Of Screening, Stratification, and Scores
Abstract
:1. Introduction
2. PART I: Risk Stratification: Socio-Ethical Implications
2.1. Access to Data Required to Develop and Understand Risk-Stratification Algorithms
2.2. Risk Stratification across Human Genetic Diversity
2.3. Equitable Access to Risk Stratification
2.4. Long-Term Follow-up for Risk-Stratified Patients
3. PART II: Polygenic Risk Scores: Regulatory Implications
3.1. Regulatory Framework
3.2. Further Development of PRS
3.3. Access
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gray, J.A.M.; Patnick, J.; Blanks, R.G. Maximising benefit and minimising harm of screening. BMJ 2008, 336, 480–483. [Google Scholar] [CrossRef] [Green Version]
- Birney, E.; Vamathevan, J.; Goodhand, P. Genomics in healthcare: GA4GH looks to 2022. BioRxiv 2017. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.M.G.; Jungner, G. (Eds.) Principles and Practice of Screening for Disease; World Health Organization: Geneva, Switzerland, 1968. [Google Scholar]
- Knoppers, B.M.; Laberge, C.M. Genetic screening: From newborns to DNA typing. In Proceedings of the Workshop on Genetic Screening, La Sapiniere, QC, Canada, 13–14 October 1989. [Google Scholar]
- Andermann, A.; Blancquaert, I.; Beauchamp, S.; Déry, V. Revisting wilson and Jungner in the genomic age: A review of screening criteria over the past 40 years. Bull. World Health Organ. 2008, 86, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Van den Broek, J.J.; Schechter, C.B.; Van Ravesteyn, N.T.; Janssens, A.C.J.W.; Wolfson, M.C.; Trentham-Dietz, A.; Simard, J.; Easton, D.F.; Mandelblatt, J.S.; Kraft, P.; et al. Personalizing Breast Cancer Screening Based on Polygenic Risk and Family History. J. Natl. Cancer Inst. 2020, 113, 434–442. [Google Scholar] [CrossRef]
- Pashayan, N.; Morris, S.; Gilbert, F.J.; Pharoah, P.D.P. Cost-effectiveness and Benefit-to-Harm Ratio of Risk-Stratified Screening for Breast Cancer: A Life-Table Model. JAMA Oncol. 2018, 4, 1504–1510. [Google Scholar] [CrossRef] [Green Version]
- Callender, T.; Emberton, M.; Morris, S.; Eeles, R.; Kote-Jarai, Z.; Pharoah, P.D.P.; Pashayan, N. Polygenic risk-tailored screening for prostate cancer: A benefit–harm and cost-effectiveness modelling study. PLoS Med. 2019, 16, e1002998. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.; Nabi, H.; Andrulis, I.; Antoniou, A.; Chiquette, J.; Després, P.; Devilee, P.; Dorval, M.; Droit, A.; Easton, D.; et al. Personalized Risk Assessment for Prevention and Early Detection of Breast Cancer: Integration and Implementation (PERSPECTIVE I&I). J. Pers. Med. 2021, 11, 511. [Google Scholar] [CrossRef] [PubMed]
- Pashayan, N.; Pharoah, P.D.P. The challenge of early detection in cancer. Science 2020, 368, 589–590. [Google Scholar] [CrossRef] [PubMed]
- Sud, A.; Turnbull, C.; Houlston, R. Will polygenic risk scores for cancer ever be clinically useful? NPJ Precis. Oncol. 2021, 5, 1–5. [Google Scholar] [CrossRef]
- Moorthie, S.; Hall, A.; Janus, J.; Brigden, T.; Villiers, d.C.B.; Blackburn, L.; Johnson, E.; Kroese, M. Polygenic Scores and Clinical Utility; PHG Foundation, University of Cambridge: Cambridge, UK, 2020. [Google Scholar]
- Ratushnyak, S.; Hoogendoorn, M.; Van Baal, P.H. Cost-Effectiveness of Cancer Screening: Health and Costs in Life Years Gained. Am. J. Prev. Med. 2019, 57, 792–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lonnberg, S.; Sekerija, M.; Malila, N.; Sarkeala, T.; Leja, M.; Májek, O.; Zappa, M.; Heijnsdijk, E.; Heinävaara, S.; Koning, H.; et al. Cancer Screening: Policy Recommendations on Governance, Organization and Evaluation of Cancer Screening. In European Guide on Quality Improvement in Comprehensive Cancer Control; Albreht, T., Kiasuwa, R., Van den Bulcke, M., Eds.; Slovenia National Institute of Public Health and Belbium Scientific Institute of Public Health: Brussels, Belgium, 2017; pp. 39–76. [Google Scholar]
- Iragorri, N.; Spackman, E. Assessing the value of screening tools: Reviewing the challenges and opportunities of cost-effectiveness analysis. Public Health Rev. 2018, 39, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosse, S.D. Showing Value in Newborn Screening: Challenges in Quantifying the Effectiveness and Cost-Effectiveness of Early Detection of Phenylketonuria and Cystic Fibrosis. Healthcare 2015, 3, 1133–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marmot, M.G.; Altman, D.G.; Cameron, D.A.; Dewar, J.A.; Thompson, S.G.; Wilcox, M.; Independent UK Panel Breast Cancer Screening. The benefits and harms of breast cancer screening: An independent review. Lancet 2012, 380, 1778–1786. [Google Scholar] [CrossRef] [Green Version]
- Seedat, F.; Cooper, J.; Cameron, L.; Stranges, S.; Kandala, N.B.; Burton, H.; Taylor Phillips, S. International Comparisons of Screening Policy-Making: A Systematic Review; University of Warwick and PHG Foundation: Coventry, UK, 2014; p. 23. [Google Scholar]
- World Health Organization, Regional Office for Europe. Screening Programmes: A Short Guide; World Health Organization, Regional Office for Europe: København, Denmark, 2020. [Google Scholar]
- Tuttle, R.M.; Alzahrani, A.S. Risk Stratification in Differentiated Thyroid Cancer: From Detection to Final Follow-Up. J. Clin. Endocrinol. Metab. 2019, 104, 4087–4100. [Google Scholar] [CrossRef] [PubMed]
- Dall’Era, M.A.; Klotz, L. Active surveillance for intermediate-risk prostate cancer. Prostate Cancer Prostatic Dis. 2016, 20, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Preston, M.A.; Feldman, A.S.; Coen, J.J.; McDougal, W.S.; Smith, M.R.; Paly, J.J.; Carrasquillo, R.; Wu, C.-L.; Dahl, D.M.; Barrisford, G.W.; et al. Active surveillance for low-risk prostate cancer: Need for intervention and survival at 10 years. Urol. Oncol. Semin. Orig. Investig. 2015, 33, 383.e9–383.e16. [Google Scholar] [CrossRef]
- Rodrigues, G.; Lukka, H.; Warde, P.; Brundage, M.; Souhami, L.; Crook, J.; Cury, F.; Catton, C.; Mok, G.; Martin, A.-G.; et al. The prostate cancer risk stratification (ProCaRS) project: Recursive partitioning risk stratification analysis. Radiother. Oncol. 2013, 109, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Klotz, L. Low-risk prostate cancer can and should often be managed with active surveillance and selective delayed intervention. Nat. Clin. Pract. Urol. 2007, 5, 2–3. [Google Scholar] [CrossRef]
- Mayer, D.K.; Alfano, C.M. Personalized Risk-Stratified Cancer Follow-Up Care: Its Potential for Healthier Survivors, Happier Clinicians, and Lower Costs. JNCI J. Natl. Cancer Inst. 2019, 111, 442–448. [Google Scholar] [CrossRef]
- Widschwendter, M.; Jones, A.; Evans, I.; Reisel, D.; Dillner, J.; Sundström, K.; Steyerberg, E.W.; Vergouwe, Y.; Wegharth, O.; Rebitschek, F.G.; et al. Epigenome-based cancer risk prediction: Rationale, opportunities and challenges. Nat. Rev. Clin. Urol. 2018, 15, 292–306. [Google Scholar] [CrossRef] [PubMed]
- Pashayan, N.; Pharoah, P.D.; Schleutker, J.; Talala, K.; Tammela, T.L.; Määttänen, L.; Harrington, P.; Tyrer, J.; Eeles, R.; Duffy, S.W.; et al. Reducing overdiagnosis by polygenic risk-stratified screening: Findings from the Finnish section of the ERSPC. Br. J. Cancer 2015, 113, 1086–1093. [Google Scholar] [CrossRef] [Green Version]
- Pashayan, N.; Duffy, S.W.; Neal, D.E.; Hamdy, F.C.; Donovan, J.L.; Martin, R.M.; Harrington, P.; Benlloch, S.; Al Olama, A.A.; Shah, M.; et al. Implications of polygenic risk-stratified screening for prostate cancer on overdiagnosis. Genet. Med. 2015, 17, 789–795. [Google Scholar] [CrossRef] [Green Version]
- Schünemann, H.J.; Lerda, D.; Quinn, C.; Follmann, M.; Alonso-Coello, P.; Rossi, P.G.; Lebeau, A.; Nyström, L.; Broeders, M.; Ioannidou-Mouzaka, L.; et al. Breast Cancer Screening and Diagnosis: A Synopsis of the European Breast Guidelines. Ann. Intern. Med. 2019, 172, 46. [Google Scholar] [CrossRef] [Green Version]
- Steenkamer, B.M.; Drewes, H.W.; Heijink, R.; Baan, C.A.; Struijs, J.N. Defining Population Health Management: A Scoping Review of the Literature. Popul. Health Manag. 2017, 20, 74–85. [Google Scholar] [CrossRef]
- Moorthie, S.; Gaynor, L.; Burton, H.; Hall, A.; Kroese, M.; Raza, S. Personalising Prevention for Breast Cancer; PHG Foundation, University of Cambridge: Cambridge, UK, 2018. [Google Scholar]
- Antoniou, A.; Anton-Culver, H.; Borowsky, A.; Broeders, M.; Brooks, J.; Chiarelli, A.; Chiquette, J.; Cuzick, J.; Delaloge, S.; Devilee, P.; et al. A response to “Personalised medicine and population health: Breast and ovarian cancer”. Qual. Life Res. 2019, 138, 287–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pashayan, N.; Antoniou, A.C.; Ivanus, U.; Esserman, L.J.; Easton, D.F.; French, D.; Sroczynski, G.; Hall, P.; Cuzick, J.; Evans, D.G.; et al. Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nat. Rev. Clin. Oncol. 2020, 17, 687–705. [Google Scholar] [CrossRef] [PubMed]
- Roobol, M.J.; Carlsson, S.V. Risk stratification in prostate cancer screening. Nat. Rev. Urol. 2013, 10, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Mattiuzzi, C.; Montagnana, M. BRCA population screening for predicting breast cancer: For or against? Ann. Transl. Med. 2017, 5, 275. [Google Scholar] [CrossRef] [Green Version]
- Giannakeas, V.; Narod, S.A. The expected benefit of preventive mastectomy on breast cancer incidence and mortality in BRCA mutation carriers, by age at mastectomy. Breast Cancer Res. Treat. 2017, 167, 263–267. [Google Scholar] [CrossRef]
- McGee, J.; Giannakeas, V.; Karlan, B.; Lubinski, J.; Gronwald, J.; Rosen, B.; McLaughlin, J.; Risch, H.; Sun, P.; Foulkes, W.D.; et al. Risk of breast cancer after a diagnosis of ovarian cancer in BRCA mutation carriers: Is preventive mastectomy warranted? Gynecol. Oncol. 2017, 145, 346–351. [Google Scholar] [CrossRef]
- Evans, O.; Manchanda, R. Population-based Genetic Testing for Precision Prevention. Cancer Prev. Res. 2020, 13, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Oktay, K.; Santaliz-Casiano, A.; Patel, M.; Marino, N.; Storniolo, A.M.V.; Torun, H.; Acar, B.; Erdogan, Z.M. A Computational Statistics Approach to Evaluate Blood Biomarkers for Breast Cancer Risk Stratification. Horm. Cancer 2019, 11, 17–33. [Google Scholar] [CrossRef]
- Moorthie, S.; Burton, H.; Villiers, C.B. Personalising Breast Cancer Prevention: Bridging the Gap Between Research and Policy; PHG Foundation, Cambridge University: Cambridge, UK, 2020; pp. 17–18. [Google Scholar]
- Wagner, J.; Hall, J.D.; Ross, R.L.; Cameron, D.; Sachdeva, B.; Kansagara, D.; Cohen, D.J.; Dorr, D.A. Implementing Risk Stratification in Primary Care: Challenges and Strategies. J. Am. Board Fam. Med. 2019, 32, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.L.; Sachdeva, B.; Wagner, J.; Ramsey, K.; Dorr, D.A. Perceptions of Risk Stratification Workflows in Primary Care. Healthcare 2017, 5, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louro, J.; Posso, M.; Boon, M.H.; Román, M.; Domingo, L.; Castells, X.; Sala, M. A systematic review and quality assessment of individualised breast cancer risk prediction models. Br. J. Cancer 2019, 121, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Bienge, C.M.; Pashayan, N.; Brooks, J.; Dorval, M.; Chiquette, J.; Eloy, L.; Turgeon, A.; Lambert-Côté, L.; Paquette, J.-S.; Lévesque, E.; et al. Women’s Views on Multifactorial Breast Cancer Risk Assessment and Risk-Stratified Screening: A Population-Based Survey from Four Provinces in Canada. J. Pers. Med. 2021, 11, 95. [Google Scholar] [CrossRef]
- Yanes, T.; Young, M.-A.; Meiser, B.; James, P. Clinical applications of polygenic breast cancer risk: A critical review and perspectives of an emerging field. Breast Cancer Res. 2020, 22, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mavaddat, N.; Pharoah, P.D.; Michailidou, K.; Tyrer, J.; Brook, M.N.; Bolla, M.K.; Wang, Q.; Dennis, J.; Dunning, A.M.; Shah, M.; et al. Prediction of Breast Cancer Risk Based on Profiling with Common Genetic Variants. JNCI J. Natl. Cancer Inst. 2015, 107, djv036. [Google Scholar] [CrossRef]
- Kinkorová, J.; Topolčan, O. Biobanks in the era of big data: Objectives, challenges, perspectives, and innovations for predictive, preventive, and personalised medicine. EPMA J. 2020, 11, 333–341. [Google Scholar] [CrossRef]
- Kharrazi, H.; Lasser, E.C.; Yasnoff, W.A.; Loonsk, J.; Advani, A.; Lehmann, H.P.; Chin, D.C.; Weiner, J.P. A proposed national research and development agenda for population health informatics: Summary recommendations from a national expert workshop. J. Am. Med. Inform. Assoc. 2016, 24, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.; Brand, A.; Holgate, S.T.; Kristiansen, L.V.; Lehrach, H.; Palotie, A.; Prainsack, B. The future of technologies for personalised medicine. New Biotechnol. 2012, 29, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Rice, M.; Tworoger, S.S.; Rosner, B.A.; Eliassen, A.H.; Tamimi, R.M.; Joshi, A.D.; Lindstrom, S.; Qian, J.; Colditz, G.A.; et al. Addition of a polygenic risk score, mammographic density, and endogenous hormones to existing breast cancer risk prediction models: A nested case–control study. PLoS Med. 2018, 15, e1002644. [Google Scholar] [CrossRef]
- Quinn, P.; Quinn, L. Big Genetic Data and its Big Data Protection Challenges. Comput. Law Secur. Rev. 2018, 34, 1000–1018. [Google Scholar] [CrossRef]
- Di Iorio, C.T.; Carinci, F.; Oderkirk, J. Health Research and Systems’ Governance are at Risk: Should the Right to Data Protection Override Health? J. Med. Ethics 2014, 40, 488–492. [Google Scholar] [CrossRef]
- Bernier, A.; Knoppers, B.M. Biomedical Data Identifiability in Canada and the European Union: From Risk Qualification to Risk Quantification? SCRIPTED A J. Law Technol. Soc. 2021, in press. [Google Scholar]
- Bovenberg, J.; Peloquin, D.; Bierer, B.; Barnes, M.; Knoppers, B.M. How to fix the GDPR’s frustration of global biomedical research. Science 2020, 370, 40–42. [Google Scholar] [CrossRef]
- Mostert, M.; Bredenoord, A.; Biesaart, M.; Van Delden, J.J. Big Data in medical research and EU data protection law: Challenges to the consent or anonymise approach. Eur. J. Hum. Genet. 2016, 24, 956–960. [Google Scholar] [CrossRef]
- Kaye, J.; Terry, S.F.; Juengst, E.; Coy, S.; Harris, J.R.; Chalmers, D.; Dove, E.S.; Budin-Ljøsne, I.; Adebamowo, C.; Ogbe, E.; et al. Including all voices in international data-sharing governance. Hum. Genom. 2018, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hines, L.M.; Sedjo, R.L.; Byers, T.; John, E.M.; Fejerman, L.; Stern, M.C.; Baumgartner, K.B.; Giuliano, A.R.; Torres-Mejia, G.; Wolff, R.K.; et al. The Interaction between Genetic Ancestry and Breast Cancer Risk Factors among Hispanic Women: The Breast Cancer Health Disparities Study. Cancer Epidemiol. Biomark. Prev. 2016, 26, 692–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, M.E.; Susswein, L.R.; Cheng, W.J.; Carter, N.J.; Carter, A.C.; Klein, R.T.; Hruska, K.S.; Marshall, M.L. Ancestry-specific hereditary cancer panel yields: Moving toward more personalized risk assessment. J. Genet. Couns. 2020, 29, 598–606. [Google Scholar] [CrossRef]
- Roberts, M.C.; Khoury, M.J.; Mensah, G.A. Perspective: The Clinical Use of Polygenic Risk Scores: Race, Ethnicity, and Health Disparities. Ethn. Dis. 2019, 29, 513–516. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.-K.; Tan, M.-M.; Mavaddat, N.; Tai, M.-C.; Mariapun, S.; Li, J.; Ho, P.-J.; Dennis, J.; Tyrer, J.P.; Bolla, M.K.; et al. European polygenic risk score for prediction of breast cancer shows similar performance in Asian women. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Weale, M.E.; Riveros-Mckay, F.; Selzam, S.; Seth, P.; Moore, R.; Tarran, W.A.; Gradovich, E.; Giner-Delgado, C.; Palmer, D.; Wells, D.; et al. Validation of an Integrated Risk Tool, Including Polygenic Risk Score, for Atherosclerotic Cardiovascular Disease in Multiple Ethnicities and Ancestries. Am. J. Cardiol. 2021, 148, 157–164. [Google Scholar] [CrossRef]
- Weissbrod, O.; Kanai, M.; Shi, H.; Gazal, S.; Peyrot, W.; Khera, A.; Okada, Y.; Project, T.B.J.; Martin, A.; Finucane, H.; et al. Leveraging Fine-Mapping and Non-European Training Data to Improve Trans-Ethnic Polygenic Risk Scores. medRxiv 2021. pre-print. [Google Scholar] [CrossRef]
- Amariuta, T.; Ishigaki, K.; Sugishita, H.; Ohta, T.; Koido, M.; Dey, K.K.; Matsuda, K.; Murakami, Y.; Price, A.L.; Kawakami, E.; et al. Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements. Nat. Genet. 2020, 52, 1346–1354. [Google Scholar] [CrossRef] [PubMed]
- Curtis, D. Polygenic risk score for schizophrenia is more strongly associated with ancestry than with schizophrenia. Psychiatr. Genet. 2018, 28, 85–89. [Google Scholar] [CrossRef]
- Popejoy, A.B.; Ritter, D.I.; Crooks, K.; Currey, E.; Fullerton, S.M.; Hindorff, L.A.; Koenig, B.; Ramos, E.M.; Sorokin, E.P.; Wand, H.; et al. The Clinical Imperative for Inclusivity: Race, Ethnicity, and Ancestry (REA) in Genomics. Hum. Mutat. 2018, 39, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y. Explicit Modeling of Ancestry Improves Polygenic Risk Scores and BLUP Prediction. Genet. Epidemiol. 2015, 39, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Fritsche, L.G.; Ma, Y.; Zhang, D.; Salvatore, M.; Lee, S.; Zhou, X.; Mukherjee, B. On Cross-ancestry Cancer Polygenic Risk Scores. medRxiv Prepr. Serv. 2021. [Google Scholar] [CrossRef]
- Jooma, S.; Hahn, M.; Hindorff, L.A.; Bonham, V.L. Defining and Achieving Health Equity in Genomic Medicine. Ethn. Dis. 2019, 29, 173–178. [Google Scholar] [CrossRef]
- Mulder, N.J.; Adebiyi, E.; Adebiyi, M.; Adeyemi, O.; Ahmed, A.; Ahmed, R.; Akanle, M.B.; Alibi, M.; Armstrong, D.L.; Aron, S.; et al. Development of Bioinformatics Infrastructure for Genomics Research. Glob. Hear. 2017, 12, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamoto, K.; Lobach, D.F.; Willard, H.F.; Ginsburg, G.S. A national clinical decision support infrastructure to enable the widespread and consistent practice of genomic and personalized medicine. BMC Med. Inform. Decis. Mak. 2009, 9, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joly, Y.; Saulnier, K.M.; Osien, G.; Knoppers, B.M. The ethical framing of personalized medicine. Curr. Opin. Allergy Clin. Immunol. 2014, 14, 404–408. [Google Scholar] [CrossRef]
- Verma, M. Personalized Medicine and Cancer. J. Pers. Med. 2012, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ciardiello, F.; Arnold, D.; Casali, P.G.; Cervantes, A.; Douillard, J.-Y.; Eggermont, A.; Eniu, A.; McGregor, K.; Peters, S.; Piccart, M.; et al. Delivering Precision Medicine in Oncology Today and in Future-the Promise and Challenges of Personalised Cancer Medicine: A Position Paper by the European Society for Medical Oncology ESMO). Ann. Oncol. 2014, 25, 1673–1678. [Google Scholar] [CrossRef]
- Perry, J.; Wöhlke, S.; Heßling, A.; Schicktanz, S. Why take part in personalised cancer research? Patients’ genetic misconception, genetic responsibility and incomprehension of stratification-an empirical-ethical examination. Eur. J. Cancer Care 2016, 26, e12563. [Google Scholar] [CrossRef]
- Køster, B. Reduced cancer risk from healthier lifestyle. Acta Oncol. 2021, 60, 825–826. [Google Scholar] [CrossRef]
- Mersch, J.; Brown, N.; Pirzadeh-Miller, S.; Mundt, E.; Cox, H.C.; Brown, K.; Aston, M.; Esterling, L.; Manley, S.; Ross, T. Prevalence of Variant Reclassification Following Hereditary Cancer Genetic Testing. JAMA 2018, 320, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.L.; Foulkes, A.L. Genetic Duties. William Mary Law Rev. 2020, 62, 205–207. [Google Scholar]
- Thorogood, A.; Bernier, A.; Zawati, M.; Knoppers, B.M. A Legal Duty of Genetic Recontact in Canada. Health Law Can. J. 2019, 40, 58–80. [Google Scholar]
- Carrieri, D.; Dheensa, S.; Doheny, S.; Clarke, A.J.; Turnpenny, P.D.; Lucassen, A.; Kelly, S.E. Recontacting in clinical practice: The views and expectations of patients in the United Kingdom. Eur. J. Hum. Genet. 2017, 25, 1106–1112. [Google Scholar] [CrossRef] [Green Version]
- Giesbertz, N.A.A.; Van Harten, W.H.; Bredenoord, A.L. A duty to recontact in genetics: Context matters. Nat. Rev. Genet. 2019, 20, 371–372. [Google Scholar] [CrossRef]
- Ploem, C.; Mitchell, C.; Van Harten, W.; Gevers, S. A Duty to Recontact in the Context of Genetics: Futuristic or Realistic? Eur. J. Health Law 2018, 25, 537–553. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.W.; Mak, T.S.H.; O’Reilly, P.F. Tutorial: A guide to performing polygenic risk score analyses. Nat. Protoc. 2020, 15, 2759–2772. [Google Scholar] [CrossRef]
- Lewis, C.M.; Vassos, E. Polygenic risk scores: From research tools to clinical instruments. Genome Med. 2020, 12, 44. [Google Scholar] [CrossRef]
- Nature Research Media & Illumina. Polygenic Risk: What’s the Score? Nature 2019, 4. Available online: https://www.nature.com/articles/d42473-019-00270-w (accessed on 2 May 2021).
- Hall, A.; Finnegan, T.; Chowdhury, S.; Dent, T.; Kroese, M.; Burton, H. Risk Stratification, Genomic Data and the Law. J. Community Genet. 2018, 9, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Health Canada. Health Canada’s Action Plan on Medical Devices; Health Canada: Onoway, AB, Canada, 2018; p. 1.
- Van Norman, G.A. Drugs and Devices: Comparison of European and U.S. Approval Processes. JACC Basic Transl. Sci. 2016, 1, 399–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SaMD Working Group of the International Medical Device Regulators Forum. (a), Software as a Medical Device Key Definitions (IMDRF, 2013). Available online: http://www.imdrf.org/docs/imdrf/final/technical/imdrf-tech-131209-samd-key-definitions-140901.pdf (accessed on 2 May 2021).
- FDA. FDA: Software as a Medical Device (SaMD). Available online: https://www.fda.gov/medical-devices/digital-health-center-excellence/software-medical-device-samd (accessed on 2 May 2021).
- FDA. FDA: Clinical Decision Support Software. Draft Guidance for Industry and Food and Drug Administration Staff; FDA: Montgomery, MD, USA, 2019.
- Health Canada. Classification Examples Guidance: Software as a Medical Device (SaMD). Available online: https://www.canada.ca/en/health-canada/services/drugs-health-products/medical-devices/application-information/guidance-documents/software-medical-device-guidance/examples.html#a4 (accessed on 7 January 2020).
- Health Canada. Guidance Document Software as Medical Device (SaMD). Definition and Classification; Health Canada: Onoway, AB, Canada, 2019.
- European Commission. Guidelines on the Qualification and Classification of Stand alone Software Used in Healthcare within the Regulatory Framework of Medical Devices; European Commission, 2016. [Google Scholar]
- Regulation (EU) 2017/745 on Medical Devices. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0745 (accessed on 2 May 2021).
- Medical Devices Regulations SOR/98–282. 1998. Available online: https://www.canlii.org/en/ca/laws/regu/sor-98-282/latest/sor-98-282.html (accessed on 2 May 2021).
- FDA. FDA: Classify Your Medical Device. Available online: https://www.fda.gov/medical-devices/overview-device-regulation/classify-your-medical-device (accessed on 6 April 2021).
- FDA. FDA: Overview of Device Regulation. Available online: https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/overview-device-regulation (accessed on 6 April 2021).
- Food and Drugs Act, RSC. 1985. Available online: https://laws-lois.justice.gc.ca/eng/acts/f-27/ (accessed on 6 April 2021).
- SGS, Medical and In Vitro Diagnostic Devices CE Marking Prices. 2019. Available online: https://www.sgs.com/-/media/global/documents/technical-documents/technical-bulletins/sgs-cbe-price-and-fees-for-sgs-public-website-1905v4.pdf?la=en (accessed on 2 May 2021).
- FDA. FDA: Medical Device User Fee Amendments (MDUFA). Available online: https://www.fda.gov/industry/fda-user-fee-programs/medical-device-user-fee-amendments-mdufa (accessed on 22 April 2021).
- Health Canada. Fees for the Examination of an Application for a Medical Device Licence. Available online: https://www.canada.ca/en/health-canada/services/drugs-health-products/funding-fees/fees-respect-human-drugs-medical-devices/medical-device-licence-application-review-funding-fees-drugs-health-products.html (accessed on 17 April 2021).
- Health Canada. Fees for Examination of an Application for an Establishment Licence: Medical Devices. Available online: https://www.canada.ca/en/health-canada/services/drugs-health-products/funding-fees/fees-respect-human-drugs-medical-devices/medical-device-establishment-licence-funding-fees-drugs-health-products.html (accessed on 17 April 2021).
- Health Canada. Fees for Right to Sell Licensed Class II, III or IV Medical Devices. Available online: https://www.canada.ca/en/health-canada/services/drugs-health-products/funding-fees/fees-respect-human-drugs-medical-devices/right-sell-licensed-class-medical-devices-funding-fees-drugs.html (accessed on 17 April 2021).
- Cortez, N.; Cohen, G.; Kesselheim, A.S. FDA Regulation of Mobile Health Technologies. Health Law Ethics Hum. Rights N. Engl. J. Med. 2014, 4, 372–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenton, R. How Long Does the FDA Medical Device Approval Process Take? Available online: https://www.qualio.com/blog/fda-medical-device-approval-process (accessed on 22 April 2021).
- FDA. FDA: PMA Review Process. Available online: https://www.fda.gov/medical-devices/premarket-approval-pma/pma-review-process (accessed on 22 April 2021).
- FDA. FDA: Premarket Notification 510(k). Available online: https://www.fda.gov/medical-devices/premarket-submissions/premarket-notification-510k (accessed on 22 April 2021).
- Health Canada. Safe Medical Devices in Canada. Available online: https://www.canada.ca/en/health-canada/services/drugs-health-products/medical-devices/activities/fact-sheets/safe-medical-devices-fact-sheet.html (accessed on 17 April 2021).
- Fenton, R. The EU Medical Device Regulation Timeline: What You Should Know in 2020. Available online: https://www.qualio.com/blog/eu-medical-device-regulation-timeline (accessed on 3 March 2021).
- Lee, A.; Mavaddat, N.; Wilcox, A.N.; Cunningham, A.P.; Carver, T.; Hartley, S.; Chantal, B.d.V.; Izquierdo, A.; Simard, J.; Schmidt, M.K.; et al. BOADICEA: A comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet. Med. 2019, 21, 1708–1718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.; Cunningham, A.P.; Kuchenbaecker, K.B.; Mavaddat, N.; Easton, D.F.; Antoniou, A.C. BOADICEA breast cancer risk prediction model: Updates to cancer incidences, tumour pathology and web interface. Br. J. Cancer 2014, 110, 535–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carver, T.; Hartley, S.; Lee, A.; Cunningham, A.P.; Archer, S.; De Villiers, C.B.; Roberts, J.; Ruston, R.; Walter, F.M.; Tischkowitz, M.; et al. CanRisk Tool—A Web Interface for the Prediction of Breast and Ovarian Cancer Risk and the Likelihood of Carrying Genetic Pathogenic Variants. Cancer Epidemiol. Biomark. 2021, 30, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Moorthie, S.; Babb de Villiers, C.; Brigden, T.; Gaynor, L.; Hall, A.; Johnson, E.; Sanderson, S.; Kroese, M. Polygenic Scores, Risk and Cardiovascular Disease. 2019. Available online: https://www.phgfoundation.org/report/polygenic-scores-cardiovascular (accessed on 17 June 2021).
- Matthews, G.; Van Zyl, N. Clinical Utility of Polygenic Scores. Available online: https://www.hannover-re.com/1636478/recent-medical-news-clinical-utility-of-polygenic-risk-scores-2020.pdf (accessed on 17 June 2021).
- Cohen, I.G. Is There a Duty to Share Healthcare Data. In Cohen, Fernandez Lynch; Vayena, E., Gasser Frontmatter, U., Eds.; Big Data, Health Law, and Bioethics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- McKeown, A.; Mourby, M.; Harrison, P.; Walker, S.; Sheehan, M.; Singh, I. Ethical Issues in Consent for the Reuse of Data in Health Data Platforms. Sci. Eng. Ethic 2021, 27, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Zarsky, T.Z. Incompatible: The GDPR in the Age of Big Data. Seton Hall Law Rev. 2017, 47, 995–1020. [Google Scholar]
- Morrison, M.; Mourby, M.; Gowans, H.; Coy, S.; Kaye, J. Governance of research consortia: Challenges of implementing Responsible Research and Innovation within Europe. Life Sci. Soc. Policy 2020, 16, 13. [Google Scholar] [CrossRef] [PubMed]
- Hill, S. Introducing genomics into cancer care. BJS 2018, 105, e14–e15. [Google Scholar] [CrossRef] [Green Version]
- United Kingdom Department of Health and Social Care. Data Saves Lives: Reshaping Health and Social Care with Data (Draft). Available online: https://www.gov.uk/government/publications/data-saves-lives-reshaping-health-and-social-care-with-data-draft (accessed on 23 June 2021).
- Garrido, P.; Aldaz, A.; Vera, R.; Calleja, M.A.; De Alava, E.; Martín, M.; Matías-Guiu, X.; Palacios, J. Proposal for the creation of a national strategy for precision medicine in cancer: A position statement of SEOM, SEAP, and SEFH. Clin. Transl. Oncol. 2017, 20, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, S. Data, Data Everywhere: The Challenges of Personalised Medicine. BMJ 2017, 359, j4546. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knoppers, B.M.; Bernier, A.; Granados Moreno, P.; Pashayan, N. Of Screening, Stratification, and Scores. J. Pers. Med. 2021, 11, 736. https://doi.org/10.3390/jpm11080736
Knoppers BM, Bernier A, Granados Moreno P, Pashayan N. Of Screening, Stratification, and Scores. Journal of Personalized Medicine. 2021; 11(8):736. https://doi.org/10.3390/jpm11080736
Chicago/Turabian StyleKnoppers, Bartha M., Alexander Bernier, Palmira Granados Moreno, and Nora Pashayan. 2021. "Of Screening, Stratification, and Scores" Journal of Personalized Medicine 11, no. 8: 736. https://doi.org/10.3390/jpm11080736
APA StyleKnoppers, B. M., Bernier, A., Granados Moreno, P., & Pashayan, N. (2021). Of Screening, Stratification, and Scores. Journal of Personalized Medicine, 11(8), 736. https://doi.org/10.3390/jpm11080736