Measurement of Exhaled Volatile Organic Compounds as a Biomarker for Personalised Medicine: Assessment of Short-Term Repeatability in Severe Asthma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Study Design
2.3. Sputum Collection
2.4. Sputum Processing
2.5. Breath Sampling
2.6. Breath Analysis
2.7. Breath Data Pre-Processing
2.8. Statistical Analysis
3. Results
3.1. Exploratory Analysis by PCA
3.2. Within-Subject Variability of Individual VOCs
3.3. Impact of Removing Erratic Volatile Organic Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lambrecht, B.N.; Hammad, H. The immunology of asthma. Nat. Immunol. 2015, 16, 45–56. [Google Scholar] [CrossRef]
- Papi, A.; Brightling, C.; Pedersen, S.E.; Reddel, H.K. Asthma. Lancet 2018, 391, 783–800. [Google Scholar] [CrossRef]
- Chung, K.F.; Wenzel, S.E.; Brozek, J.L.; Bush, A.; Castro, M.; Sterk, P.J.; Adcock, I.M.; Bateman, E.D.; Bel, E.H.; Bleecker, E.R.; et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 2014, 43, 343–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, W.C.; Meyers, D.A.; Wenzel, S.E.; Teague, W.G.; Li, H.; Li, X.; D’Agostino, R., Jr.; Castro, M.; Curran-Everett, D.; Fitzpatrick, A.M.; et al. Identification of Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program. Am. J. Respir. Crit. Care Med. 2010, 181, 315–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haldar, P.; Pavord, I.D.; Shaw, D.E.; Berry, M.A.; Thomas, M.; Brightling, C.E.; Wardlaw, A.J.; Green, R.H. Cluster Analysis and Clinical Asthma Phenotypes. Am. J. Respir. Crit. Care Med. 2008, 178, 218–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; Bleecker, E.; Moore, W.; Busse, W.W.; Castro, M.; Chung, K.F.; Calhoun, W.J.; Erzurum, S.; Gaston, B.; Israel, E.; et al. Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data. J. Allergy Clin. Immunol. 2014, 133, 1280–1288. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.-H.S.; Pavlidis, S.; Loza, M.; Baribaud, F.; Rowe, A.; Pandis, I.; Sousa, A.; Corfield, J.; Djukanovic, R.; Lutter, R.; et al. T-helper cell type 2 (Th2) and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in U-BIOPRED. Eur. Respir. J. 2017, 49, 1602135. [Google Scholar] [CrossRef] [Green Version]
- Hinks, T.S.C.; Zhou, X.; Staples, K.; Dimitrov, B.D.; Manta, A.; Petrossian, T.; Lum, P.; Smith, C.; Ward, J.; Howarth, P.; et al. Multidimensional endotypes of asthma: Topological data analysis of cross-sectional clinical, pathological, and immunological data. Lancet 2015, 385, S42. [Google Scholar] [CrossRef]
- Hinks, T.S.; Brown, T.; Lau, L.C.; Rupani, H.; Barber, C.; Elliott, S.; Ward, J.A.; Ono, J.; Ohta, S.; Izuhara, K.; et al. Multidimensional endotyping in patients with severe asthma reveals inflammatory heterogeneity in matrix metalloproteinases and chitinase 3–like protein 1. J. Allergy Clin. Immunol. 2016, 138, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Pavord, I.D.; Korn, S.; Howarth, P.; Bleecker, E.R.; Buhl, R.; Keene, O.N.; Ortega, H.; Chanez, P. Mepolizumab for severe eosinophilic asthma (DREAM): A multicentre, double-blind, placebo-controlled trial. Lancet 2012, 380, 651–659. [Google Scholar] [CrossRef]
- Wenzel, S.; Ford, L.; Pearlman, D.; Spector, S.; Sher, L.; Skobieranda, F.; Wang, L.; Kirkesseli, S.; Rocklin, R.; Bock, B.; et al. Dupilumab in Persistent Asthma with Elevated Eosinophil Levels. N. Engl. J. Med. 2013, 368, 2455–2466. [Google Scholar] [CrossRef] [PubMed]
- Green, R.H.; Brightling, C.E.; McKenna, S.; Hargadon, B.; Parker, D.; Bradding, P.; Wardlaw, A.J.; Pavord, I.D. Asthma exacerbations and sputum eosinophil counts: A randomised controlled trial. Lancet 2002, 360, 1715–1721. [Google Scholar] [CrossRef]
- Chung, K.F. Defining Phenotypes in Asthma: A Step Towards Personalized Medicine. Drugs 2014, 74, 719–728. [Google Scholar] [CrossRef]
- Agusti, A.; Bel, E.; Thomas, M.; Vogelmeier, C.; Brusselle, G.; Holgate, S.; Humbert, M.; Jones, P.; Gibson, P.G.; Vestbo, J.; et al. Treatable traits: Toward precision medicine of chronic airway diseases. Eur. Respir. J. 2016, 47, 410–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamant, Z.; Vijverberg, S.; Alving, K.; Bakirtas, A.; Bjermer, L.; Custovic, A.; Dahlen, S.; Gaga, M.; Van Wijk, R.G.; Del Giacco, S.; et al. Toward clinically applicable biomarkers for asthma: An EAACI position paper. Allergy 2019, 74, 1835–1851. [Google Scholar] [CrossRef] [Green Version]
- Fowler, S.J. Breath analysis for label-free characterisation of airways disease. Eur. Respir. J. 2018, 51, 1702586. [Google Scholar] [CrossRef] [Green Version]
- Tiotiu, A. Biomarkers in asthma: State of the art. Asthma Res. Pract. 2018, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Kharitonov, S.; Yates, D.; Robbins, R.; Barnes, P.; Logan-Sinclair, R.; Shinebourne, E. Increased nitric oxide in exhaled air of asthmatic patients. Lancet 1994, 343, 133–135. [Google Scholar] [CrossRef]
- Phillips, M.; Gleeson, K.; Hughes, J.M.B.; Greenberg, J.; Cataneo, R.N.; Baker, L.; McVay, W.P. Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study. Lancet 1999, 353, 1930–1933. [Google Scholar] [CrossRef]
- Azim, A.; Barber, C.; Dennison, P.; Riley, J.; Howarth, P. Exhaled volatile organic compounds in adult asthma: A systematic review. Eur. Respir. J. 2019, 54, 1900056. [Google Scholar] [CrossRef]
- Schleich, F.; Zanella, D.; Stefanuto, P.-H.; Dallinga, J.; Henket, M.; Wouters, E.; Van Steen, K.; Van Schooten, F.-J.; Focant, J.-F.; Louis, R. Exhaled Volatile Organic Compounds Are Able to Discriminate between Neutrophilic and Eosinophilic Asthma. Am. J. Respir. Crit. Care Med. 2019, 200, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, W.; Carr, L.; Cordell, R.; Wilde, M.J.; Salman, D.; Monks, P.S.; Thomas, P.; Brightling, C.E.; Siddiqui, S.; Greening, N.J. Breathomics for the clinician: The use of volatile organic compounds in respiratory diseases. Thorax 2021, 76, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Fens, N.; Zwinderman, A.H.; van der Schee, M.P.; de Nijs, S.B.; Dijkers, E.; Roldaan, A.C.; Cheung, D.; Bel, E.H.; Sterk, P.J. Exhaled Breath Profiling Enables Discrimination of Chronic Obstructive Pulmonary Disease and Asthma. Am. J. Respir. Crit. Care Med. 2009, 180, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- de Vries, R.; Brinkman, P.; van der Schee, M.P.; Fens, N.; Dijkers, E.; Bootsma, S.K.; de Jongh, F.H.; Sterk, P.J. Integration of electronic nose technology with spirometry: Validation of a new approach for exhaled breath analysis. J. Breath Res. 2015, 9, 046001. [Google Scholar] [CrossRef] [PubMed]
- Azim, A.; Mistry, H.; Freeman, A.; Barber, C.; Newell, C.; Gove, K.; Thirlwall, Y.; Harvey, M.; Bentley, K.; Knight, D.; et al. Protocol for the Wessex AsThma CoHort of difficult asthma (WATCH): A pragmatic real-life longitudinal study of difficult asthma in the clinic. BMC Pulm. Med. 2019, 19, 99. [Google Scholar] [CrossRef]
- ten Brinke, A.; de Lange, C.; Zwinderman, A.H.; Rabe, K.F.; Sterk, P.J.; Bel, E.H. Sputum induction in severe asthma by a standardized protocol: Predictors of excessive bronchoconstriction. Am. J. Respir. Crit. Care Med. 2001, 164, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Bafadhel, M.; McCormick, M.; Saha, S.; McKenna, S.; Shelley, M.; Hargadon, B.; Mistry, V.; Reid, C.; Parker, D.; Dodson, P.; et al. Profiling of Sputum Inflammatory Mediators in Asthma and Chronic Obstructive Pulmonary Disease. Respiration 2011, 83, 36–44. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009; Available online: http://citebay.com/how-to-cite/python/ (accessed on 1 September 2022).
- Behdenna, A.; Haziza, J.; Azencott, C.-A.; Nordor, A. pyComBat, a Python tool for batch effects correction in high-throughput molecular data using empirical Bayes methods. bioRxiv 2020, arXiv:2020.03.17.995431. [Google Scholar]
- Ospina, R.; Marmolejo-Ramos, F. Performance of Some Estimators of Relative Variability. Front. Appl. Math. Stat. 2019, 5, 43. [Google Scholar] [CrossRef]
- Yancey, S.W.; Keene, O.N.; Albers, F.C.; Ortega, H.; Bates, S.; Bleecker, E.R.; Pavord, I. Biomarkers for severe eosinophilic asthma. J. Allergy Clin. Immunol. 2017, 140, 1509–1518. [Google Scholar] [CrossRef] [Green Version]
- Schofield, J.P.; Burg, D.; Nicholas, B.; Strazzeri, F.; Brandsma, J.; Staykova, D.; Folisi, C.; Bansal, A.T.; Xian, Y.; Guo, Y.; et al. Stratification of asthma phenotypes by airway proteomic signatures. J. Allergy Clin. Immunol. 2019, 144, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Davies, A.R.; Hancox, R.J. Induced sputum in asthma: Diagnostic and therapeutic implications. Curr. Opin. Pulm. Med. 2013, 19, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Peel, A.M.; Wilkinson, M.; Sinha, A.; Loke, Y.K.; Fowler, S.J.; Wilson, A.M. Volatile organic compounds associated with diagnosis and disease characteristics in asthma—A systematic review. Respir. Med. 2020, 169, 105984. [Google Scholar] [CrossRef] [PubMed]
- Bos, L.D.; Sterk, P.J.; Fowler, S. Breathomics in the setting of asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2016, 138, 970–976. [Google Scholar] [CrossRef] [Green Version]
- Crane, M.A.; Levy-Carrick, N.C.; Crowley, L.; Barnhart, S.; Dudas, M.; Onuoha, U.; Globina, Y.; Haile, W.; Shukla, G.; Ozbay, F. The Response to September 11: A Disaster Case Study. Ann. Glob. Health 2014, 80, 320–331. [Google Scholar] [CrossRef]
- Herbig, J.; Beauchamp, J. Towards standardization in the analysis of breath gas volatiles. J. Breath Res. 2014, 8, 037101. [Google Scholar] [CrossRef]
- Horváth, I.; Barnes, P.J.; Loukides, S.; Sterk, P.J.; Högman, M.; Olin, A.-C.; Amann, A.; Antus, B.; Baraldi, E.; Bikov, A.; et al. A European Respiratory Society technical standard: Exhaled biomarkers in lung disease. Eur. Respir. J. 2017, 49, 1600965. [Google Scholar] [CrossRef] [Green Version]
- Smolinska, A.; Hauschild, A.-C.; Fijten, R.; Dallinga, J.W.; Baumbach, J.; Van Schooten, F.J. Current breathomics—A review on data pre-processing techniques and machine learning in metabolomics breath analysis. J. Breath Res. 2014, 8, 027105. [Google Scholar] [CrossRef]
- Ray, P.; Reddy, S.S.; Banerjee, T. Various dimension reduction techniques for high dimensional data analysis: A review. Artif. Intell. Rev. 2021, 54, 3473–3515. [Google Scholar] [CrossRef]
- Ahmed, W.M.; Brinkman, P.; Weda, H.; Knobel, H.H.; Xu, Y.; Nijsen, T.M.; Goodacre, R.; Rattray, N.J.W.; Vink, T.J.; Santonico, M.; et al. Methodological considerations for large-scale breath analysis studies: Lessons from the U-BIOPRED severe asthma project. J. Breath Res. 2018, 13, 016001. [Google Scholar] [CrossRef]
Missing | Overall | Male | Female | p Value | |
---|---|---|---|---|---|
14 | 9 | 5 | |||
Sex (% Female) | 0 | 5 (35.7) | 0 | 5 (100.0) | <0.001 |
Age (years) | 0 | 54.0 [51.2, 60.2] | 58.0 [52.0, 67.0] | 51.0 [39.0, 54.0] | 0.094 |
Age of Onset (years) | 4 | 14.0 [5.2, 30.2] | 14.0 [4.8, 24.8] | 21.5 [9.8, 31.2] | 0.669 |
Atopic | 0 | 8 (57.1) | 7 (77.8) | 1 (20.0) | 0.091 |
Smoker (% never) | 0 | 11 (78.6) | 7 (77.8) | 4 (80.0) | 1 |
BMI (kg/m2) | 0 | 25.0 [23.3, 31.5] | 25.1 [24.1, 32.4] | 23.9 [23.1, 27.0] | 0.386 |
Nasal Polyps | 1 | 6 (46.2) | 4 (50.0) | 2 (40.0) | 1 |
GORD | 0 | 11 (78.6) | 7 (77.8) | 4 (80.0) | 1 |
ICS therapy dose | 0 | 2920.0 [2529.0, 3900.0] | 2920.0 [2460.0, 3000.0] | 3840.0 [2920.0, 3920.0] | 0.459 |
Maintenance therapy OCS | 0 | 5 (35.7) | 4 (44.4) | 1 (20.0) | 0.58 |
Anti IgE therapy | 0 | 0 | 0 | 0 | 1 |
Anti IL-5 therapy | 0 | 3 (21.4) | 2 (22.2) | 1 (20.0) | 1 |
Asthma Exacerbations requiring OCS (last 12 months) | 1 | 1.0 [0.0, 3.0] | 0.5 [0.0, 1.0] | 3.0 [1.0, 4.0] | 0.194 |
FeNO50 (ppb) | 0 | 38.5 [29.8, 50.8] | 40.0 [29.0, 50.0] | 32.0 [32.0, 65.0] | 0.841 |
Post BD FEV1 % pred | 0 | 81.5 [45.6, 92.9] | 85.4 [44.0, 92.7] | 77.6 [50.5, 99.7] | 0.641 |
Post BD FEV1/FVC % pred | 0 | 66.0 [54.5, 74.5] | 66.0 [62.0, 70.0] | 64.0 [52.0, 81.0] | 0.841 |
ACQ6 | 0 | 2.5 [1.6, 3.5] | 2.7 [1.3, 3.7] | 2.3 [2.3, 2.8] | 0.841 |
HADS Score | 1 | 11.0 [6.0, 14.0] | 11.0 [6.0, 20.5] | 11.0 [6.0, 12.0] | 0.462 |
Blood Eosinophils | 0 | 0.2 [0.1, 0.4] | 0.2 [0.1, 0.4] | 0.3 [0.2, 0.3] | 1 |
Blood Neutrophils | 0 | 4.7 [4.2, 6.2] | 5.5 [4.6, 7.3] | 4.2 [3.7, 4.3] | 0.062 |
Serum Total IgE | 0 | 221.8 [52.9, 386.4] | 234.0 [104.9, 367.4] | 209.6 [35.5, 392.7] | 0.841 |
Sputum Eosinophils (%) | 0 | 2.6 [0.3, 22.5] | 1.8 [0.5, 5.8] | 40.9 [0.2, 47.0] | 0.385 |
Sputum Neutrophils (%) | 0 | 39.8 [17.8, 68.0] | 65.0 [54.6, 77.5] | 17.4 [11.1, 24.0] | 0.028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azim, A.; Rezwan, F.I.; Barber, C.; Harvey, M.; Kurukulaaratchy, R.J.; Holloway, J.W.; Howarth, P.H. Measurement of Exhaled Volatile Organic Compounds as a Biomarker for Personalised Medicine: Assessment of Short-Term Repeatability in Severe Asthma. J. Pers. Med. 2022, 12, 1635. https://doi.org/10.3390/jpm12101635
Azim A, Rezwan FI, Barber C, Harvey M, Kurukulaaratchy RJ, Holloway JW, Howarth PH. Measurement of Exhaled Volatile Organic Compounds as a Biomarker for Personalised Medicine: Assessment of Short-Term Repeatability in Severe Asthma. Journal of Personalized Medicine. 2022; 12(10):1635. https://doi.org/10.3390/jpm12101635
Chicago/Turabian StyleAzim, Adnan, Faisal I. Rezwan, Clair Barber, Matthew Harvey, Ramesh J. Kurukulaaratchy, John W. Holloway, and Peter H. Howarth. 2022. "Measurement of Exhaled Volatile Organic Compounds as a Biomarker for Personalised Medicine: Assessment of Short-Term Repeatability in Severe Asthma" Journal of Personalized Medicine 12, no. 10: 1635. https://doi.org/10.3390/jpm12101635
APA StyleAzim, A., Rezwan, F. I., Barber, C., Harvey, M., Kurukulaaratchy, R. J., Holloway, J. W., & Howarth, P. H. (2022). Measurement of Exhaled Volatile Organic Compounds as a Biomarker for Personalised Medicine: Assessment of Short-Term Repeatability in Severe Asthma. Journal of Personalized Medicine, 12(10), 1635. https://doi.org/10.3390/jpm12101635