ICBrainDB: An Integrated Database for Finding Associations between Genetic Factors and EEG Markers of Depressive Disorders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject Groups
2.2. Genetic Data
2.3. EEG Data
2.4. Questionnaires
3. Results
3.1. Database Content
3.2. Database Structure and Access
- human-subject contains the key parameters of a subject.
- mutation-data on mutations in a particular subject detected in a gene located on a particular chromosome; ref_nucl parameter indicating reference locus variant; and type parameter indicating genotype (homozygote or heterozygote).
- Test-a questionnaire contains information about the name of the questionnaire and a description of how it was used; alias–is the common name of the questionnaire.
- testQuestion, a table that contains questions associated with the questionnaires, with the order of the questions.
- testResponseType, a table that describes the answer choices allowed in the questionnaire. There can be either a value between 1 and 5, or some ranking [“yes”, “probably yes”, “probably no”, “no”, and “definitely no”].
- testSummary contains the results of the examiner’s processing of the examinee’s questionnaire responses; alias–is the common name of the summary. With a single questionnaire there could be more than one testSummary. These connections are represented in the ‘testSummary2test’ table.
- testResults contains the results of responses to specific questions associated with valid response options.
- EEG_file-table lists paths to EEG data files for a specific examinee. It is used for creating a download URL link.
3.3. Data Access
- /api-v2/human: list of all subjects.
- /api-v2/human/<string:id>: information about a particular subject (here and after the ‘<string:id>’ part of the path means the identifier of the entity).
- /api-v2/human/<string:id>/mutations: information about this subject’s mutations.
- /api-v2/human/<string:id>/files: information about the subject’s available EEG files.
- GENES
- /api-v2/genes: list of genes in the database.
- /api-v2/genes/<string:id>: information on a particular gene, contains a list of mutations of this gene in the database.
- QUESTIONS
- /api-v2/questionnaires/: list of questionnaires.
- /api-v2/questionnaires/<string:id>: selected questionnaire information, which includes the list of questions.
- QUESTIONNAIRE RESULTS
- /api-v2/summaries/: list of available subject questionnaire summaries.
- /api-v2/summaries/<string:id>: list of selected questionnaire summary values for all subjects.
- /api-v2/questionnaire-results/: list of all questionnaire summary values in database.
- /api-v2/questionnaire-results/<string:id>: selected questionnaire summary value.
- MUTATIONS
- /api-v2/mutations: the list of mutations in the database.
- /api-v2/mutations/<int:id>: information on a particular mutation.
- FILES
- /api-v2/files: list of EEG files available in the database.
- /files/<string:id>: link to download a specific EEG file.
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sullivan, P.F.; Neale, M.C.; Kendler, K.S. Genetic epidemiology of major depression: Review and meta-analysis. Am. J. Psychiatry 2000, 157, 1552–1562. [Google Scholar] [CrossRef] [PubMed]
- Savostyanov, A.N.; Naumenko, V.S.; Sinyakova, N.A.; L’vova, M.N.; Levin, E.A.; Zaleshin, M.S.; Kavay-ool, U.N.; Mordvinov, V.A.; Kolchanov, N.A.; Aftanas, L.I. Association of anxiety level with polymorphic variants of serotonin transporter gene in Russians and Tuvinians. Russ. J. Genet. Appl. Res. 2015, 5, 656–665. [Google Scholar] [CrossRef]
- Ivanov, R.; Zamyatin, V.; Klimenko, A.; Matushkin, Y.; Savostyanov, A.; Lashin, S. Reconstruction and analysis of gene networks of human neurotransmitter systems reveal genes with contentious manifestation for anxiety, depression, and intellectual disabilities. Genes 2019, 10, 699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. The ICD-10 Classification of Mental and Behavioral Disorders; WHO: Geneva, Switzerland, 1992; ISBN 9241544228. [Google Scholar]
- First, M.B.; Caban, D. Structured Clinical Interview for DSM Diagnosis. In The Corsini Encyclopedia of Psychology; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Flynn, M.; Rudolph, K.D. Depression and Depressive Disorders. In Encyclopedia of Adolescence; Elsevier: Amsterdam, The Netherlands, 2011; pp. 127–135. [Google Scholar]
- Hamilton, M. A RATING SCALE FOR DEPRESSION. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, R.A.; Steer, A.T.; Brown, G.K. Manual for the Beck Depression Inventory; Springer: San Antonio, TX, USA, 1996. [Google Scholar]
- Spielberg, C.D.; Gorsuch, R.L.; Lushene, R.E. Manual for the State-Trait Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1970. [Google Scholar]
- Knyazev, G.G.; Mitrofanova, L.G.; Bocharov, A.V. Validization of Russian version of Goldberg’s “Big-five factor markers” inventory. Psychol. J. 2010, 31, 100–110. (In Russian) [Google Scholar]
- Knyazev, G.G.; Belopolsky, V.I.; Bodunov, M.V.; Wilson, G.D. The factor structure of the Eysenck Personality Profiler in Russia. Pers. Individ. Dif. 2004, 37, 1681–1692. [Google Scholar] [CrossRef]
- Hanin, Y.L. A Brief Guide to the Scale of Reactive and Personal Anxiety by C. D. Spielberger; LRIPC: Saint Petersburg, Russia, 1976. [Google Scholar]
- Perry, M.; Buss, A.H. The Aggression Questionnaire. J. Pers. Soc. Psychol. 1992, 63, 452–459. [Google Scholar]
- Knyazev, G.G.; Mitrofanova, L.G.; Razumnikova, O.M.; Barchard, K. Adaptation of Russian language version of K. Barchards emotional intelligence questionnaire. Psychol. J. 2012, 33, 112–121. (In Russian) [Google Scholar]
- Singelis, T.M. The measurement of independent and interdependent self-construals. Personal. Soc. Psychol. Bull. 1994, 20, 580–591. [Google Scholar] [CrossRef]
- Cross, S.E.; Bacon, L.P.; Morris, L.M. The relational-interdependent self-construal and relationships. J. Pers. Soc. Psychol. 2000, 78, 791–808. [Google Scholar] [CrossRef] [PubMed]
- Achenbach, T.M.; Rescorla, L.A. Manual for the ASEBA Adult Forms & Profiles; University of Vermont: Burlington, VT, USA, 2003. [Google Scholar]
- Harding, T.W.; De Arango, V.; Baltazar, J.; Climent, C.E.; Ibrahim, H.H.A.; Ladrido-Ignacio, L.; Wig, N.N. Mental disorders in primary health care: A study of their frequency and diagnosis in four developing countries. Psychol. Med. 1980, 10, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beard, L.; Aghassibake, N. Tableau (version 2020.3). J. Med. Libr. Assoc. 2021, 109, 159. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, W.; Chang, S.; Zhang, L.; Ott, J.; Wang, J. MK4MDD: A Multi-Level Knowledge Base and Analysis Platform for Major Depressive Disorder. PLoS ONE 2012, 7, e46335. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, M.C. What have we learned from the Psychiatric Genomics Consortium. World Psychiatry 2015, 14, 291–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baudewijns, L.; Ronsse, E.; Verstraete, V.; Sabbe, B.; Morrens, M.; Bertelli, M.O. Problem behaviours and Major Depressive Disorder in adults with intellectual disability and autism. Psychiatry Res. 2018, 270, 769–774. [Google Scholar] [CrossRef] [PubMed]
- El Mrayyan, N.; Eberhard, J.; Ahlström, G. The occurrence of comorbidities with affective and anxiety disorders among older people with intellectual disability compared with the general population: A register study. BMC Psychiatry 2019, 19, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuckerman, H.; Pan, Z.; Park, C.; Brietzke, E.; Musial, N.; Shariq, A.S.; Iacobucci, M.; Yim, S.J.; Lui, L.M.W.; Rong, C.; et al. Recognition and Treatment of Cognitive Dysfunction in Major Depressive Disorder. Front. Psychiatry 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Whitney, D.G.; Shapiro, D.N.; Peterson, M.D.; Warschausky, S.A. Factors associated with depression and anxiety in children with intellectual disabilities. J. Intellect. Disabil. Res. 2019, 63, 408–417. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, R.; Kazantsev, F.; Zavarzin, E.; Klimenko, A.; Milakhina, N.; Matushkin, Y.G.; Savostyanov, A.; Lashin, S. ICBrainDB: An Integrated Database for Finding Associations between Genetic Factors and EEG Markers of Depressive Disorders. J. Pers. Med. 2022, 12, 53. https://doi.org/10.3390/jpm12010053
Ivanov R, Kazantsev F, Zavarzin E, Klimenko A, Milakhina N, Matushkin YG, Savostyanov A, Lashin S. ICBrainDB: An Integrated Database for Finding Associations between Genetic Factors and EEG Markers of Depressive Disorders. Journal of Personalized Medicine. 2022; 12(1):53. https://doi.org/10.3390/jpm12010053
Chicago/Turabian StyleIvanov, Roman, Fedor Kazantsev, Evgeny Zavarzin, Alexandra Klimenko, Natalya Milakhina, Yury G. Matushkin, Alexander Savostyanov, and Sergey Lashin. 2022. "ICBrainDB: An Integrated Database for Finding Associations between Genetic Factors and EEG Markers of Depressive Disorders" Journal of Personalized Medicine 12, no. 1: 53. https://doi.org/10.3390/jpm12010053
APA StyleIvanov, R., Kazantsev, F., Zavarzin, E., Klimenko, A., Milakhina, N., Matushkin, Y. G., Savostyanov, A., & Lashin, S. (2022). ICBrainDB: An Integrated Database for Finding Associations between Genetic Factors and EEG Markers of Depressive Disorders. Journal of Personalized Medicine, 12(1), 53. https://doi.org/10.3390/jpm12010053