Effects of Physical Prehabilitation on the Dynamics of the Markers of Endothelial Function in Patients Undergoing Elective Coronary Bypass Surgery
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients
- Severe concomitant diseases that prohibit stress testing and physical training (severe chronic obstructive pulmonary disease, acute inflammation, skeletal and muscular system pathologies, and post-stroke recrudescence);
- A combination of coronary heart disease and valvular heart defects, and a left ventricular (LV) aneurysm;
- Scheduled brachiocephalic arterial reconstruction;
- Severe arrhythmias and conduction disorders, as well as atrial fibrillation;
- Thrombophlebitis and varicose veins of lower extremities with chronic venous insufficiency (class 3–4);
- Lower-extremity atherosclerosis with chronic limb ischemia higher than stage IIA, and peripheral arterial reconstruction in medical history;
- Aneurysms and aortic dissection;
- Decompensated chronic heart failure (CHF);
- NYHA class IV angina pectoris and NYHA class III CHF (and higher);
- Uncontrolled arterial hypertension (AH);
- A left ventricular ejection fraction (LV EF) less than 40%;
- Acute coronary syndrome;
- Stroke in the past 6 months;
- Surgery in the past 6 months;
- Significant left main coronary artery stenosis.
2.2. Methods of Physical Training
2.3. Laboratory Methods
2.4. Postoperative Assessment
2.5. Statistical Methods
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giacinto, O.; Satriano, U.; Nenna, A.; Spadaccio, C.; Lusini, M.; Mastroianni, C.; Nappi, F.; Chello, M. Inflammatory Response and Endothelial Dysfunction Following Cardiopulmonary Bypass: Pathophysiology and Pharmacological Targets. Recent Pat. Inflamm. Allergy Drug Discov. 2019, 13, 158–173. [Google Scholar] [CrossRef] [PubMed]
- Rezende, P.C.; Rahmi, R.M.; Uchida, A.H.; da Costa, L.M.; Scudeler, T.L.; Garzillo, C.L.; Lima, E.G.; Segre, C.A.W.; Girardi, P.; Takiuti, M.; et al. Type 2 diabetes mellitus and myocardial ischemic preconditioning in symptomatic coronary artery disease patients. Cardiovasc. Diabetol. 2015, 14, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argunova, Y.A.; Pomeshkina, I.A.; Inozemtseva, A.A.; Moskin, E.G.; Barbarash, O.L. Clinical efficiency of prehabilitation program in patients undergoing coronary artery bypass grafting. Complex. Issues Cardiovasc. Dis. 2018, 7, 15–23. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Valkenet, K.; van de Port, I.G.; Dronkers, J.J.; de Vries, W.R.; Lindeman, E.; Backx, F.J. The effects of preoperative exercise therapy on postoperative outcome: A systematic review. Clin. Rehabil. 2011, 25, 99–111. [Google Scholar] [CrossRef]
- Myers, J.; Niebauer, J.; Humphrey, R. Prehabilitation Coming of Age: Implications for Cardiac and Pulmonary Rehabilitation. J. Cardiopulm. Rehabil. Prev. 2021, 41, 141–146. [Google Scholar] [CrossRef]
- Abrard, S.; Fouquet, O.; Riou, J.; Rineau, E.; Abraham, P.; Sargentini, C.; Bigou, Y.; Baufreton, C.; Lasocki, S.; Henni, S. Preoperative endothelial dysfunction in cutaneous microcirculation is associated with postoperative organ injury after cardiac surgery using extracorporeal circulation: A prospective cohort study. Ann. Intensive Care 2021, 11, 4. [Google Scholar] [CrossRef]
- Burger, A.L.; Stojkovic, S.; Diedrich, A.; Demyanets, S.; Wojta, J.; Pezawas, T. Elevated plasma levels of asymmetric dimethylarginine and the risk for arrhythmic death in ischemic and non-ischemic, dilated cardiomyopathy—A prospective, controlled long-term study. Clin. Biochem. 2020, 83, 37–42. [Google Scholar] [CrossRef]
- Willeit, P.; Freitag, D.F.; Laukkanen, J.A.; Chowdhury, S.; Gobin, R.; Mayr, M.; Di Angelantonio, E.; Chowdhury, R. Asymmetric dimethylarginine and cardiovascular risk: Systematic review and meta-analysis of 22 prospective studies. J. Am. Heart Assoc. 2015, 4, e001833. [Google Scholar] [CrossRef] [Green Version]
- Demirci, E.; Celic, O.; Kalcik, M.; Bekar, L.; Yetim, M.; Dogan, T. Evaluation of homocystein and asymmetric dimethyl arginine levels in patients with coronary slow flow phenomenon. Interv. Med. Appl. Sci. 2019, 11, 89–94. [Google Scholar] [CrossRef]
- Svarovskaya, A.V.; Teplyakov, A.T.; Gusakova, A.M.; Garganeeva, A.A. Role of markers of inflammation and endothelial dysfunction in the prognosis of the development of cardiovascular complications in patients with coronary artery disease and metabolic syndrome after coronary stenting. Kardiologiia 2020, 60, 98–105. [Google Scholar] [CrossRef]
- Hartopo, A.B.; Sukmasari, I.; Puspitawati, I.; Setianto, B.Y. Serum Endothelin-1 Correlates with Myocardial Injury and Independently Predicts Adverse Cardiac Events in Non-ST-Elevation Acute Myocardial Infarction. Int. J. Vasc. Med. 2020, 2020, 9260812. [Google Scholar] [CrossRef]
- Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Boulanger, C.M.; Tanner, F.C.; Béa, M.L.; Hahn, A.W.; Werner, A.; Lüscher, T.F. Oxidized low density lipoproteins induce mRNA expression and release of endothelin from human and porcine endothelium. Circ. Res. 1992, 70, 1191–1197. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, A.; Kleniewska, P.; Kolodziejczyk, M.; Skibska, B.; Goraca, A. The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch. Immunol. Ther. Exp. 2015, 63, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Barbarash, O.L.; Argunova, Y.A.; Pomeshkina, I.A.; Inozemtseva, A.A.; Kokov, A.N.; Polikutina, O.M. Method for Prehabilitation of Patients with Ischemic Heart Disease before Coronary Artery Bypass Grafting. Patent Russian Federation 2716369, 11 March 2020. (In Russian). [Google Scholar]
- Krzywonos-Zawadzka, A.; Wozniak, M.; Sawicki, G.; Bil-Lula, I. A drug cocktail for protecting against ischemia-reperfusion injury. Front. Biosci.-Landmark 2020, 25, 722–735. [Google Scholar]
- Liu, X.; Hou, L.; Xu, D.; Chen, A.; Yang, L.; Zhuang, Y.; Xu, Y.; Fassett, J.T.; Chen, Y. Effect of asymmetric dimethylarginine (ADMA) on heart failure development. Nitric Oxide 2016, 54, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Andelová, E.; Barteková, M.; Pancza, D.; Styk, J.; Ravingerová, T. The role of NO in ischemia/reperfusion injury in isolated rat heart. Gen. Physiol. Biophys. 2005, 24, 411–426. [Google Scholar]
- Sud, N.; Wells, S.M.; Sharma, S.; Wiseman, D.A.; Wilham, J.; Black, S.M. Asymmetric dimethylarginine inhibits HSP90 activity in pulmonary arterial endothelial cells: Role of mitochondrial dysfunction. Am. J. Physiol. Cell Physiol. 2008, 294, C1407–C1418. [Google Scholar] [CrossRef] [Green Version]
- Doroszko, A.; Polewicz, D.; Sawicka, J.; Richardson, J.S.; Cheung, P.; Sawicki, G. Cardiac dysfunction in an animal model of neonatal asphyxia is associated with increased degradation of MLC1 by MMP-2. Basic Res. Cardiol. 2009, 104, 669–679. [Google Scholar] [CrossRef]
- Cadete, V.J.J.; Sawicka, J.; Jaswal, J.S.; Lopaschuk, G.D.; Schulz, R.; Szczesna-Cordary, D.; Sawicki, G. Ischemia/reperfusion-induced myosin light chain 1 phosphorylation increases its degradation by matrix metalloproteinase 2. FEBS J. 2012, 279, 2444–2454. [Google Scholar] [CrossRef] [Green Version]
- Cadete, V.J.J.; Sawicka, J.; Bekar, L.K.; Sawicki, G. Combined subthreshold dose inhibition of myosin light chain phosphorylation and MMP-2 activity provides cardioprotection from ischaemic/reperfusion injury in isolated rat heart. Br. J. Pharmacol. 2013, 170, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.B.; Cadete, V.J.; Sra, B.; Sawicka, J.; Chen, Z.; Bekar, L.K.; Cayabyab, F.; Sawicki, G. Inhibition of MMP-2 expression with siRNA increases baseline cardiomyocyte contractility and protects against simulated ischemic reperfusion injury. Biomed. Res. Int. 2014, 2014, 810371. [Google Scholar] [CrossRef]
- Wang, W.; Schulze, C.J.; Suarez-Pinzon, W.L.; Dyck, J.R.B.; Sawicki, G.; Schulz, R. Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 2002, 106, 1543–1549. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.M.; Cho, W.J.; Hudson, B.; Kassiri, Z.; Granzier, H.; Schulz, R. Titin is a target of matrix metalloproteinase-2: Implications in myocardial ischemia/reperfusion injury. Circulation 2010, 122, 2039–2047. [Google Scholar] [CrossRef] [Green Version]
- Khushhal, A.; Nichols, S.; Carroll, S.; Abt, G.; Ingle, L. Insufficient exercise intensity for clinical benefit? Monitoring and quantification of a community-based Phase III cardiac rehabilitation programme: A United Kingdom perspective. PLoS ONE 2019, 14, e0217654. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.G.; Bai, Y.P.; Chen, M.F.; Shi, R.Z.; Jiang, D.J.; Fu, Q.M.; Tan, G.S.; Li, Y.J. Asymmetric dimethylarginine induces TNF-alpha production via ROS/NF-kappaB dependent pathway in human monocytic cells and the inhibitory effect of reinioside C. Vascul. Pharmacol. 2008, 48, 115–121. [Google Scholar] [CrossRef]
- Chen, M.F.; Xie, X.M.; Yang, T.L.; Wang, Y.J.; Zhang, X.H.; Luo, B.L.; Li, Y.J. Role of asymmetric dimethylarginine in inflammatory reactions by angiotensin II. J. Vasc. Res. 2007, 44, 391–402. [Google Scholar] [CrossRef]
- Mittermayer, F.; Pleiner, J.; Krzyzanowska, K.; Wiesinger, G.F.; Francesconi, M.; Wolzt, M. Regular physical exercise normalizes elevated asymmetrical dimethylarginine concentrations in patients with type 1 diabetes mellitus. Wien. Klin. Wochenschr. 2005, 117, 816–820. [Google Scholar] [CrossRef]
- Riccioni, G.; Scotti, L.; Guagnano, M.T.; Bosco, G.; Bucciarelli, V.; Di Ilio, E.; Speranza, L.; Martini, F.; Bucciarelli, T. Physical exercise reduces synthesis of ADMA, SDMA, and L-Arg. Front. Biosci. (Elite Ed.) 2015, 7, 417–422. [Google Scholar] [CrossRef]
- Hambrecht, R.; Adams, V.; Erbs, S.; Linke, A.; Kränkel, N.; Shu, Y.; Baither, Y.; Gielen, S.; Thiele, H.; Gummert, J.F.; et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 2003, 107, 3152–3158. [Google Scholar] [CrossRef] [Green Version]
- Achan, V.; Broadhead, M.; Malaki, M.; Whitley, G.; Leiper, J.; MacAllister, R.; Vallance, P. Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1455–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanssen, H.; Nickel, T.; Drexel, V.; Hertel, G.; Emslander, I.; Sisic, Z.; Lorang, D.; Schuster, T.; Kotliar, K.E.; Pressler, A.; et al. Exercise-induced alterations of retinal vessel diameters and cardiovascular risk reduction in obesity. Atherosclerosis 2011, 216, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Ammar, Y.A.; Awad, A. Effect of a Supervised Peridialytic Exercise Program on Serum Asymmetric Dimethylarginine in Maintenance Hemodialysis Patients. Int. J. Nephrol. 2020, 2020, 8878306. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titus, A.; Marappa-Ganeshan, R. Physiology, Endothelin. 2020 July 10. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Li, J.-J.; Fang, C.-H.; Wang, C.; Hui, R.-T. Effects of simvastatin on exercise-induced myocardial ischemia and plasma endothelin-1 concentrations in patients with stable angina. Clin. Chim. Acta 2005, 354, 205–208. [Google Scholar] [CrossRef]
- Monge, J.C. Neurohormanal markers of clinical outcome in cardiovascular disease: Is endothelin the best one? J. Cardiovasc. Pharmacol. 1998, 32 (Suppl. S2), 3642. [Google Scholar]
- Li, J.-J. Circadian variation in myocardial ischemia: Possible mechanism involving in this phenomenon. Med. Hypotheses 2003, 61, 240–243. [Google Scholar] [CrossRef]
- Davis, P.G.; Ferguson, M.A.; Alderson, N.L.; Pate, R.R.; Bodary, P.F.; Durstine, J.L. Effect of exercise duration on plasma endothelin-1 concentration. J. Sports Med. Phys. Fitness 2005, 45, 419–423. [Google Scholar]
- Maeda, S.; Miyauchi, T.; Kakiyama, T.; Sugawara, J.; Iemitsu, M.; Irukayama-Tomobe, Y.; Murakami, H.; Kumagai, Y.; Kuno, S.; Matsuda, M. Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sci. 2001, 69, 1005–1016. [Google Scholar] [CrossRef]
- Mehrabi, A.; Daryanoosh, F.; Amirazodi, M.; Babaee Baigi, M.A.; Divsalar, K. Effect of eight weeks low intensity aerobic exercise on endothelin-1 plasma level, blood pressure and heart rate in healthy people and patients with coronary artery disease. Rep. Health Care 2015, 1, 109–113. [Google Scholar]
- Naya, M.; Aikawa, T.; Manabe, O.; Obara, M.; Koyanagawa, K.; Katoh, C.; Tamaki, N. Elevated serum endothelin-1 is an independent predictor of coronary microvascular dysfunction in non-obstructive territories in patients with coronary artery disease. Heart Vessels 2021, 36, 917–923. [Google Scholar] [CrossRef]
- Diehl, K.J.; Stauffer, B.L.; Dow, C.A.; Bammert, T.D.; Brunjes, D.L.; Greiner, J.J.; DeSouza, C.A. Chronic Nebivolol Treatment Suppresses Endothelin-1-Mediated Vasoconstrictor Tone in Adults with Elevated Blood Pressure. Hypertension 2016, 67, 1196–1204. [Google Scholar] [CrossRef] [Green Version]
- Stangl, K.; Dschietzig, T.; Richter, C.; Laule, M.; Stangl, V.; Tanis, E.; Baumann, G.; Felix, S.B. Pulmonary release and coronary and peripheral consumption of big endothelin and endothelin-1 in severe heart failure: Acute effects of vasodilator therapy. Circulation 2000, 102, 1132–1138. [Google Scholar] [CrossRef] [Green Version]
- Hlubocká, Z.; Umnerová, V.; Heller, S.; Peleska, J.; Jindra, A.; Jáchymová, M.; Kvasnicka, J.; Horký, K.; Aschermann, M. Circulating intercellular cell adhesion molecule-1, endothelin-1 and von Willebrand factor-markers of endothelial dysfunction in uncomplicated essential hypertension: The effect of treatment with ACE inhibitors. J. Hum. Hypertens. 2002, 16, 557–562. [Google Scholar] [CrossRef] [Green Version]
- Dirajlal-Fargo, S.; El Kamari, V.; Sattar, A.; Alam, K.; Funderburg, N.; Labbato, D.; Pirro, L.; Longenecker, C.T.; Wilson, W.H.; McComsey, G.A. Effect of statin on arginine metabolites in treated HIV-infection. Atherosclerosis 2017, 266, 74–80. [Google Scholar] [CrossRef]
Parameters | Training Group (n = 43) | Controls (n = 35) | p |
---|---|---|---|
Age, years (Me (Q25, Q75)) | 61.5 (55, 65) | 63.0 (56, 66) | 0.43 |
Working patients, n (%) | 16 (37.2) | 12 (34.2) | 0.79 |
BMI, kg/m2 (Me (Q25, Q75)) | 29.3 (25.9, 30.9) | 28.6 (26.4, 31.6) | 0.81 |
Smoking, n (%) | 13 (30.2) | 10 (28.5) | 0.87 |
EuroScore (Me (Q25, Q75)) | 0.75 (0.6, 0.79) | 0.84 (0.68, 0.9) | 0.36 |
CHD duration, years (Me (Q25, Q75)) | 1.0 (0.5, 3.0) | 1.0 (0.5, 6.0) | 0.41 |
AH, n (%) | 36 (83.7) | 33 (94.2) | 0.15 |
AH duration, years (Me (Q25, Q75)) | 4.5 (2.0, 10.0) | 5.0 (3.0, 10.0) | 0.56 |
AF, n (%) | 2 (4.6) | 2 (5.7) | 0.82 |
Angina pectoris FC NYHA, n (%): 0-I | 10 (23.2) | 7 (20) | 0.73 |
II | 29 (67.4) | 25 (71.4) | |
III | 4 (9.3) | 3 (8.5) | |
CHF FC NYHA, n (%): 0-I | 1 (2.3) | 0 | 0.36 |
II | 42 (97.7) | 35 (100) | |
Prior myocardial infarction, n (%) | 30 (69.7) | 22 (62.8) | 0.52 |
History of prior stroke, n (%) | 3 (6.9) | 2 (5.7) | 0.83 |
DM in medical history, n (%) | 9 (20.9) | 7 (20) | 0.92 |
Severity of coronary lesions, SYNTAX score (Me (Q25, Q75)) | 24.2 (18.5, 29.8) | 23.8 (17.8, 28.3) | 0.43 |
Operative time, min (Me (Q25, Q75)) | 200.0 (170.0, 220.0) | 210.0 (180.0, 240.0) | 0.68 |
Aortic clamping, min (Me (Q25, Q75)) | 52.5 (48.0, 59.5) | 51.0 (46.0, 60.0) | 0.36 |
CPB, min (Me (Q25, Q75)) | 78.5 (71.0, 89.0) | 82.0 (73.0, 95) | 0.27 |
Number of shunts, n (Me (Q25, Q75)) | 2.0 (2.0, 3.0) | 2.0 (2.0, 3.0) | 0.98 |
Cardioplegia infusion, n (Me (Q25, Q75)) | 2.0 (2.0, 3.0) | 2.0 (2.0, 3.0) | 0.98 |
Lowest body temperature (before CPB), °C (Me (Q25, Q75)) | 35.7 (35.3, 35.8) | 35.7 (35.3, 35.7) | 0.96 |
Lowest systolic BP, mm Hg (Me (Q25, Q75)) | 100.0 (93.0, 103.0) | 99.0 (92.0, 105.0) | 0.34 |
Intraoperative blood loss, mL (Me (Q25, Q75)) | 500.0 (400.0, 500.0) | 500.0 (400.0, 500.0) | 0.97 |
Total blood loss, mL (Me (Q25, Q75)) | 800.0 (650.0, 850.0) | 800.0 (700.0, 950.0) | 0.78 |
Parameters (Me (Q25, Q75)) | Training Group (n = 43) | Controls (n = 35) | p |
---|---|---|---|
LV EF, % | 63.0 (60.0, 67.0) | 64.0 (61.0, 66.0) | 0.96 |
LV EDV, mL | 147.5 (130.0, 173.0) | 147.0 (130.0, 180.0) | 0.24 |
LV EDD, mL | 54.0 (47.0, 74.0) | 51.0 (44.0, 62.0) | 0.23 |
LV ESV, cm | 5.5 (5.2, 5.9) | 5.5 (5.2, 6.0) | 0.31 |
LV ESD, cm | 3.6 (3.4, 4.1) | 3.5 (3.3, 3.8) | 0.47 |
VO2 peak, mL/kg/min | 15.3 (13.4, 18.3) | 15.7 (13.7, 17.1) | 0.64 |
VO2 peak, % | 59.0 (55.0, 70.0) | 63.0 (54.0, 69.0) | 0.78 |
AT, mL/kg/min | 11.9 (10.3, 14.9) | 12.5 (10.9, 15.7) | 0.24 |
AT, % | 47.5 (43.0, 59.0) | 49.5 (44.0, 62.0) | 0.15 |
Peak heart rate, bpm | 110 (98, 126) | 112 (97, 129) | 0.57 |
Exercise tolerance, W | 75.0 (75.0, 100.0) | 87.5 (75.0, 100.0) | 0.78 |
Parameters | Training Group (n = 43) | Controls (n = 35) | p |
---|---|---|---|
Combined endpoint, n (%) | 5 (11.6) | 13 (37) | 0.013 |
Myocardial infarct, n (%) | 0 | 1 (2.8) | 0.44 |
Stroke, n (%) | 1 (2.3) | 1 (2.8) | 0.56 |
Arrhythmias, n (%) | 2 (4.6) | 3 (8.5) | 0.65 |
Heart failure, n (%) | 2 (4.6) | 6 (17) | 0.13 |
Hydrothorax, n (%) | 0 | 2 (5.7) | 0.19 |
Hydropericardium, n (%) | 0 | 0 | - |
Pneumonia, n (%) | 0 | 2 (5.7) | 0.19 |
MODS, n (%) | 0 | 0 | - |
Wound complications, n (%) | 0 | 0 | - |
eGFR (CKD-EPI), mL/min/1.73 m2 (Me (Q25, Q75)) | Training Group (n = 43) | Controls (n = 35) | p |
---|---|---|---|
Baseline | 81.0 (73.0, 92.0) | 78.0 (69.0, 91.0) | 0.43 |
On the eve of CABG | 83.0 (74.0, 95.0) | 82.0 (71.0, 92.0) | 0.54 |
5–7 days after CABG | 85.0 (75.0, 99.5) | 85.0 (68.0, 97.0) | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argunova, Y.; Belik, E.; Gruzdeva, O.; Ivanov, S.; Pomeshkina, S.; Barbarash, O. Effects of Physical Prehabilitation on the Dynamics of the Markers of Endothelial Function in Patients Undergoing Elective Coronary Bypass Surgery. J. Pers. Med. 2022, 12, 471. https://doi.org/10.3390/jpm12030471
Argunova Y, Belik E, Gruzdeva O, Ivanov S, Pomeshkina S, Barbarash O. Effects of Physical Prehabilitation on the Dynamics of the Markers of Endothelial Function in Patients Undergoing Elective Coronary Bypass Surgery. Journal of Personalized Medicine. 2022; 12(3):471. https://doi.org/10.3390/jpm12030471
Chicago/Turabian StyleArgunova, Yulia, Ekaterina Belik, Olga Gruzdeva, Sergey Ivanov, Svetlana Pomeshkina, and Olga Barbarash. 2022. "Effects of Physical Prehabilitation on the Dynamics of the Markers of Endothelial Function in Patients Undergoing Elective Coronary Bypass Surgery" Journal of Personalized Medicine 12, no. 3: 471. https://doi.org/10.3390/jpm12030471
APA StyleArgunova, Y., Belik, E., Gruzdeva, O., Ivanov, S., Pomeshkina, S., & Barbarash, O. (2022). Effects of Physical Prehabilitation on the Dynamics of the Markers of Endothelial Function in Patients Undergoing Elective Coronary Bypass Surgery. Journal of Personalized Medicine, 12(3), 471. https://doi.org/10.3390/jpm12030471