in Patients with Heart Failure. J. Cardiovasc. Nurs. 2010, 25, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Landi, F.; Liperoti, R.; Lattanzio, F.; Russo, A.; Tosato, M.; Barillaro, C.; Bernabei, R.; Onder, G. Effects of anorexia on mortality among older adults receiving home care: An observational study. J. Nutr. Health Aging 2012, 16, 79–83. [Google Scholar] [CrossRef]
- Sun, Y.; Garcia, J.M.; Smith, R.G. Ghrelin and Growth Hormone Secretagogue Receptor Expression in Mice during Aging. Endocrinology 2007, 148, 1323–1329. [Google Scholar] [CrossRef]
- Lin, L.; Saha, P.K.; Ma, X.; Henshaw, I.O.; Shao, L.; Chang, B.H.; Buras, E.D.; Tong, Q.; Chan, L.; McGuinness, O.P.; et al. Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues. Aging Cell 2011, 10, 996–1010. [Google Scholar] [CrossRef] [Green Version]
- Arshad, A.R.; Jamal, S.; Amanullah, K. Agreement Between Two Nutritional Assessment Scores as Markers of Malnutrition in Patients with End-stage Renal Disease. Cureus 2020, 12, e7429. [Google Scholar] [CrossRef] [Green Version]
- Sargento, L.; Satendra, M.; Almeida, I.; Sousa, C.; Gomes, S.; Salazar, F.; Lousada, N.; Dos Reis, R.P. Nutritional status of geriatric outpatients with systolic heart failure and its prognostic value regarding death or hospitalization, biomarkers and quality of life. J. Nutr. Health Aging 2013, 17, 300–304. [Google Scholar] [CrossRef]
- Sze, S.; Pellicori, P.; Zhang, J.; Weston, J.; Clark, A.L. The impact of malnutrition on short-term morbidity and mortality in ambulatory patients with heart failure. Am. J. Clin. Nutr. 2021, 113, 695–705. [Google Scholar] [CrossRef]
- Sze, S.; Pellicori, P.; Zhang, J.; Clark, A.L. Malnutrition, congestion and mortality in ambulatory patients with heart failure. Heart 2018, 105, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Yasumura, K.; Abe, H.; Iida, Y.; Kato, T.; Nakamura, M.; Toriyama, C.; Nishida, H.; Idemoto, A.; Shinouchi, K.; Mishima, T.; et al. Prognostic impact of nutritional status and physical capacity in elderly patients with acute decompensated heart failure. ESC Heart Fail. 2020, 7, 1801–1808. [Google Scholar] [CrossRef] [PubMed]
- Sze, S.; Pellicori, P.; Kazmi, S.; Rigby, A.; Cleland, J.G.; Wong, K.; Clark, A.L. Prevalence and Prognostic Significance of Malnutrition Using 3 Scoring Systems among Outpatients with Heart Failure: A Comparison with Body Mass Index. JACC Heart Fail. 2018, 6, 476–486. [Google Scholar] [CrossRef]
- Yoshihisa, A.; Kanno, Y.; Watanabe, S.; Yokokawa, T.; Abe, S.; Miyata, M.; Sato, T.; Suzuki, S.; Oikawa, M.; Kobayashi, A.; et al. Impact of nutritional indices on mortality in patients with heart failure. Open Heart 2018, 5, e000730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Value ± SD |
---|---|
age (years) | 55.1 ± 11.3 |
men | 98 (81.7%) |
BMI (kg/m2) | 28.8 ± 5.6 |
IHD etiology | 56 (46.7%) |
HF exacerbation | 39 (32.5%) |
SBP on admission (mmHg) | 112.4 ± 22.1 |
DBP on admission (mmHg) | 73.4 ± 13.2 |
HR on discharge (beats per minute) | 74.7 ± 13.0 |
Comorbidities | N (%) |
DM | 36 (30.0%) |
COPD | 10 (8.3%) |
CKD | 21 (17.5%) |
hypertension | 64 (53.3%) |
NYHA class | N (%) |
I | 5 (4.2%) |
II | 54 (45.0%) |
III | 50 (41.7%) |
IV | 11 (9.2%) |
I–II | 59 (49.2%) |
III–IV | 61 (50.8%) |
Biochemical parameters | Value ± SD |
Na+ (mmol/L) | 138.8 ± 3.7 |
BNP (pg/mL) | 678.3 ± 690.4 |
NT-proBNP (pg/mL) | 3689.2 ± 5133.0 |
uric acid (µmol/L) | 464.2 ± 135.8 |
creatinine (µmol/L) | 105.0 ± 35.7 |
eGFR (mL/min) | 72.6 ± 25.2 |
K+ (mmol/L) | 4.28 ± 0.41 |
hsCRP (mg/L) | 8.0 ± 12.5 |
fasting glucose (mmol/L) | 6.40 ± 1.86 |
serum protein (g/L) | 71.1 ± 7.4 |
serum albumin (g/L) | 40.3 ± 5.1 |
TBIL (µmol/L) | 19.3 ± 10.8 |
ALT (U/L) | 37.1 ± 22.2 |
GGTP (U/L) | 108.5 ± 115.2 |
CholT (mmol/L) | 4.32 ± 1.11 |
TG (mmol/L) | 1.60 ± 0.88 |
LDL (mmol/L) | 2.60 ± 0.90 |
HDL (mmol/L) | 1.20 ± 0.32 |
Hb (mmol/L) | 8.92 ± 1.12 |
Nutritional parameters | |
CNAQ score | 28.8 ± 3.9 |
impaired appetite CNAQ ≤ 28 | 50 (41.7%) |
normal appetite CNAQ > 28 | 70 (58.3%) |
MNA score | 23.1 ± 2.6 |
malnourished (MNA score < 17) | 1 (0.8%) |
at risk of malnutrition (MNA score 17–23.5) | 65 (54.2%) |
normal nutritional status (MNA score > 23.5) | 54 (45.0%) |
GNRI score | 113.0 ± 12.3 |
GNRI < 82 | 0 (0%) |
GNRI ≥ 82 and <92 | 4 (4.1%) |
GNRI ≥ 92 and ≤98 | 5 (5.2%) |
GNRI > 98 | 88 (90.7%) |
Medications | |
loop diuretics | 111 (92.5%) |
thiazides | 21 (17.5%) |
ß-blocker | 116 (96.7%) |
ACEI/ARB | 89 (74.2%) |
ARNI | 20 (16.7%) |
MRA | 104 (86.7%) |
Ca-blocker | 9 (7.5%) |
statin | 73 (60.8%) |
Echocardiographic parameters | |
LVEF (%) | 23.9 ± 8.0 |
LVEDD (mm) | 70.2 ± 10.8 |
RVD (mm) | 37.4 ± 8.0 |
LAD (mm) | 52.8 ± 10.8 |
IVS (mm) | 10.1 ± 1.8 |
PWD (mm) | 10.2 ± 1.8 |
Ao (mm) | 33.6 ± 4.9 |
Characteristics | Good Appetite, CNAQ Score > 28 | Impaired Appetite, CNAQ Score ≤ 28 | p |
---|---|---|---|
(n = 70) | (n = 50) | ||
age (years) | 54.4 ± 11.0 | 56.2 ± 11.7 | 0.14 |
men | 59 (84.3%) | 39 (78.0%) | 0.38 |
BMI (kg/m2) | 28.5 ± 5.8 | 29.3 ± 5.4 | 0.45 |
IHD etiology | 35 (50.7%) | 20 (40%) | 0.25 |
HF exacerbation | 20 (29.4%) | 17 (34.0%) | 0.60 |
SBP on admission (mmHg) | 111.6 ± 23.8 | 113.3 ± 19.8 | 0.66 |
DBP on admission (mmHg) | 72.4 ± 13.2 | 74.8 ± 13.2 | 0.38 |
HR on discharge (beats per minute) | 74.9 ± 13.0 | 74.3 ± 13.2 | 0.94 |
Comorbidities | |||
DM | 19 (27.1%) | 16 (32.0%) | 0.60 |
COPD | 5 (7.1%) | 5 (10.0%) | 0.82 |
CKD | 13 (18.6%) | 7 (14.3%) | 0.71 |
hypertension | 35 (50.0%) | 29 (58.0%) | 0.39 |
NYHA class | |||
I | 4 (5.7%) | 1 (2.0%) | 0.32 |
II | 33 (47.1%) | 21 (42.0%) | 0.58 |
III | 28 (40.0%) | 22 (44.0%) | 0.30 |
IV | 5 (7.1%) | 6 (12.0%) | 0.36 |
I–II | 37 (52.9%) | 22 (44.0%) | 0.34 |
III–IV | 33 (47.1%) | 28 (56.0%) | |
Biochemical parameters | |||
Na+ (mmol/L) | 138.9 ± 3.5 | 138.7 ± 3.9 | 0.78 |
BNP (pg/mL) | 695.5 ± 729.8 | 654.1 ± 637.4 | 0.84 |
NT-proBNP (pg/mL) | 4030.4 ± 5913.7 | 3158.7 ± 3646.7 | 0.45 |
uric acid (µmol/L) | 456.8 ± 123.6 | 472.9 ± 149.8 | 0.72 |
creatinine (µmol/L) | 104.8 ± 37.1 | 105.1 ± 34.0 | 0.75 |
eGFR (ml/min) | 74.1 ± 26.8 | 70.5 ± 23.1 | 0.52 |
K+ (mmol/L) | 4.31 ± 0.38 | 4.25 ± 0.44 | 0.60 |
hsCRP (mg/L) | 9.7 ± 14.9 | 5.5 ± 7.1 | 0.09 |
fasting glucose (mmol/L) | 6.45 ± 1.98 | 6.32 ± 1.67 | 0.95 |
serum protein (g/L) | 71.7 ± 6.7 | 70.4 ± 8.2 | 0.64 |
serum albumin (g/L) | 40.6 ± 4.2 | 40.1 ± 6.0 | 0.44 |
TBIL (µmol/L) | 17.8 ± 8.8 | 21.0 ± 12.8 | 0.24 |
ALT (U/L) | 37.3 ± 21.7 | 36.8 ± 23.2 | 0.89 |
GGTP (U/L) | 98.4 ± 96.1 | 120.5 ± 134.4 | 0.92 |
CholT (mmol/L) | 4.28 ± 0.99 | 4.37 ± 1.26 | 0.69 |
TG (mmol/L) | 1.52 ± 0.90 | 1.70 ± 0.85 | 0.12 |
LDL (mmol/L) | 2.55 ± 0.85 | 2.67 ± 0.96 | 0.63 |
HDL (mmol/L) | 1.22 ± 0.31 | 1.16 ± 0.33 | 0.35 |
Hb (mmol/L) | 8.88 ± 1.14 | 8.98 ± 1.10 | 0.50 |
Nutritional parameters | |||
CNAQ score | 31.3 ± 2.0 | 25.2 ± 3.1 | p < 0.001 |
MNA score | 23.6 ± 2.3 | 22.5 ± 2.8 | 0.04 |
malnourished (MNA score < 17) | 0 | 1 (2.0%) | 0.23 |
at risk of malnutrition (MNA score 17–23.5) | 36 (51.4%) | 18 (36.0%) | 0.09 |
normal nutritional status (MNA score > 23.5) | 34 (48.6%) | 31 (62.0%) | 0.15 |
GNRI | 112.5 ± 11.8 | 113.6 ± 12.9 | 0.66 |
Medications | |||
Loop diuretics | 65 (94.2%) | 46 (92.0%) | 0.63 |
thiazides | 8 (11.6%) | 12 (24.0%) | 0.12 |
ß-blocker | 69 (98.6%) | 48 (96.0%) | 0.78 |
ACEI/ARB | 51 (73.9%) | 38 (76.0%) | 0.80 |
ARNI | 11 (16.2%) | 7 (14.0%) | 0.95 |
MRA | 57 (82.6%) | 47 (94.0%) | 0.12 |
Ca-blocker | 6 (8.7%) | 2 (4.0%) | 0.52 |
statin | 42 (60.9%) | 31 (62.0%) | 0.90 |
Echocardiographic parameters | |||
LVEF (%) | 23.3 ± 7.4 | 24.7 ± 8.8 | 0.36 |
LVEDD (mm) | 70.1 ± 10.4 | 70.3 ± 11.5 | 0.69 |
RVD (mm) | 37.1 ± 7.8 | 37.7 ± 8.2 | 0.37 |
LAD (mm) | 53.6 ± 11.5 | 51.5 ± 9.7 | 0.56 |
IVS (mm) | 10.1 ± 1.9 | 10.3 ± 1.9 | 0.72 |
PWD (mm) | 10.0 ± 1.5 | 10.4 ± 2.1 | 0.33 |
Aorta (mm) | 33.7 ± 4.0 | 33.4 ± 5.9 | 0.92 |
Characteristics | Normal Nutritional Status (MNA > 23.5) (n= 54) | At Risk of Malnutrition + Malnutrition (MNA ≤ 23.5) (n = 66) | p |
---|---|---|---|
age (years) | 55.1 ±10.1 | 55.2 ± 12.3 | 0.73 |
men | 44 (81.5%) | 54 (81.8%) | 0.85 |
BMI (kg/m2) | 29.5 ± 5.4 | 28.3 ± 5.8 | 0.23 |
IHD etiology | 23 (42.6%) | 32 (48.4%) | 0.47 |
HF exacerbation | 14 (25.9%) | 23 (34.8%) | 0.30 |
SBP on admission (mmHg) | 115.8 ± 24.9 | 109.5 ± 19.1 | 0.09 |
DBP on admission (mmHg) | 75.9 ± 12.7 | 71.4 ± 13.3 | 0.09 |
HR on discharge (beats per minute) | 71.3 ± 11.1 | 77.5 ± 13.8 | 0.017 |
Comorbidities | |||
DM | 16 (29.6%) | 19 (28.8%) | 0.87 |
COPD | 3 (5.6%) | 7 (10.6%) | 0.50 |
CKD | 10 (18.5%) | 10 (15.2%) | 0.83 |
hypertension | 27 (50.0%) | 37 (56.1%) | 0.51 |
NYHA class | |||
I | 2 (3.7%) | 3 (4.5%) | 0.82 |
II | 25 (46.3%) | 29 (44.0%) | 0.80 |
III | 24 (44.4%) | 26 (39.4%) | 0.58 |
IV | 3 (5.6%) | 8 (12.1%) | 0.21 |
I–II | 27 (50%) | 34 (51.5%) | 0.87 |
III–IV | 27 (50%) | 32 (48.5%) | |
Biochemical parameters | |||
Na+ (mmol/L) | 140.1 ± 3.2 | 137.7 ± 3.7 | 0.0001 |
BNP level (pg/mL) | 559.6 ± 731.6 | 771.7 ± 646.4 | 0.006 |
NT-proBNP (pg/mL) | 3618.4 ± 6324.6 | 3750 ± 3915.0 | 0.07 |
uric acid (µmol/L) | 445.8 ± 122.4 | 481.5 ± 481.5 | 0.18 |
creatinine (µmol/L) | 108.0 ± 34.5 | 102.5 ± 36.7 | 0.26 |
eGFR | 69.8 ± 24.2 | 74.9 ± 26.0 | 0.26 |
K+ (mmol/L) | 4.32 ± 0.35 | 4.26 ± 0.46 | 0.43 |
hsCRP (mg/L) | 5.3 ± 6.8 | 10.2 ± 15.3 | 0.01 |
fasting glucose (mmol/L) | 6.22 ± 1.61 | 6.55 ± 2.04 | 0.31 |
serum protein (g/L) | 72.5 ± 7.0 | 70.0 ± 7.6 | 0.049 |
serum albumin (g/L) | 40.6 ± 4.5 | 40.1 ± 5.7 | 0.60 |
bilirubin (µmol/L) | 17.0 ± 9.1 | 21.3 ± 11.9 | 0.022 |
ALT (U/L) | 38.1 ± 20.3 | 36.3 ± 23.9 | 0.26 |
GGTP (U/L) | 89.4 ± 99.9 | 126.5 ± 126.1 | 0.037 |
CholT (mmol/L) | 4.58 ± 1.08 | 4.08 ± 1.09 | 0.026 |
TG (mmol/L) | 1.68 ± 0.90 | 1.52 ± 0.85 | 0.28 |
LDL (mmol/L) | 2.73 ± 0.88 | 2.48 ± 0.90 | 0.12 |
HDL (mmol/L) | 1.28 ± 0.31 | 1.11 ± 0.30 | 0.006 |
Hb (mmol/L) | 8.92 ± 1.00 | 8.92 ± 1.22 | 0.59 |
Nutritional parameters | |||
CNAQ score | 29.9 ± 3.2 | 27.8 ± 4.2 | 0.012 |
MNA score | 25.5 ± 0.9 | 21.1 ± 1.6 | p < 0.001 |
impaired appetite CNAQ ≤ 28 | 18 (33.3%) | 32 (48.5%) | 0.09 |
GNRI | 114.3 ± 11.2 | 111.7 ± 13.2 | 0.29 |
Medications | |||
loop diuretics | 51 (94.4%) | 60 (90.9%) | 0.43 |
thiazides | 6 (11.1%) | 14 (21.1%) | 0.23 |
beta-blocker | 54 (100%) | 63 (95.4%) | 0.32 |
ACEI/ARB | 40 (74.0%) | 49 (74.2%) | 0.88 |
ARNI | 10 (18.5%) | 8 (12.3%) | 0.47 |
MRA | 48 (88.8%) | 57 (86.4%) | 0.92 |
Ca-blocker | 3 (5.6%) | 5 (7.6%) | 0.68 |
statin | 35 (64.8%) | 38 (57.6%) | 0.35 |
Echocardiographic parameters | |||
LVEF (%) | 23.8 ± 7.7 | 24.0 ± 8.3 | 0.93 |
LVEDD (mm) | 71.9 ± 10.1 | 68.8 ± 11.2 | 0.14 |
RVD (mm) | 37.8 ± 9.9 | 37.0 ± 5.9 | 0.76 |
LAD (mm) | 53.2 ± 11.1 | 52.4 ± 10.7 | 0.88 |
IVS (mm) | 10.3 ± 1.7 | 10.1 ± 2.0 | 0.43 |
PWD (mm) | 10.2 ± 1.4 | 10.1 ± 2.0 | 0.51 |
Ao (mm) | 34.5 ± 3.9 | 32.8 ± 5.5 | 0.07 |
Characteristics | No Nutrition-Related Risk (GNRI > 98) | Nutrition-Related Risk Present (GNRI ≤ 98) | p |
---|---|---|---|
(n = 88) | (n = 9) | ||
age (years) | 53.9 ± 10.9 | 57.3 ± 8.0 | 0.44 |
men | 71 (80.7%) | 6 (66.7%) | 0.58 |
BMI (kg/m2) | 28.9 ± 5.5 | 22.8 ± 2.6 | 0.0001 |
IHD etiology | 41 (46.6%) | 4 (44.4%) | 0.82 |
HF exacerbation | 31 (35.2%) | 2 (22.2%) | 0.64 |
SBP on admission (mmHg) | 113.2 ± 23.7 | 98.3 ± 10.0 | 0.03 |
DBP on admission (mmHg) | 74.7 ± 12.9 | 66.8 ± 7.2 | 0.07 |
HR on discharge (beats per minute) | 73.6 ± 13.1 | 75.6 ± 14.7 | 0.64 |
Comorbidities | |||
DM | 26 (29.5%) | 1 (11.1%) | 0.43 |
COPD | 8 (9.1%) | 0 | 0.76 |
CKD | 14 (15.9%) | 1 (11.1%) | 0.93 |
hypertension | 46 (52.3%) | 5 (55.6%) | 0.87 |
NYHA class | 0.84 | ||
I | 3 (3.4%) | 0 | 0.57 |
II | 39 (44.3%) | 3 (33.3%) | 0.70 |
III | 39 (44.3%) | 5 (55.6%) | 0.52 |
IV | 7 (8.0%) | 1 (11.1%) | 0.74 |
I–II | 42 (47.7%) | 3 (33.3%) | 0.64 |
III–IV | 46 (52.3%) | 6 (66.7%) | |
Biochemical parameters | |||
Na+ (mmol/L) | 138.9 ± 3.7 | 139.2 ± 2.5 | 0.97 |
BNP level (pg/mL) | 685 ± 728 | 1038 ± 853 | 0.18 |
uric acid (µmol/L) | 460.1 ± 136.1 | 462.1 ± 139.1 | 0.90 |
creatinine (µmol/L) | 101.4 ± 29.5 | 105.4 ± 38.9 | 0.93 |
eGFR | 73.8 ± 23.6 | 67.0 ± 18.7 | 0.64 |
K+ (mmol/L) | 4.29 ± 0.39 | 4.04 ± 0.35 | 0.07 |
hsCRP (mg/L) | 7.0 ± 9.3 | 5.7 ± 4.3 | 0.74 |
fasting glucose (mmol/l) | 6.44 ± 2.07 | 5.62 ± 1.20 | 0.20 |
serum protein (g/L) | 71.8 ± 7.2 | 66.1 ± 9.3 | 0.08 |
serum albumin (g/L) | 41.1 ± 4.5 | 33.3 ± 5.4 | <0.00001 |
TBIL (µmol/L) | 19.3 ± 10.4 | 23.0 ± 17.3 | 0.62 |
ALT (U/L) | 39.0 ± 22.4 | 32.2 ± 14.2 | 0.49 |
GGTP (U/L) | 117.0 ± 122.6 | 95.0 ± 83.8 | 0.91 |
CholT (mmol/L) | 4.33 ± 1.16 | 4.56 ± 0.70 | 0.40 |
TG (mmol/L) | 1.55 ± 0.81 | 1.46 ± 0.66 | 0.87 |
LDL (mmol/L) | 2.60 ± 0.92 | 2.70 ± 0.67 | 0.58 |
HDL (mmol/L) | 1.21 ± 0.32 | 1.19 ± 0.34 | 0.75 |
Hb [mmol/L] | 9.0 ± 1.0 | 8.4 ± 1.6 | 0.38 |
Nutritional parameters | |||
CNAQ score | 28.6 ± 3.9 | 27.9 ± 2.9 | 0.47 |
impaired appetite CNAQ ≤ 28 | 41 (47%) | 4 (44.4%) | 0.81 |
MNA score | 23.5 ± 2.4 | 21.4 ± 3.1 | 0.046 |
malnourished (MNA score < 17) | 0 | 0 | |
at risk of malnutrition (MNA score 17–23.5) | 44 (50%) | 3 (33.3%) | 0.34 |
normal nutritional status (MNA score > 23.5) | 44 (50%) | 6 (66.6%) | 0.34 |
GNRI | 115.1 ± 10.7 | 92.2 ± 4.4 | <0.00001 |
Medications | |||
loop diuretics | 82 (93.2%) | 9 (100%) | 0.96 |
thiazides | 15 (17.0%) | 2 (22.2%) | 0.93 |
ß-blocker | 85 (96.6%) | 8 (88.9%) | 0.66 |
ACEI/ARB | 67 (76.1%) | 6 (66.7%) | 0.78 |
ARNI | 14 (15.9%) | 1 (11.1%) | 0.94 |
MRA | 77 (87.5%) | 9 (100%) | 0.62 |
Ca-blocker | 6 (6.8%) | 0 | 0.93 |
statin | 54 (61.4%) | 5 (55.6%) | 0.98 |
Echocardiographic parameters | |||
LVEF (%) | 23.4 ± 7.8 | 23.8 ± 7.6 | 0.83 |
LVEDD (mm) | 71.3 ± 11.0 | 61.2 ± 11.5 | 0.02 |
RVD (mm) | 37.8 ± 8.5 | 37.8 ± 7.6 | 0.96 |
LAD (mm) | 52.9 ± 10.6 | 48.0 ± 8.6 | 0.21 |
IVS (mm) | 10.0 ± 1.7 | 11.4 ± 3.4 | 0.37 |
PWD (mm) | 9.9 ± 1.3 | 11.2 ± 4.5 | 0.84 |
Ao (mm) | 33.5 ± 5.0 | 32.6 ± 4.1 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaluzna-Oleksy, M.; Sawczak, F.; Kukfisz, A.; Szczechla, M.; Krysztofiak, H.; Wleklik, M.; Przytarska, K.; Migaj, J.; Dudek, M.; Straburzyńska-Migaj, E.; et al. Appetite and Nutritional Status as Potential Management Targets in Patients with Heart Failure with Reduced Ejection Fraction—The Relationship between Echocardiographic and Biochemical Parameters and Appetite. J. Pers. Med. 2021, 11, 639. https://doi.org/10.3390/jpm11070639
Kaluzna-Oleksy M, Sawczak F, Kukfisz A, Szczechla M, Krysztofiak H, Wleklik M, Przytarska K, Migaj J, Dudek M, Straburzyńska-Migaj E, et al. Appetite and Nutritional Status as Potential Management Targets in Patients with Heart Failure with Reduced Ejection Fraction—The Relationship between Echocardiographic and Biochemical Parameters and Appetite. Journal of Personalized Medicine. 2021; 11(7):639. https://doi.org/10.3390/jpm11070639
Chicago/Turabian StyleKaluzna-Oleksy, Marta, Filip Sawczak, Agata Kukfisz, Magdalena Szczechla, Helena Krysztofiak, Marta Wleklik, Katarzyna Przytarska, Jacek Migaj, Magdalena Dudek, Ewa Straburzyńska-Migaj, and et al. 2021. "Appetite and Nutritional Status as Potential Management Targets in Patients with Heart Failure with Reduced Ejection Fraction—The Relationship between Echocardiographic and Biochemical Parameters and Appetite" Journal of Personalized Medicine 11, no. 7: 639. https://doi.org/10.3390/jpm11070639
APA StyleKaluzna-Oleksy, M., Sawczak, F., Kukfisz, A., Szczechla, M., Krysztofiak, H., Wleklik, M., Przytarska, K., Migaj, J., Dudek, M., Straburzyńska-Migaj, E., & Uchmanowicz, I. (2021). Appetite and Nutritional Status as Potential Management Targets in Patients with Heart Failure with Reduced Ejection Fraction—The Relationship between Echocardiographic and Biochemical Parameters and Appetite. Journal of Personalized Medicine, 11(7), 639. https://doi.org/10.3390/jpm11070639