Prevention of Spinal Cord Injury during Thoracoabdominal Aortic Aneurysms Repair: What the Anaesthesiologist Should Know
Abstract
:1. Introduction
2. Pathophysiology of Spinal Cord Ischemia
3. Clinical Presentation
4. Neuroprotective Strategies for Spinal Cord during TEVAR
4.1. Surgical Strategies
4.2. Anaesthesiologic Strategies
Type of Anaesthesia
4.3. Special Consideration for Aortic Dissection Repair
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adnan, Z.; Rizvi, M.D. Incidence, prevention and management in spinal cord protection during TEVAR. J. Vasc. Surg. 2010, 52, 86–90. [Google Scholar]
- Okita, Y. Fighting spinal cord complication during surgery for thoracoabdominal aortic diseas. Gen. Thorac. Cardiovasc. Surg. 2011, 59, 79–90. [Google Scholar] [CrossRef]
- Cheung, A.T.; Weiss, S.J.; McGarvey, M.L.; Stecker, M.M.; Hogan, M.S.; Escherich, A.; Bavaria, J.E. Interventions for reversing delayed onset postoperative paraplegia after thoracic aortic reconstruction. Ann. Thorac. Surg. 2002, 74, 413–421. [Google Scholar] [CrossRef]
- Melissano, G.; Bertoglio, L.; Rinaldi, E.; Leopardi, M.; Chiesa, R. An anatomical rewiew of spinal cord blood supply. J. Cardiovasc. Surg. 2015, 56, 699–706. [Google Scholar]
- Cheung, A.T.; Pochettino, A.; McGarvey, M.L.; Appoo, J.J.; Fairman, R.M.; Carpenter, J.P.; Moser, W.G.; Woo, E.Y.; Bavaria, J.E. Strategies to manage paraplegia risk after endovascular stent repair of descending thoracic aortic aneurysms. Ann. Thorac. Surg. 2005, 80, 1280–1289. [Google Scholar] [CrossRef]
- Mehrez, I.O.; Nabseth, D.C.; Hogan, E.L.; Deterling, R.A., Jr. Paraplegia following resection of abdominal aortic aneurysm. Ann. Surg. 1962, 156, 890–898. [Google Scholar] [CrossRef]
- Griepp, R.B.; Griepp, E.B. Spinal cord protection in surgical andendovascular repair of thoracoabdominal aortic disease. J. Thorac. Cardiovasc. Surg. 2015, 149 (Suppl. 2), S86–S90. [Google Scholar] [CrossRef] [Green Version]
- Leyvi, G.; Ramachandran, S.; Wasnick, J.D.; Plestis, K.; Cheung, A.T.; Drenger, B. Risk and benefits of cerebrospinal fluid drainage during thoracoabdominal aortic aneurysm surgery. J. Cardiothorac. Vasc. Anesth. 2005, 19, 392–399. [Google Scholar] [CrossRef]
- D’Ambra, M.N.; Dewhirst, W.; Jacobs, M.; Bergus, B.; Borges, L.; Hilgenberg, A. Cross-clamping the thoracic aorta. Effect on intracranial pressure. Circulation 1988, 78 Pt 2, 198–202. [Google Scholar]
- Carroccio, A.; Marin, M.L.; Ellozy, S.; Hollier, L.H. Pathophysiology of paraplegia following endovascular thoracic aortic aneurysm repair. J. Card. Surg. 2003, 18, 359–366. [Google Scholar] [CrossRef]
- Gelman, S. The pathophysiology of aortic cross-clamping and unclamping. Anesthesiology 1995, 82, 1026–1057. [Google Scholar] [CrossRef]
- Etz, C.D.; Kari, F.A.; Mueller, C.S.; Silovitz, D.; Brenner, R.M.; Lin, H.-M.; Griepp, R.B. The collateral network concept: A reassessment of the anatomy of spinal cord perfusion. J. Thorac. Cardiovasc. Surg. 2011, 141, 1020–1028. [Google Scholar] [CrossRef] [Green Version]
- Stokum, J.A.; Gerzanich, V.; Simard, J.M. Molecular pathophysiology of cerebral edema. J. Cereb. Blood Flow Metab. 2016, 36, 513–538. [Google Scholar] [CrossRef] [Green Version]
- Martirosyan, N.L.; Feuerstein, J.S.; Theodore, N.; Cavalcanti, D.D.; Spetzler, R.F.; Preul, M.C. Blood supply and vascular reactivity of the spinal cord under normal and pathological conditions. J. Neurosurg. Spine 2011, 15, 238–251. [Google Scholar] [CrossRef] [Green Version]
- Khoynezhad, A.; Donayre, C.E.; Bui, H.; Kopchok, G.E.; Walot, I.; White, R.A. Risk factors of neurologic deficit after thoracic aortic endografting. Ann. Thorac. Surg. 2007, 83, S882–S889. [Google Scholar] [CrossRef]
- Feezor, R.J.; Martin, T.D.; Hess, P.J., Jr.; Daniels, M.J.; Beaver, T.M.; Klodell, C.T.; Lee, W.A. Extent of aortic coverage and incidence of spinal cord ischemia after thoracic endovascular aneurysm repair. Ann. Thorac. Surg. 2008, 86, 1809–1814. [Google Scholar] [CrossRef]
- Mehmedagic, I.; Resch, T.; Acosta, S. Complications to cerebrospinal fluid drainage and predictors of spinal cord ischemia in patients with aortic disease undergoing advanced endovascular therapy. Vasc. Endovasc. Surg. 2013, 47, 415–422. [Google Scholar] [CrossRef]
- Kakinohana, M. What should we do against delayed onset paraplegia following TEVAR? J. Anesth. 2014, 28, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Ullery, B.W.; Cheung, A.T.; Fairman, R.M.; Jackson, B.M.; Woo, E.Y.; Bavaria, J.; Pochettino, A.; Wang, G.J. Risk factors, outcomes, and clinical manifestations of spinal cord ischemia following thoracic endovascular aortic repair. J. Vasc. Surg. 2011, 54, 677–684. [Google Scholar] [CrossRef] [Green Version]
- Keith, C.J., Jr.; Passman, M.A.; Carignan, M.J.; Parmar, G.M.; Nagre, S.B.; Patterson, M.A.; Taylor, S.M.; Jordan, W.D., Jr. Protocol implementation of selective postoperative lumbar spinal drainage after thoracic aortic endograft. J. Vasc. Surg. 2012, 55, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Davidovic, L.; Ilic, N. Spinal cord ischemia after aortic surgery. J. Cardiovasc. Surg. 2014, 55, 741–757. [Google Scholar]
- Hiratzka, L.F.; Bakris, G.L.; Beckman, J.A.; Bersin, R.M.; Carr, V.F.; Casey, D.E., Jr.; Eagle, K.A.; Hermann, L.K.; Isselbacher, E.M.; Kazerooni, E.A.; et al. 2010 ACCF/AHA/AATS/ACR/ASA/ SCA/SCAI/SIR/ STS/ SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation 2010, 121, 266–369. [Google Scholar]
- Uchida, N. How to prevent spinal cord injury during endovascular repair of thoracic aortic disease. Gen. Thorac. Cardiovasc. Surg. 2014, 62, 391–397. [Google Scholar] [CrossRef]
- O’Callaghan, A.; Mastracci, T.M.; Eagleton, M.J. Staged endovascular repair of thoracoabdominal aortic aneurysms limits incidence and severity of spinal cord ischemia. J. Vasc. Surg. 2015, 61, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Saouti, N.; Hindori, V.; Morshuis, W.J.; Heijmen, R.H. Left subclavian artery revascularization as part of thoracic stent grafting. Eur. J. Cardiothorac. Surg. 2015, 47, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Dias, N.; Sonesson, B. Revascularization options for left subclavian salvage during TEVAR. J. Cardiovasc. Surg. 2014, 55, 497–503. [Google Scholar]
- Matsumura, J.S.; Lee, W.A.; Mitchell, R.S.; Farber, M.A.; Murad, M.H.; Lumsden, A.B.; Greenberg, R.K.; Safi, H.J.; Fairman, R.M. The Society for Vascular Surgery Practice Guidelines: Management of the left subclavian artery with thoracic endovascular aortic repair. J. Vasc. Surg. 2009, 50, 1155–1158. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, A.Z.; Murad, M.H.; Fairman, R.M.; Erwin, P.J.; Montori, V.M. The effect of left subclavian artery coverage on morbidity and mortality in patients undergoing endovascular thoracic aortic interventions: A systematic review and meta-analysis. J. Vasc. Surg. 2009, 50, 1159–1169. [Google Scholar] [CrossRef] [Green Version]
- Wheatley, G.H., 3rd. Setting the stage: Thoracoabdominal aortic aneurysm repair in 2 acts. J. Thorac. Cardiovasc. Surg. 2015, 149, 1079–1080. [Google Scholar]
- Kasprzak, P.M.; Gallis, K.; Cucuruz, B.; Pfister, K.; Janotta, M.; Kopp, R. Editor’s choice–Temporary aneurysm sac perfusion as an adjunct for prevention of spinal cord ischemia after branched endovascular repair of thoracoabdominal aneurysms. Eur. J. Vasc. Endovasc. Surg. 2014, 48, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Maurel, B.; Delclaux, N.; Sobocinski, J.; Hertault, A.; Martin-Gonzalez, T.; Moussa, M.; Spear, R.; Le Roux, M.; Azzaoui, R.; Tyrrell, M.; et al. The impact of early pelvic and lower limb reper-fusion and attentive peri-operative management on the incidence of spinal cord ischemia during thoracoabdominal aortic aneurysm endovascular repair. Eur. J. Vasc. Endovasc. Surg. 2015, 49, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Weigang, E.; Hartert, M.; Siegenthaler, M.P.; Beckmann, N.A.; Sircar, R.; Szabò, G.; Etz, C.D.; Luehr, M.; von Samson, P.; Beyersdorf, F. Perioperative management to improve neurologic outcome in thoracic or thoracoabdominal aortic stent-grafting. Ann. Thorac. Surg. 2006, 82, 1679–1687. [Google Scholar] [CrossRef]
- Kemp, C.M.; Feng, Z.; Aftab, M.; Reece, T.B. Preventing spinal cord injury following thoracoabdominal aortic aneurysm repair: The battle to eliminate paraplegia. JTCVS Tech. 2021, 8, 11–15. [Google Scholar] [CrossRef]
- Sloan, T.B.; Edmonds, H.L., Jr.; Koht, A. Intraoperative electrophysiologic monitoring in aortic surgery. J. Cardiothorac. Vasc. Anesth. 2013, 27, 1364–1373. [Google Scholar] [CrossRef]
- Haghighi, S.S.; Sirintrapun, S.J.; Johnson, J.C.; Keller, B.P.; Oro, J.J. Suppression of spinal and cortical somatosensory evoked potentials by desflurane anesthesia. J. Neurosurg. Anesthesiol. 1996, 8, 148–153. [Google Scholar] [CrossRef]
- Malcharek, M.J.; Loeffler, S.; Schiefer, D.; Manceur, M.; Sablotzki, A.; Gille, J.; Pilge, S.; Schneider, G. Transcranial motor evoked potentials during anesthesia with desflurane versus propofol—A prospective randomized trial. Clin. Neurophysiol. 2015, 126, 1825–1832. [Google Scholar] [CrossRef]
- Husain, A.M.; Swaminathan, M.; McCann, R.L.; Hughes, G.C. Neurophysiologic intraoperative monitoring during endovascular stent graft repair of the descending thoracic aorta. J. Clin. Neurophysiol. 2007, 24, 328–335. [Google Scholar] [CrossRef]
- von Aspern, K.; Haunschild, J.; Hoyer, A.; Luehr, M.; Bakhtiary, F.; Misfeld, M.; Mohr, F.W.; Etz, C.D. Non-invasive spinal cord oxygenation monitoring: Validating collateral network near-infrared spectroscopy for thoracoabdominal aortic aneurysm repair. Eur. J. Cardiothorac. Surg. 2016, 50, 675–683. [Google Scholar] [CrossRef] [Green Version]
- Giustiniano, E.; Battistini, G.M.; Piccirillo, F.; Poletto, G.L.; Popovich, A.; Civilini, E.; Cecconi, M. May near infra-red spectroscopy and rap-id perfusion pressure recovering be enough to rule out post-operative spinal cord injury? Two compared case-reports. J. Clin. Monit. Comput. 2020, 34, 955–959. [Google Scholar] [CrossRef]
- Bobadilla, J.L.; Wynn, M.; Tefera, G.; Acher, C.W. Low incidence of paraplegia after thoracic endovascular aneurysm repair with proactive spinal cord protective protocols. J. Vasc. Surg. 2013, 57, 1537–1542. [Google Scholar] [CrossRef] [Green Version]
- Luehr, M.; Bachet, J.; Mohr, F.W.; Etz, C.D. Modern temperature management in aortic arch surgery: The dilemma of moderate hypothermia. Eur. J. Cardiothorac. Surg. 2014, 45, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, H.; Mori, A.; Yoshitake, A.; Yamada, T.; Morisaki, H.; Okano, H.; Yozu, R. Thoracic and thoracoabdominal aortic repair under regional spinal cord hypothermia. Eur. J. Cardiothorac. Surg. 2014, 46, 40–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cambria, R.P.; Davison, J.K.; Carter, C.; Brewster, D.C.; Chang, Y.; Clark, K.A.; Atamian, S. Epidural cooling for spinal cord protection during thoracoabdominal aneurysm repair: A five-year experience. J. Vasc. Surg. 2000, 31, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Kulik, A.; Castner, C.F.; Kouchoukos, N.T. Outcomes after thoracoabdominal aortic aneurysm repair with hypothermic circulatory arrest. J. Thorac. Cardiovasc. Surg. 2011, 141, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Robich, M.P.; Hagberg, R.; Schermerhorn, M.L.; Pomposelli, F.B.; Nilson, M.C.; Gendron, M.L.; Sellke, F.W.; Rodriguez, R. Hypothermia severely effects performance of nitinol-based endovascular grafts in vitro. Ann. Thorac. Surg. 2012, 93, 1223–1227. [Google Scholar] [CrossRef] [Green Version]
- Laschinger, J.C.; Cunningham, J.N., Jr.; Cooper, M.M.; Krieger, K.; Nathan, I.M.; Spencer, F.C. Prevention of ischemic spinal cord injury following aortic cross-clamping: Use of corticosteroids. Ann. Thorac. Surg. 1984, 38, 500–507. [Google Scholar] [CrossRef]
- Svensson, L.G.; Stewart, R.W.; Cosgrove, D.M.; Lytle, B.W.; Beven, E.G.; Furlan, A.J.; Gottlieb, A.J.; Grum, D.F.; Lewis, B.S.; Salgado, A. Preliminary results and rationale for the use of intrathecal papaverine for the prevention of paraplegia after aortic surgery. S. Afr. J. Surg. 1988, 26, 153–160. [Google Scholar]
- Kunihara, T.; Matsuzaki, K.; Shiiya, N.; Saijo, Y.; Yasuda, K. Naloxone lowers cerebrospinal fluid levels of excitatory amino acids after thoracoabdominal aortic surgery. J. Vasc. Surg. 2004, 40, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Acher, C.W.; Wynn, M.M.; Hoch, J.R.; Popic, P.; Archibald, J.; Turnipseed, W.E. Combined use of cerebral spinal fluid drainage and naloxone reduces the risk of paraplegia in thoracoabdominal aneurysm. J. Vasc. Surg. 1994, 19, 236–249. [Google Scholar] [CrossRef] [Green Version]
- Obrenovitch, T.P.; Richards, D.A. Extracellular neurotransmitter changes in cerebral ischaemia. Cerebrovasc. Brain Metab. Rev. 1995, 7, 1–54. [Google Scholar]
- Arnaoutakis, D.J.; Arnaoutakis, G.J.; Beaulieu, R.J.; Abularrage, C.J.; Lum, Y.W.; Black, J.H., 3rd. Results of adjunctive spinal drainage and/or left subclavian artery bypass in thoracic endovascular aortic repair. Ann. Vasc. Surg. 2014, 28, 65–73. [Google Scholar] [CrossRef] [PubMed]
- DeSart, K.; Scali, S.T.; Feezor, R.J.; Hong, M.; Hess, P.J.; Beaver, T.M.; Huber, T.S.; Beck, A. Fate of patients with spinal cord ischemia complicating thoracic endovascular aortic repair. J. Vasc. Surg. 2013, 58, 635–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrera, A.L.; Sheinbaum, R.; Miller, C.C.; Azizzadeh, A.; Walkes, J.C.; Lee, T.Y.; Kaiser, L.; Safi, H.J. Cerebrospinal fluid drainage during thoracic aortic repair: Safety and current management. Ann. Thorac. Surg. 2009, 88, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Pokhrel, B.; Hasegawa, T.; Izumi, S.; Ohmura, A.; Munakata, H.; Okita, Y.; Okada, K. Excessively high systemic blood pressure in the early phase of reperfusion exacerbates early-onset paraplegia in rabbit aortic surgery. J. Thorac. Cardiovasc. Surg. 2010, 140, 400–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedorow, C.A.; Moon, M.C.; Mutch, W.A.; Grocott, H.P. Lumbar cerebrospinal fluid drainage for thoracoabdominal aortic surgery: Rationale and practical considerations for management. Anesth. Analg. 2010, 111, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Puchakalaya, M.R.; Tremper, K.K. Brown-Sequard syndrome following removal of a cerebrospinal fluid drainage catheter after thoracic aortic surgery. Anesth. Analg. 2005, 101, 322–324. [Google Scholar] [CrossRef]
- Weaver, K.D.; Wiseman, D.B.; Farber, M.; Ewend, M.G.; Marston, W.; Keagy, B.A. Complications of lumbar drainage after thoracoabdominal aortic aneurysm repair. J. Vasc. Surg. 2001, 34, 623–627. [Google Scholar] [CrossRef] [Green Version]
- Dardik, A.; Perler, B.A.; Roseborough, G.S.; Williams, G.M. Subdural hematoma after thoracoabdominal aortic aneurysm repair: An underreported complication of spinal fluid drainage? J. Vasc. Surg. 2002, 36, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Wynn, M.M.; Mell, M.W.; Tefera, G.; Hoch, J.R.; Acher, C.W. Complications of spinal fluid drainage in thoracoabdominal aorticaneurysm repair: A report of 486 patient streated from 1987 to 2008. J. Vasc. Surg. 2009, 49, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Hanna, J.M.; Andersen, N.D.; Aziz, H.; Shah, A.A.; McCann, R.L.; Hughes, G.C. Results with selective preoperative lumbar drain placement for thoracic endovascular aortic repair. Ann. Thorac. Surg. 2013, 95, 1968–1974. [Google Scholar] [CrossRef]
- Narouze, S.; Benzon, H.T.; Provenzano, D.; Buvanendran, A.; De Andres, J.; Deer, T.; Rauck, R.; Huntoon, M.A. Interventional spine and pain procedures in patients on antiplatelet and anticoagulant medications: Guidelines from the American Society of Regional Anesthesia and Pain Medicine, the Society of Regional Anaesthesia and Pain Therapy, the American Academy of Pain Medicine, the International Neuromodulation Society, the North American Neuromodulation Society, and the World Institute of Pain. Reg. Anesth. Pain Med. 2015, 40, 182–212. [Google Scholar]
- Azizzadeh, A.; Huynh, T.T.; Miller, C.C.; Estrera, A.L.; Porat, E.E.; Sheinbaum, R.; Safi, H.J. Postoperative risk factors for delayed neurologic deficit after thoracic and thoracoabdominal aortic aneurysm repair: A case-control study. J. Vasc. Surg. 2003, 37, 750–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giustiniano, E.; Ruggieri, N. Is intrathecal lactate concentration monitoring helpful for postoperative paraplegia after descending aorta surgery? J. Clin. Anesth. 2014, 26, 506–508. [Google Scholar] [CrossRef] [PubMed]
- Giustiniano, E.; Malossini, S.E.; Pellegrino, F.; Cancellieri, F. Subarachnoid fluid lactate and paraplegia after descending aorta aneurismectomy: Two compared case reports. Case Rep. Anesthesiol. 2013, 2013, 925739. [Google Scholar]
- Kahaladj, N.; Teebken, O.E.; Hagl, C.; Wilhelmi, M.; Tschan, C.; Weissenborn, K.; Lichtinghagen, R.; Hoy, L.; Haverich, A.; Pichlmaier, M. The role of cerebrospinal fluid S100 and lactate to predict clinically evident spinal cord ischaemia in thoracoabdominal aortic surgery. Eur. J. Vasc. Endovasc. Surg. 2008, 36, 11–19. [Google Scholar]
- Stephani, C.; Choi, A.H.K.; Moerer, O. Point-of-care detection of lactate in cerebrospinal fluid. Intensiv. Care Med. Exp. 2021, 9, 18. [Google Scholar] [CrossRef]
- Anderson, R.E.; Winnerkvist, A.; Hansson, L.O.; Nilsson, O.; Rosengren, L.; Settergren, G.; Vaage, J. Biochemical marker of cerebrospinal ischemia after repair of aneurysms of the descending and thoracoabdominal aorta. J. Cardiothorac. Vasc. Anesth. 2003, 17, 598–603. [Google Scholar] [CrossRef]
- Casiraghi, G.; Poli, D.; Landoni, G.; Buratti, L.; Imberti, R.; Plumari, V.; Turi, S.; Mennella, R.; Messina, M.; Covello, R.D.; et al. Intrathecal lactate concentration and spinal cord injury in thoracoabdominal aortic surgery. J. Cardiothorac. Vasc. Anesth. 2011, 25, 120–126. [Google Scholar] [CrossRef]
- van Dorp, M.; Gilbers, M.; Lauwers, P.; Van Schil, P.E.; Hendriks, J.M. Local Anesthesia for Percutaneous Thoracic Endovascular Aortic Repair. Aorta 2016, 4, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Bettex, D.; Lachat, M.; Pfammatter, T.; Schmidlin, D.; Turina, M.; Schmid, E. To compare general, epidural and local anaesthesia for endovascular aneurysm repair (EVAR). Eur. J. Vasc. Endovasc. Surg. 2001, 21, 179–184. [Google Scholar]
- Walschot, L.H.; Laheij, R.J.; Verbeek, A.L. Outcome after endovascular abdominal aortic aneurysm repair: A meta-analysis. J. Endovasc. Ther. 2002, 9, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Pacini, D.; Tsagakis, K.; Jakob, H.; Mestres, C.-A.; Armaro, A.; Weiss, G.; Grabenwoger, M.; Borger, M.A.; Mohr, F.W.; Bonser, R.S.; et al. The frozen elephant trunk for the treatment of chronic dissection of the thoracic aorta: A multicenter experience. Ann. Thorac. Surg. 2011, 92, 1663–1670. [Google Scholar] [CrossRef] [PubMed]
- Preventza, O.; Liao, J.L.; Olive, J.K.; Simpson, K.; Critsinelis, A.C.; Price , M.D.; Galati, M.; Cornwell, L.D.; Orozco-Sevilla, V.; Omer, S.; et al. Neurologic complications after the frozen elephant trunk procedure: A meta-analysis of more than 3000 patients. J. Thorac. Cardiovasc. Surg. 2020, 160, 20–33.e4. [Google Scholar] [CrossRef] [Green Version]
- Hohri, Y.; Yamasaki, T.; Matsuzaki, Y.; Hiramatsu, T. Early and mid-term outcome of frozen elephant trunk using spinal cord protective perfusion strategy for acute type A aortic dissection. Gen. Thorac. Cardiovasc. Surg. 2020, 68, 1119–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshony, H.; Idris, A.; Ahmed, A.; Almaghrabi, M.; Ahmed, W.; Fallatah, S. Spinal Cord Ischemia Secondary to Aortic Dissection: Case Report with Literature Review for Different Clinical Presentations, Risk Factors, Radiological Findings, Therapeutic Modalities, and Outcome. Case Rep. Neurol. 2021, 13, 634–655. [Google Scholar] [CrossRef] [PubMed]
- Erbel, R.; Aboyans, V.; Boileau, C.; Bossone, E.; Di Bartolomeo, R.; Eggebrecht, H.; Evangelista, A.; Falk, V.; Frank, H.; Gaemperli, O.; et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur. Heart J. 2014, 35, 2873–2926. [Google Scholar] [PubMed] [Green Version]
Patient Risk Factors | Surgical Risk Factors |
---|---|
1-Advanced age (>70 yrs.) | 1-Total aortic coverage > 205 mm |
2-Perioperative hypotension (MAP < 70 mmHg) | 2-Concomitant abdominal aortic aneurysm or prior abdominal aortic aneurysm surgical repair |
3-Renal insufficiency (Creatinine > 132 μMol/L) | 3-Coverage of ≥2 vascular territories |
4-COPD | 4-Left subclavian artery coverage |
5-Hypertension | 5-Urgent procedure |
6-Degenerative aneurysm | 6-Coverage of hypogastric artery |
7-Adjunct procedure (Iliac conduit) | |
8-Use of ≥3 stents | |
9-Longer duration of the procedure | |
10- Excessive blood loss |
Anaesthetic Approaches | Surgical Techniques |
---|---|
1-Maximize oxygen delivery (increase Cardiac Index > 2.5 L/min/m2 or optimize haemoglobin) | 1-Staging the procedure |
2-Mild hypothermia (32–35 °C) | 2-Left subclavian artery revascularization |
3-Maintain CSF pressure (≤10 mmHg) | 3-Minimally invasive segmental artery coil embolization (MISACE) |
4-Maintain spinal cord perfusion pressure (≥80 mmHg) | 4-Temporary aneurysm sac perfusion (TASP) |
5-Neuromonitoring (e.g., motor/sensory evoked potentials, NIRS) | 5-New implantation sequence for branched/fenestrated stents |
6-Monitor CSF lactate |
Indications for the Use of CSF Drain in TEVAR |
---|
1. Anticipated endograft coverage of T8-L1 (especially intercostal/lumbar arteries that supply Adamkiewicz artery identified by preoperative CT/MRI angiography). |
2. Coverage of a long segment of thoracic aorta (>30 cm). |
3. Compromised collateral pathways (e.g., previous infrarenal aortic aneurysm repair, occluded hypogastric arteries, coverage of the left subclavian artery without revascularization). |
4. Symptomatic spinal ischemia in a patient who did not have a drain placed preoperatively. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marturano, F.; Nisi, F.; Giustiniano, E.; Benedetto, F.; Piccioni, F.; Ripani, U. Prevention of Spinal Cord Injury during Thoracoabdominal Aortic Aneurysms Repair: What the Anaesthesiologist Should Know. J. Pers. Med. 2022, 12, 1629. https://doi.org/10.3390/jpm12101629
Marturano F, Nisi F, Giustiniano E, Benedetto F, Piccioni F, Ripani U. Prevention of Spinal Cord Injury during Thoracoabdominal Aortic Aneurysms Repair: What the Anaesthesiologist Should Know. Journal of Personalized Medicine. 2022; 12(10):1629. https://doi.org/10.3390/jpm12101629
Chicago/Turabian StyleMarturano, Federico, Fulvio Nisi, Enrico Giustiniano, Francesco Benedetto, Federico Piccioni, and Umberto Ripani. 2022. "Prevention of Spinal Cord Injury during Thoracoabdominal Aortic Aneurysms Repair: What the Anaesthesiologist Should Know" Journal of Personalized Medicine 12, no. 10: 1629. https://doi.org/10.3390/jpm12101629
APA StyleMarturano, F., Nisi, F., Giustiniano, E., Benedetto, F., Piccioni, F., & Ripani, U. (2022). Prevention of Spinal Cord Injury during Thoracoabdominal Aortic Aneurysms Repair: What the Anaesthesiologist Should Know. Journal of Personalized Medicine, 12(10), 1629. https://doi.org/10.3390/jpm12101629