Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,219)

Search Parameters:
Keywords = endothelial dysfunction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1722 KB  
Review
Diverse Roles of Tubulin Polymerization Promoting Protein 3 (TPPP3) in Human Health and Disease
by James W. Lord and Sachi Horibata
Cells 2025, 14(20), 1573; https://doi.org/10.3390/cells14201573 (registering DOI) - 10 Oct 2025
Abstract
The tubulin polymerization promoting proteins (TPPPs) are a small family of conserved proteins originally characterized as microtubule binding proteins. TPPP1, the first identified member, both binds to and bundles microtubules. Its homologs, TPPP2 and TPPP3, are encoded by separate genes on distinct chromosomes [...] Read more.
The tubulin polymerization promoting proteins (TPPPs) are a small family of conserved proteins originally characterized as microtubule binding proteins. TPPP1, the first identified member, both binds to and bundles microtubules. Its homologs, TPPP2 and TPPP3, are encoded by separate genes on distinct chromosomes but both lack the N-terminal tail present in TPPP1. Functional studies revealed that TPPP3 retains comparable microtubule binding and bundling capacity to TPPP1, whereas TPPP2 displays markedly reduced binding and no bundling activity. Intriguingly, TPPP3 has been implicated in many different diseases. In this review, we summarize the current findings on TPPP3 and its dysregulation in various diseases including cancer, reproductive dysfunction, musculoskeletal conditions, endothelial dysfunction, and neurodegenerative diseases. Full article
Show Figures

Figure 1

18 pages, 1458 KB  
Article
Type 2 Diabetes Mellitus Impairs the Reverse Transendothelial Migration Capacity (rTEM) of Inflammatory CD14+CD16 Monocytes: Novel Mechanism for Enhanced Subendothelial Monocyte Accumulation in Diabetes
by Dilvin Semo, Adama Sidibé, Kallipatti Sanjith Shanmuganathan, Nicolle Müller, Ulrich A. Müller, Beat A. Imhof, Rinesh Godfrey and Johannes Waltenberger
Cells 2025, 14(19), 1567; https://doi.org/10.3390/cells14191567 - 9 Oct 2025
Abstract
Background: Type 2 diabetes mellitus (DM) is a major cardiovascular risk factor that induces monocyte dysfunction and contributes to their accumulation in atherosclerotic lesions. Monocyte recruitment and accumulation in the tissues contribute to chronic inflammation and are essential to the pathobiology of diabetes-induced [...] Read more.
Background: Type 2 diabetes mellitus (DM) is a major cardiovascular risk factor that induces monocyte dysfunction and contributes to their accumulation in atherosclerotic lesions. Monocyte recruitment and accumulation in the tissues contribute to chronic inflammation and are essential to the pathobiology of diabetes-induced atherosclerosis. However, the mechanisms that drive the accumulation of monocytes in the diabetic environment are not clearly understood. Methods: Primary monocytes from type 2 (T2) DM and non-T2DM individuals were isolated using magnet-assisted cell sorting. To examine the influence of a diabetic milieu on monocyte function, monocytes from T2DM patients, db/db mice, or human monocytes subjected to hyperglycaemia were analysed for their responses to pro-atherogenic cytokines using Boyden chamber assays. Furthermore, the interactions of non-diabetic and diabetic monocytes with TNFα-inflamed endothelium were studied using live-cell imaging under physiological flow conditions. RT-qPCR and FACS were used to study the expression of relevant molecules involved in monocyte-endothelium interaction. Results: CD14+CD16 monocytes isolated from T2DM patients or monocytes exposed to hyperglycaemic conditions showed reduced chemotactic responses towards atherosclerosis-promoting cytokines, CCL2 and CX3CL1, indicating monocyte dysfunction. Under flow conditions, the transendothelial migration (TEM) capacity of T2DM monocytes was significantly reduced. Even though these monocytes adhered to the endothelial monolayer, only a few transmigrated. Interestingly, the T2DM monocytes and monocytes exposed to hyperglycaemic conditions accumulated in the ablumen following transendothelial migration. The time period in the ablumen of T2DM cells was prolonged, as there was a significant impairment of the reverse transendothelial migration (rTEM). Mechanistically, the T2DM milieu specifically induced the activation of monocyte integrins, Macrophage-1 antigen (Mac-1; integrin αMβ2 consisting of CD11b and CD18), and Lymphocyte function-associated antigen 1 (LFA-1; αLβ2 consisting of CD11a and CD18). Furthermore, elevated levels of CD18 transcripts were detected in T2DM monocytes. Junctional Adhesion Molecule 3 (JAM-3)–MAC-1 interactions are known to impede rTEM and T2DM milieu-potentiated JAM-3 expression in human coronary artery endothelial cells (HCAEC). Finally, the overexpression of JAM-3 on HCAEC was sufficient to completely recapitulate the impaired rTEM phenotype. Conclusions: Our results revealed for the first time that the enhanced T2DM monocyte accumulation in the ablumen is not secondary to the elevated transmigration through the endothelium. Instead, the accumulation of monocytes is due to the direct consequence of a dysfunctional rTEM, potentially due to enhanced JAM3-MAC1 engagement. Our results highlight the importance of restoring the rTEM capacity of monocytes to reduce monocyte accumulation-dependent inflammation induction and atherogenesis in the T2DM environment. Full article
(This article belongs to the Special Issue Novel Insight into Endothelial Function and Atherosclerosis)
Show Figures

Figure 1

20 pages, 542 KB  
Review
Histological and Functional Breakdown of the Blood−Brain Barrier in Alzheimer’s Disease: A Multifactorial Intersection
by Jordana Mariane Neyra Chauca and Graciela Gaddy Robles Martinez
Neurol. Int. 2025, 17(10), 166; https://doi.org/10.3390/neurolint17100166 - 9 Oct 2025
Abstract
Background: Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder characterized by amyloid-β (Aβ) plaques, neurofibrillary tangles, and progressive cognitive decline. Recent evidence has highlighted the role of blood–brain barrier (BBB) dysfunction in the early stages of AD pathology. Objective: We sought to explore [...] Read more.
Background: Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder characterized by amyloid-β (Aβ) plaques, neurofibrillary tangles, and progressive cognitive decline. Recent evidence has highlighted the role of blood–brain barrier (BBB) dysfunction in the early stages of AD pathology. Objective: We sought to explore the histological structure and physiological function of the blood–brain barrier, and to identify the shared pathological mechanisms between BBB disruption and Alzheimer’s disease progression. Methods: This narrative review was conducted through a comprehensive search of peer-reviewed literature from 1997 to 2024, using databases such as PubMed, Elsevier, Scopus, and Google Scholar. Results: Multiple histological and cellular components—including endothelial cells, pericytes, astrocytes, and tight junctions—contribute to BBB integrity. The breakdown of this barrier in AD is associated with chronic inflammation, oxidative stress, vascular injury, pericyte degeneration, astrocyte polarity loss, and dysfunction of nutrient transport systems like Glucose Transporter Type 1 (GLUT1). These alterations promote neuroinflammation, amyloid-β (Aβ) accumulation, and progressive neuronal damage. Conclusions: BBB dysfunction is not merely a consequence of AD but may act as an early and active driver of its pathogenesis. Understanding the mechanisms of BBB breakdown can lead to early diagnostic markers and novel therapeutic strategies aimed at preserving or restoring barrier integrity in Alzheimer’s disease. Full article
(This article belongs to the Section Movement Disorders and Neurodegenerative Diseases)
Show Figures

Graphical abstract

28 pages, 2444 KB  
Review
The Role of Neutrophil Extracellular Networks in Cardiovascular Pathology
by Zofia Szymańska, Antoni Staniewski, Michał Karpiński, Katarzyna Zalewska, Oliwia Kalus, Zofia Gramala, Joanna Maćkowiak, Sebastian Mertowski, Krzysztof J. Filipiak, Mansur Rahnama-Hezavah, Ewelina Grywalska and Tomasz Urbanowicz
Cells 2025, 14(19), 1562; https://doi.org/10.3390/cells14191562 - 8 Oct 2025
Abstract
Cardiovascular diseases (CVDs) are increasingly being defined not only in terms of metabolic or purely vascular disorders, but also as complex immunometabolic disorders. One of the most groundbreaking discoveries in recent years is the role of neutrophil extracellular networks (NETs/NENs) as a key [...] Read more.
Cardiovascular diseases (CVDs) are increasingly being defined not only in terms of metabolic or purely vascular disorders, but also as complex immunometabolic disorders. One of the most groundbreaking discoveries in recent years is the role of neutrophil extracellular networks (NETs/NENs) as a key link between chronic vascular wall inflammation and thrombotic processes. In this article, we present a synthetic overview of the latest data on the biology of NETs/NENs and their impact on the development of atherosclerosis, endothelial dysfunction, and the mechanisms of immunothrombosis. We highlight how these structures contribute to the weakening of atherosclerotic plaque stability, impaired endothelial barrier integrity, platelet activation, and the initiation of the coagulation cascade. We also discuss the modulating role of classic risk factors such as hypertension, dyslipidemia, and exposure to tobacco smoke, which may increase the formation or hinder the elimination of NETs/NENs. We also focus on the practical application of this knowledge: we present biomarkers associated with the presence of NETs/NENs (cfDNA, MPO–DNA complexes, CitH3, NE), which may be useful in diagnostics and risk stratification, and we discuss innovative therapeutic strategies. In addition to classic methods for indirectly inhibiting NET/NEN formation (antiplatelet, anti-inflammatory, and immunometabolic agents), we present experimental approaches aimed at their neutralization and removal (e.g., DNase I, elastase, and myeloperoxidase inhibitors). We pay particular attention to the context of cardiac and cardiac surgical procedures (Percutaneous Coronary Intervention-PCI, coronary artery bypass grafting-CABG), where rapid NET/NEN bursts can increase the risk of acute thrombotic complications. The overall evidence indicates that NETs/NENs represent an innovative and promising research and therapeutic target, allowing us to view cardiovascular diseases in a new light—as a dynamic interaction of inflammatory, atherosclerotic, and thrombotic processes. This opens up new possibilities in diagnostics, combination treatment and personalisation of therapy, although further research and standardization of detection methods remain necessary. Full article
(This article belongs to the Special Issue Immunoregulation in Cardiovascular Disease)
Show Figures

Figure 1

29 pages, 1081 KB  
Review
Intracerebral Hemorrhage in Aging: Pathophysiology, Clinical Challenges, and Future Directions
by Esra Zhubi, Andrea Lehoczki, Peter Toth, Dominika Lendvai-Emmert, Levente Szalardy and Bence Gunda
Life 2025, 15(10), 1569; https://doi.org/10.3390/life15101569 - 8 Oct 2025
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a devastating form of stroke, disproportionately affecting older adults and is associated with high rates of mortality, functional dependence, and long-term cognitive decline. Aging profoundly alters the structure and function of the cerebral vasculature, predisposing the brain to [...] Read more.
Spontaneous intracerebral hemorrhage (ICH) is a devastating form of stroke, disproportionately affecting older adults and is associated with high rates of mortality, functional dependence, and long-term cognitive decline. Aging profoundly alters the structure and function of the cerebral vasculature, predisposing the brain to both covert hemorrhage and the development of cerebral microbleeds (CMBs), small, often subclinical lesions that share common pathophysiological mechanisms with ICH. These mechanisms include endothelial dysfunction, impaired cerebral autoregulation, blood–brain barrier breakdown, vascular senescence, and chronic inflammation. Systemic factors such as age-related insulin-like growth factor 1 (IGF-1) deficiency further exacerbate microvascular vulnerability. CMBs and ICH represent distinct yet interconnected manifestations along a continuum of hemorrhagic small vessel disease, with growing recognition of their contribution to vascular cognitive impairment and dementia (VCID). Despite their increasing burden, older adults remain underrepresented in clinical trials, and few therapeutic approaches specifically target aging-related mechanisms. This review synthesizes current knowledge on the cellular, molecular, and systemic drivers of ICH and CMBs in aging, highlights diagnostic and therapeutic challenges, and outlines opportunities for age-sensitive prevention and individualized care strategies. Full article
Show Figures

Figure 1

17 pages, 2776 KB  
Article
Atherosclerotic Plaque Crystals Induce Endothelial Dysfunction
by Jishamol Thazhathveettil, Sherin Aloysius Gomez, Deborah Olaoseeji, Rongrong Wu, Allan Sirsjö and Geena Varghese Paramel
Int. J. Mol. Sci. 2025, 26(19), 9758; https://doi.org/10.3390/ijms26199758 - 7 Oct 2025
Viewed by 119
Abstract
Endothelial dysfunction is an early driver of atherosclerosis, yet the direct impact of endogenous crystals such as cholesterol crystals and monosodium urate on endothelial activation remains incompletely understood. In this study, we examine how crystalline stimuli modulate human umbilical vein endothelial cells by [...] Read more.
Endothelial dysfunction is an early driver of atherosclerosis, yet the direct impact of endogenous crystals such as cholesterol crystals and monosodium urate on endothelial activation remains incompletely understood. In this study, we examine how crystalline stimuli modulate human umbilical vein endothelial cells by assessing inflammatory signaling, mitochondrial respiration, and neutrophil recruitment. Using dose- and time-controlled experiments, we show that CC and MSU are internalized by endothelial cells, activating NF-κB and STAT3 signaling pathways and inducing a robust pro-inflammatory cytokine profile. Notably, CC caused marked mitochondrial dysfunction, evidenced by impaired respiratory capacity and loss of membrane potential, revealing a novel bioenergetic vulnerability in endothelial cells. Both direct crystal stimulation and exposure to crystal-primed conditioned media triggered endothelial adhesion molecule expression and promoted neutrophil adhesion, indicating that soluble mediators released upon crystal stimulation can propagate vascular inflammation. These findings demonstrate that crystalline stimuli are potent vascular danger signals capable of driving endothelial inflammation, mitochondrial impairment, and immune cell engagement, which are hallmarks of early atherogenesis. By elucidating these multifaceted endothelial responses, this study provides important mechanistic insights into how crystal-induced signals may contribute to vascular dysfunction and the early stages of atherogenesis. Full article
(This article belongs to the Special Issue Endothelial Dysfunction and Cardiovascular Diseases)
Show Figures

Figure 1

18 pages, 1627 KB  
Review
The Role of Growth Factors and Signaling Pathways in Ovarian Angiogenesis
by Hanna Jankowska-Ziemak, Magdalena Kulus, Aleksandra Partynska, Jakub Kulus, Krzysztof Piotr Data, Dominika Domagala, Julia Niebora, Aleksandra Gorska, Marta Podralska, Marzenna Podhorska-Okolow, Piotr Chmielewski, Paweł Antosik, Dorota Bukowska, Adam Kaminski, Hanna Piotrowska-Kempisty, Maciej Zabel, Paul Mozdziak, Piotr Dziegiel and Bartosz Kempisty
Cells 2025, 14(19), 1555; https://doi.org/10.3390/cells14191555 - 7 Oct 2025
Viewed by 277
Abstract
Angiogenesis, the formation of new blood vessels from existing vasculature, is regulated by a balance between pro- and anti-angiogenic factors. In adults, this process typically occurs in response to inflammation, wound healing, and neoplastic growth. Uniquely, the female reproductive system undergoes cyclical and [...] Read more.
Angiogenesis, the formation of new blood vessels from existing vasculature, is regulated by a balance between pro- and anti-angiogenic factors. In adults, this process typically occurs in response to inflammation, wound healing, and neoplastic growth. Uniquely, the female reproductive system undergoes cyclical and repetitive angiogenesis with folliculogenesis, decidualization, implantation, and embryo development throughout the reproductive cycle. Ovarian angiogenesis involves a coordinated network of signaling pathways and molecular factors. Vascular endothelial growth factor (VEGF) is the primary driver of this process, supported by other regulators such as fibroblast growth factor (FGF) and hypoxia-inducible factor (HIF). Understanding the molecular mechanisms that govern ovarian angiogenesis is essential for developing new diagnostic and therapeutic approaches in reproductive medicine. Vascular dysfunction and impaired angiogenesis are key contributors to various ovarian disorders and infertility, including polycystic ovary syndrome (PCOS). Therefore, in-depth studies of ovarian vascularization are crucial for identifying the pathophysiology of these conditions and guiding the development of effective treatments. Advancing knowledge in this area holds significant potential for innovation in both medicine and biotechnology. Full article
Show Figures

Figure 1

25 pages, 988 KB  
Review
The NO Pathway as a Target in Patients with Stable and Advanced Heart Failure: An Additional Arrow in Our Quiver!
by Saverio D’Elia, Carmine Gentile, Achille Solimene, Rosa Franzese, Ettore Luisi, Antonio Caiazzo, Luigi Marotta, Simona Covino, Francesco Natale, Francesco S. Loffredo, Paolo Golino and Giovanni Cimmino
Biomolecules 2025, 15(10), 1420; https://doi.org/10.3390/biom15101420 - 6 Oct 2025
Viewed by 314
Abstract
The nitric oxide (NO) pathway is a fundamental regulator of vascular tone, myocardial function, and inflammation. In heart failure (HF), especially in advanced stages, dysregulation of NO–soluble guanylate cyclase (sGC)–cyclic guanosine monophosphate (cGMP) signaling contributes to endothelial dysfunction, increased vascular resistance, myocardial fibrosis, [...] Read more.
The nitric oxide (NO) pathway is a fundamental regulator of vascular tone, myocardial function, and inflammation. In heart failure (HF), especially in advanced stages, dysregulation of NO–soluble guanylate cyclase (sGC)–cyclic guanosine monophosphate (cGMP) signaling contributes to endothelial dysfunction, increased vascular resistance, myocardial fibrosis, and impaired cardiac performance. Chronic inflammation further reduces NO bioavailability, exacerbating HF progression This review synthesizes current knowledge on the role of the NO pathway in HF pathophysiology, with a focus on stable and advanced HF. Special attention is given to patient subgroups with comorbidities such as chronic kidney disease, where modulation of NO signaling may be particularly beneficial. We also evaluate therapeutic strategies targeting NO bioavailability and sGC stimulation. Evidence shows that impaired NO signaling promotes systemic and pulmonary vasoconstriction, elevates ventricular afterload, and worsens cardiac remodeling. Pharmacological agents that restore NO levels or activate downstream effectors such as sGC improve vasodilation, reduce fibrosis, and enhance myocardial relaxation. These effects are especially relevant in advanced HF patients and those with renal impairment, who often exhibit limited responses to conventional therapies. The NO pathway represents a promising therapeutic target in both stable and advanced HF. Modulating this pathway could improve outcomes, particularly in complex populations with multiple comorbidities, highlighting the need for further clinical research and tailored treatments. Full article
Show Figures

Figure 1

27 pages, 4073 KB  
Article
Thyroid Hormone T4 Alleviates Traumatic Brain Injury by Enhancing Blood–Brain Barrier Integrity
by Mayuri Khandelwal, Zhe Ying and Fernando Gomez-Pinilla
Int. J. Mol. Sci. 2025, 26(19), 9632; https://doi.org/10.3390/ijms26199632 - 3 Oct 2025
Viewed by 233
Abstract
Traumatic brain injury (TBI) disrupts the blood–brain barrier (BBB), resulting in increased permeability, neuronal loss, and cognitive dysfunction. This study investigates the therapeutic potential of thyroid hormone (T4) to reduce BBB dysfunction following moderate fluid percussion injury. T4 injection (intraperitoneal) after TBI restores [...] Read more.
Traumatic brain injury (TBI) disrupts the blood–brain barrier (BBB), resulting in increased permeability, neuronal loss, and cognitive dysfunction. This study investigates the therapeutic potential of thyroid hormone (T4) to reduce BBB dysfunction following moderate fluid percussion injury. T4 injection (intraperitoneal) after TBI restores the levels of pericytes and endothelial cells vital for BBB integrity, reduces edema by downregulating AQP-4 gene expression, and enhances levels of the tight junction protein ZO-1. T4 counteracts the TBI-related increase in MMP-9 and TLR-4, significantly reducing BBB permeability. Furthermore, T4 enhances the neuroprotective functions of astrocytes by promoting the activity of A2 astrocytes. Additionally, T4 treatment increases DHA levels (important for membrane integrity and function), stimulates mitochondrial biogenesis, and leads to a notable improvement in spatial learning and memory retention. These findings suggest that T4 has significant potential to reduce vascular leakage and inflammation after TBI, thereby improving cognitive function and maintaining BBB integrity. Full article
(This article belongs to the Special Issue The Blood–Brain Barrier and Neuroprotection)
Show Figures

Figure 1

24 pages, 334 KB  
Review
From Heart to Abdominal Aorta: Integrating Multi-Modal Cardiac Imaging Derived Haemodynamic Biomarkers for Abdominal Aortic Aneurysm Risk Stratification, Surveillance, Pre-Operative Assessment and Therapeutic Decision-Making
by Rafic Ramses and Obiekezie Agu
Diagnostics 2025, 15(19), 2497; https://doi.org/10.3390/diagnostics15192497 - 1 Oct 2025
Viewed by 351
Abstract
Recent advances in cardiovascular imaging have revolutionized the assessment and management of abdominal aortic aneurysm (AAA) through the integration of sophisticated haemodynamic biomarkers. This comprehensive review evaluates the clinical utility and mechanistic significance of multiple biomarkers in AAA pathogenesis, progression, and treatment outcomes. [...] Read more.
Recent advances in cardiovascular imaging have revolutionized the assessment and management of abdominal aortic aneurysm (AAA) through the integration of sophisticated haemodynamic biomarkers. This comprehensive review evaluates the clinical utility and mechanistic significance of multiple biomarkers in AAA pathogenesis, progression, and treatment outcomes. Advanced cardiac imaging modalities, including four-dimensional magnetic resonance imaging (4D MRI), computational fluid dynamics (CFD), and specialized echocardiography, enable precise quantification of critical haemodynamic parameters. Wall shear stress (WSS) emerges as a fundamental biomarker, with values below 0.4 Pa indicating pathological conditions and increased risk for aneurysm progression. Time-averaged wall shear stress (TAWSS), typically maintaining values above 1.5 Pa in healthy arterial segments, provides crucial information about sustained haemodynamic forces affecting the vessel wall. The oscillatory shear index (OSI), ranging from 0 (unidirectional flow) to 0.5 (purely oscillatory flow), quantifies directional changes in WSS during cardiac cycles. In AAA, elevated OSI values between 0.3 and 0.4 correlate with disturbed flow patterns and accelerated disease progression. The relative residence time (RRT), combining TAWSS and OSI, identifies regions prone to thrombosis, with values exceeding 2–3 Pa−1 indicating increased risk. The endothelial cell activation potential (ECAP), calculated as OSI/TAWSS, serves as an integrated metric for endothelial dysfunction risk, with values above 0.2–0.3 Pa−1 suggesting increased inflammatory activity. Additional biomarkers include the volumetric perivascular characterization index (VPCI), which assesses vessel wall inflammation through perivascular tissue analysis, and pulse wave velocity (PWV), measuring arterial stiffness. Central aortic systolic pressure and the aortic augmentation index provide essential information about cardiovascular load and arterial compliance. Novel parameters such as particle residence time, flow stagnation, and recirculation zones offer detailed insights into local haemodynamics and potential complications. Implementation challenges include the need for specialized equipment, standardized protocols, and expertise in data interpretation. However, the potential for improved patient outcomes through more precise risk stratification and personalized treatment planning justifies continued development and validation of these advanced assessment tools. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: Innovations in Diagnosis and Management)
22 pages, 8877 KB  
Article
Associations Between Regulatory Immune Cells, Thymus Cellular Remodeling, and Vascular Aging in Advanced Coronary Atherosclerosis: A Pilot Study
by Irina Kologrivova, Alexey Dmitriukov, Natalia Naryzhnaya, Olga Koshelskaya, Olga Kharitonova, Alexandra Vyrostkova, Elena Kravchenko, Ivan Stepanov, Sergey Andreev, Vladimir Evtushenko, Anna Gusakova, Oksana Ogurkova and Tatiana Suslova
Diagnostics 2025, 15(19), 2494; https://doi.org/10.3390/diagnostics15192494 - 30 Sep 2025
Viewed by 242
Abstract
Background/Objectives: Biological aging phenotypes in coronary artery disease (CAD) include coronary atherosclerosis, vascular aging, and endothelial dysfunction. The aim of the present study was to investigate the potential links between aging phenotypes, regulatory immune cells, and features of the thymus in patients with [...] Read more.
Background/Objectives: Biological aging phenotypes in coronary artery disease (CAD) include coronary atherosclerosis, vascular aging, and endothelial dysfunction. The aim of the present study was to investigate the potential links between aging phenotypes, regulatory immune cells, and features of the thymus in patients with CAD. Methods: A single-center, cross-sectional, comparative study was conducted. Patients were stratified according to the severity of coronary atherosclerosis: patients with a Gensini score ≥ 65 points and patients with a Gensini score < 65 points. Peripheral blood and thymus biopsy were obtained. Imaging flow cytometry, ELISA, and immunohistochemical analysis were used for analysis. Results: Thymic morphology ranged from total fatty involution to a preserved structure of the thymus (20–80% area in 31% of obtained samples) but was not associated with the severity of atherosclerosis. Meanwhile, patients with a Gensini score ≥ 65 had impaired thymus cellular composition compared to patients with a Gensini score < 65 points; increased frequency of CD8+ T lymphocytes and NK cells; and decreased frequency of CD4 + CD8+ T lymphocytes. In peripheral blood, the main determinants of a Gensini score ≥ 65 points were low absolute counts of eMDSCs and CD25low Tregs with FoxP3 nuclear translocation, while advanced vascular aging was associated with elevated eMDSC absolute counts. Advanced coronary atherosclerosis was also associated with decreased numbers of endothelial progenitor cells in circulation. Conclusions: Thymus dysfunction accompanies CAD progression and is manifested in changes in cellular composition rather than morphology. In CAD patients, MDSC and Treg lymphocytes are equally involved in the progression of coronary atherosclerosis, which is aggravated by the decreased regulatory potential of the endothelium. Vascular aging represents a distinct phenotype of biological aging in CAD patients, characterized by the expansion of eMDSCs. Full article
(This article belongs to the Special Issue Molecular Diagnosis and Medical Management of Cardiovascular Diseases)
Show Figures

Graphical abstract

20 pages, 759 KB  
Review
Artificial and Bioengineered Therapeutic Options for Corneal Endothelial Disease
by Lanxing Fu, Alfonso Vasquez Perez, Sundas Maqsood, Nick Kopsachilis, Roberta Foti, Fabiana D’Esposito, Mutali Musa, Daniele Tognetto, Caterina Gagliano and Marco Zeppieri
Bioengineering 2025, 12(10), 1064; https://doi.org/10.3390/bioengineering12101064 - 30 Sep 2025
Viewed by 451
Abstract
Background: Corneal endothelial dysfunction continues to be a primary indication for corneal transplantation globally. Due to ongoing constraints in donor tissue availability and graft durability, artificial graft technologies are increasingly recognized as viable alternatives, particularly for eyes unsuitable for conventional allogeneic transplantation. [...] Read more.
Background: Corneal endothelial dysfunction continues to be a primary indication for corneal transplantation globally. Due to ongoing constraints in donor tissue availability and graft durability, artificial graft technologies are increasingly recognized as viable alternatives, particularly for eyes unsuitable for conventional allogeneic transplantation. Aim: This article examines the contemporary state of artificial corneal endothelial grafts, emphasizing technological advancements, incorporation into surgical procedures, and their developing function in meeting the unfulfilled requirements of endothelial keratoplasty. Methods: A comprehensive synthesis of recent preclinical and clinical literature was performed, concentrating on scaffold-based constructs, cell-seeded and acellular methodologies, biomaterial characteristics, and innovative surgical delivery techniques. The review highlights translational pathways and contrasts the initial outcomes of artificial and donor-derived endothelial grafts. Results: Advancements in regenerative biomaterials and cell culture systems have resulted in the development of functional endothelial substitutes. Engineered grafts, comprising decellularized stromal carriers, synthetic polymer matrices, and human cell-laden constructs, have demonstrated promising biocompatibility and functional results in preliminary trials. The integration of these constructs into methods akin to Descemet membrane endothelial keratoplasty (DMEK) has improved clinical viability, diminished immunologic risk, and shown potential for visual recovery. Conclusions: Artificial endothelial grafts signify a revolutionary advancement in corneal surgery, addressing donor shortages and expanding the applications of endothelial keratoplasty. Although additional clinical validation and regulatory processes are required, existing evidence indicates that these technologies may soon transform treatment protocols for corneal endothelial disease. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

27 pages, 4884 KB  
Review
Dysregulated Lipid Metabolism as a Central Driver of Atherosclerotic Plaque Pathology
by Julia Emily Steinbeck, Rachel Anne Iannotti and Adil Rasheed
Lipidology 2025, 2(4), 17; https://doi.org/10.3390/lipidology2040017 - 30 Sep 2025
Viewed by 567
Abstract
It has long been recognized that elevated circulating lipid levels are among the strongest risk factors for the development of plaques within the arterial wall that are characteristic of atherosclerotic cardiovascular disease. Indeed, decades of studies have identified the deposition of low-density lipoprotein [...] Read more.
It has long been recognized that elevated circulating lipid levels are among the strongest risk factors for the development of plaques within the arterial wall that are characteristic of atherosclerotic cardiovascular disease. Indeed, decades of studies have identified the deposition of low-density lipoprotein as an initiator of this disease, which coordinates the vascular and immune dysfunction that fuels the advancement of the atherosclerotic plaque. However, in the vessel wall, deposited cholesterol and fatty acids are dynamic in nature and engage signaling pathways. Shifting from metabolic-related pathways, lipid modifications and their conversion to intermediates engage signaling cascades that further perpetuate the inflammatory milieu of the atherosclerotic plaque and its progression towards the fatal end-stage events associated with cardiovascular disease, including myocardial infarction. In this review, we will cover the cellular and molecular mechanisms that preserve homeostasis and advance disease, including how lipid species induce endothelial dysfunction and drive the development of macrophage foam cells. We will additionally discuss ongoing therapeutic strategies to combat the hyperlipidemia that underlies atherogenesis. Full article
Show Figures

Figure 1

14 pages, 4946 KB  
Article
A Variable Cross-Section Microfluidic Channel for Simultaneous Reproduction of Low Oscillatory and Pulsatile Wall Shear Stress at the Carotid Bifurcation: A Computational Fluid Dynamics-Based Study
by Yong-Jiang Li, Hui-Min Hou, Qi-Fei Hu, Li-Jin Yuan, Chun-Dong Xue, Dong Chen, Xu-Qu Hu and Kai-Rong Qin
Biosensors 2025, 15(10), 648; https://doi.org/10.3390/bios15100648 - 30 Sep 2025
Viewed by 249
Abstract
Pulsatile blood flow generates complex wall shear stress (WSS) patterns at the carotid bifurcation, which critically regulate endothelial function and structure. While physiological pulsatile WSS (PWSS) is essential for maintaining vascular health, low oscillatory WSS (OWSS) near the carotid sinus is closely associated [...] Read more.
Pulsatile blood flow generates complex wall shear stress (WSS) patterns at the carotid bifurcation, which critically regulate endothelial function and structure. While physiological pulsatile WSS (PWSS) is essential for maintaining vascular health, low oscillatory WSS (OWSS) near the carotid sinus is closely associated with endothelial dysfunction, atherosclerotic plaque formation, and stenosis. Reproducing these hemodynamic conditions in vitro is therefore crucial for investigating endothelial mechanobiology and elucidating the pathogenesis of atherosclerosis. Although microfluidic technologies have emerged as promising platforms for simulating either pulsatile or oscillatory WSS, a system capable of simultaneously replicating both characteristic waveforms—as found in vivo at the carotid bifurcation—remains undeveloped. In this study, we designed a variable cross-section microfluidic channel using Computational Fluid Dynamics (CFD) simulations. Numerical results demonstrate that the optimized channel accurately reproduces low OWSS at a stepped section emulating the carotid sinus, alongside high PWSS in a downstream uniform section. Vortex formation induced by the step structure is identified as key to generating low OWSS, influenced by step height, channel width ratio, and input flow rate. This work provides a novel and robust methodology for designing microfluidic systems that mimic complex hemodynamic microenvironments, facilitating future studies on the interplay between distinct WSS patterns and endothelial dysfunction. Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications (3rd Edition))
Show Figures

Figure 1

29 pages, 4385 KB  
Review
The Dual Role of Astrocytes in CNS Homeostasis and Dysfunction
by Aarti Tiwari, Satyabrata Rout, Prasanjit Deep, Chandan Sahu and Pradeep Kumar Samal
Neuroglia 2025, 6(4), 38; https://doi.org/10.3390/neuroglia6040038 - 29 Sep 2025
Viewed by 487
Abstract
Astrocytes are the most common type of glial cell in the central nervous system (CNS). They have many different functions that go beyond just supporting other cells. Astrocytes were once thought of as passive parts of the CNS. However, now they are known [...] Read more.
Astrocytes are the most common type of glial cell in the central nervous system (CNS). They have many different functions that go beyond just supporting other cells. Astrocytes were once thought of as passive parts of the CNS. However, now they are known to be active regulators of homeostasis and active participants in both neurodevelopmental and neurodegenerative processes. This article looks at the both sides of astrocytic function: how they safeguard synaptic integrity, ion and neurotransmitter balance, and blood-brain barrier (BBB) stability, as well as how astrocytes can become activated and participate in the immune response by releasing cytokines, upregulating interferons, and modulating the blood–brain barrier and inflammation disease condition. Astrocytes affect and influence neuronal function through the tripartite synapse, gliotransmission, and the glymphatic system. When someone is suffering from neurological disorders, reactive astrocytes become activated after being triggered by factors such as pro-inflammatory cytokines, chemokines, and inflammatory mediators, these reactive astrocytes, which have higher levels of glial fibrillary acidic protein (GFAP), can cause neuroinflammation, scar formation, and the loss of neurons. This review describes how astrocytes are involved in important CNS illnesses such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, and ischemia. It also emphasizes how these cells can change from neuroprotective to neurotoxic states depending on the situation. Researchers look at important biochemical pathways, such as those involving toll-like receptors, GLP-1 receptors, and TREM2, to see if they can change how astrocytes respond. Astrocyte-derived substances, including BDNF, GDNF, and IL-10, are also essential for protecting and repairing neurons. Astrocytes interact with other CNS cells, especially microglia and endothelial cells, thereby altering the neuroimmune environment. Learning about the molecular processes that control astrocytic plasticity opens up new ways to treat glial dysfunction. This review focuses on the importance of astrocytes in the normal and abnormal functioning of the CNS, which has a significant impact on the development of neurotherapeutics that focus on glia. Full article
Show Figures

Figure 1

Back to TopTop