Prognostic Value of Dual-Time-Point [18F]FDG PET/CT for Predicting Distant Metastasis after Treatment in Patients with Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Hematologic Features
2.3. DTP [18F]FDG PET/CT
2.4. PET/CT Image Analysis
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Correlation Analysis
BM SUV on Early PET/CT | BM SUV on Delayed PET/CT | ∆BM SUV | |
---|---|---|---|
CRP | r = 0.321 p < 0.001 | r = 0.295 p < 0.001 | r = 0.022 p = 0.755 |
WBC | r = 0.308 p < 0.001 | r = 0.302 p < 0.001 | r = 0.042 p = 0.546 |
NLR | r = 0.324 p < 0.001 | r = 0.324 p < 0.001 | r = 0.053 p = 0.441 |
PLR | r = 0.035 p = 0.614 | r = 0.051 p = 0.466 | r = 0.037 p = 0.594 |
3.3. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Goldstraw, P.; Ball, D.; Jett, J.R.; Le Chevalier, T.; Lim, E.; Nicholson, A.G.; Shepherd, F. Non-small-cell lung cancer. Lancet 2011, 378, 1727–1740. [Google Scholar] [CrossRef]
- Aloe, C.; Wang, H.; Vlahos, R.; Irving, L.; Steinfort, D.; Bozinovski, S. Emerging and multifaceted role of neutrophils in lung cancer. Transl. Lung Cancer Res. 2021, 10, 2806–2818. [Google Scholar] [CrossRef] [PubMed]
- Varkey, J.; Nicolaides, T. Tumor-Educated Platelets: A Review of Current and Potential Applications in Solid Tumors. Cureus 2021, 13, e19189. [Google Scholar] [CrossRef]
- Taucher, E.; Taucher, V.; Fink-Neuboeck, N.; Lindenmann, J.; Smolle-Juettner, F.-M. Role of Tumor-Associated Neutrophils in the Molecular Carcinogenesis of the Lung. Cancers 2021, 13, 5972. [Google Scholar] [CrossRef] [PubMed]
- Leuzzi, G.; Galeone, C.; Gisabella, M.; Duranti, L.; Taverna, F.; Suatoni, P.; Morelli, D.; Pastorino, U. Baseline C-Reactive Protein Level Predicts Survival of Early-Stage Lung Cancer: Evidence from a Systematic Review and Meta-Analysis. Tumori J. 2016, 102, 441–449. [Google Scholar] [CrossRef]
- Huang, Q.; Diao, P.; Li, C.-L.; Peng, Q.; Xie, T.; Tan, Y.; Lang, J.-Y. Preoperative platelet-lymphocyte ratio is a superior prognostic biomarker to other systemic inflammatory response markers in non-small cell lung cancer. Medicine 2020, 99, e18607. [Google Scholar] [CrossRef]
- Abravan, A.; Salem, A.; Price, G.; Faivre-Finn, C.; van Herk, M. Effect of systemic inflammation biomarkers on overall survival after lung cancer radiotherapy: A single-center large-cohort study. Acta Oncol. 2022, 61, 163–171. [Google Scholar] [CrossRef]
- Nakajo, M.; Jinguji, M.; Aoki, M.; Tani, A.; Sato, M.; Yoshiura, T. The clinical value of texture analysis of dual-time-point 18F-FDG-PET/CT imaging to differentiate between 18F-FDG-avid benign and malignant pulmonary lesions. Eur. Radiol. 2019, 30, 1759–1769. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Kim, E.Y.; Kim, D.J.; Lee, J.-H.; Kang, W.J.; Lee, J.D.; Yun, M. The diagnostic ability of 18F-FDG PET/CT for mediastinal lymph node staging using 18F-FDG uptake and volumetric CT histogram analysis in non-small cell lung cancer. Eur. Radiol. 2016, 26, 4515–4523. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Na, J.O.; Kang, D.-Y.; Lee, S.Y.; Lee, S.M. Prognostic Significance of FDG Uptake of Bone Marrow on PET/CT in Patients With Non–Small-Cell Lung Cancer After Curative Surgical Resection. Clin. Lung Cancer 2017, 18, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Seo, K.H.; Kim, E.-S.; Lee, S.M. The role of 18F-fluorodeoxyglucose uptake of bone marrow on PET/CT in predicting clinical outcomes in non-small cell lung cancer patients treated with chemoradiotherapy. Eur. Radiol. 2016, 27, 1912–1921. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Kim, Y.-K.; Kim, I.J.; Kim, Y.D.; Lee, M.K. Limited prognostic value of dual time point F-18 FDG PET/CT in patients with early stage (stage I & II) non-small cell lung cancer (NSCLC). Radiother. Oncol. 2011, 98, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Kim, S.Y.; Han, S.W.; Lee, J.E.; Lee, H.J.; Heo, N.H.; Lee, S.M. [18F]FDG uptake of bone marrow on PET/CT for predicting distant recurrence in breast cancer patients after surgical resection. EJNMMI Res. 2020, 10, 72. [Google Scholar] [CrossRef]
- Lee, J.W.; Jeon, S.; Mun, S.T.; Lee, S.M. Prognostic Value of Fluorine-18 Fluorodeoxyglucose Uptake of Bone Marrow on Positron Emission Tomography/Computed Tomography for Prediction of Disease Progression in Cervical Cancer. Int. J. Gynecol. Cancer 2017, 27, 776–783. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, H.; Fu, Z.; Kong, L.; Jin, F. Prognostic value of the standardized uptake value maximum change calculated by dual-time-point 18F-fluorodeoxyglucose positron emission tomography imaging in patients with advanced non-small-cell lung cancer. OncoTargets Ther. 2016, 9, 2993–2999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okazaki, E.; Seura, H.; Hasegawa, Y.; Okamura, T.; Fukuda, H. Prognostic Value of the Volumetric Parameters of Dual–Time-Point18F-FDG PET/CT in Non–Small Cell Lung Cancer Treated With Definitive Radiation Therapy. Am. J. Roentgenol. 2019, 213, 1366–1373. [Google Scholar] [CrossRef]
- Lee, J.W.; Choi, J.S.; Lyu, J.; Lee, S.M. Prognostic significance of 18 F-fluorodeoxyglucose uptake of bone marrow measured on positron emission tomography in patients with small cell lung cancer. Lung Cancer 2018, 118, 41–47. [Google Scholar] [CrossRef]
- Lee, J.W.; Baek, M.-J.; Ahn, T.S.; Lee, S.M. Fluorine-18-fluorodeoxyglucose uptake of bone marrow on PET/CT can predict prognosis in patients with colorectal cancer after curative surgical resection. Eur. J. Gastroenterol. Hepatol. 2018, 30, 187–194. [Google Scholar] [CrossRef]
- Lee, J.; Park, S.-H.; Ahn, H.; Lee, S.; Jang, S. Predicting Survival in Patients with Pancreatic Cancer by Integrating Bone Marrow FDG Uptake and Radiomic Features of Primary Tumor in PET/CT. Cancers 2021, 13, 3563. [Google Scholar] [CrossRef]
- Seban, R.-D.; Assié, J.-B.; Giroux-Leprieur, E.; Massiani, M.-A.; Bonardel, G.; Chouaid, C.; Deleval, N.; Richard, C.; Mezquita, L.; Girard, N.; et al. Prognostic value of inflammatory response biomarkers using peripheral blood and [18F]-FDG PET/CT in advanced NSCLC patients treated with first-line chemo- or immunotherapy. Lung Cancer 2021, 159, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Shimura, K.; Mabuchi, S.; Komura, N.; Yokoi, E.; Kozasa, K.; Sasano, T.; Kawano, M.; Matsumoto, Y.; Watabe, T.; Kodama, M.; et al. Prognostic significance of bone marrow FDG uptake in patients with gynecological cancer. Sci. Rep. 2021, 11, 2257. [Google Scholar] [CrossRef] [PubMed]
- Van De Wiele, C.; Vandevyver, F.; Debruyne, C.; Philippé, J.; van Meerbeeck, J. FDG uptake by the bone marrow in NSCLC patients is related to TGF-β but not to VEGF or G-CSF serum levels. Eur. J. Pediatr. 2007, 35, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Ban, M.J.; Park, J.H.; Lee, S.M. Effect of F-18 Fluorodeoxyglucose Uptake by Bone Marrow on the Prognosis of Head and Neck Squamous Cell Carcinoma. J. Clin. Med. 2019, 8, 1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrand-Rosenberg, S. Immune surveillance: A balance between protumor and antitumor immunity. Curr. Opin. Genet. Dev. 2008, 18, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groth, C.; Hu, X.; Weber, R.; Fleming, V.; Altevogt, P.; Utikal, J.; Umansky, V. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br. J. Cancer 2019, 120, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-C.; Cho, S.-F.; Chuang, Y.-W.; Lin, C.-Y.; Huang, Y.-F.; Tyan, Y.-C. Prognostic significance of retention index of bone marrow on dual-phase 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with diffuse large B-cell lymphoma. Medicine 2018, 97, e9513. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Zhang, X.; Huang, G.; Cheng, L.; Lv, J.; Zheng, D.; Lin, S.; Wang, S.; Wu, Q.; Long, Y.; et al. Myeloid-derived suppressor cells promote lung cancer metastasis by CCL11 to activate ERK and AKT signaling and induce epithelial-mesenchymal transition in tumor cells. Oncogene 2021, 40, 1476–1489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Che, D.; Yang, F.; Chi, C.; Meng, H.; Shen, J.; Qi, L.; Liu, F.; Lv, L.; Li, Y.; et al. Tumor-associated macrophages promote tumor metastasis via the TGF-β/SOX9 axis in non-small cell lung cancer. Oncotarget 2017, 8, 99801–99815, Correction in Oncotarget 2020, 11, 4845–4846. [Google Scholar] [CrossRef] [Green Version]
- Baldassarri, M.; Fallerini, C.; Cetta, F.; Ghisalberti, M.; Bellan, C.; Furini, S.; Spiga, O.; Crispino, S.; Gotti, G.; Ariani, F.; et al. Omic Approach in Non-smoker Female with Lung Squamous Cell Carcinoma Pinpoints to Germline Susceptibility and Personalized Medicine. Cancer Res. Treat. 2018, 50, 356–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higashi, T.; Saga, T.; Nakamoto, Y.; Ishimori, T.; Mamede, M.H.; Wada, M.; Doi, R.; Hosotani, R.; Imamura, M.; Konishi, J. Relationship between retention index in dual-phase (18)F-FDG PET, and hexokinase-II and glucose transporter-1 expres-sion in pancreatic cancer. J. Nucl. Med. 2002, 43, 173–180. [Google Scholar]
- Demura, Y.; Tsuchida, T.; Ishizaki, T.; Mizuno, S.; Totani, Y.; Ameshima, S.; Miyamori, I.; Sasaki, M.; Yonekura, Y. 18F-FDG accumulation with PET for differentiation between benign and malignant lesions in the thorax. J. Nucl. Med. 2003, 44, 540–548. [Google Scholar]
- Houseni, M.; Chamroonrat, W.; Zhuang, J.; Gopal, R.; Alavi, A.; Zhuang, H. Prognostic Implication of Dual-Phase PET in Adenocarcinoma of the Lung. J. Nucl. Med. 2010, 51, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.H.W.; Lee, B.-F.; Su, W.-C.; Lai, Y.-H.; Chen, H.-Y.; Guo, H.-R.; Yao, W.-J.; Chiu, N.-T. The increment in standardized uptake value determined using dual-phase 18F-FDG PET is a promising prognostic factor in non-small-cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 1478–1485. [Google Scholar] [CrossRef] [PubMed]
- Satoh, Y.; Nambu, A.; Onishi, H.; Sawada, E.; Tominaga, L.; Kuriyama, K.; Komiyama, T.; Marino, K.; Aoki, S.; Araya, M.; et al. Value of dual time point F-18 FDG-PET/CT imaging for the evaluation of prognosis and risk factors for recurrence in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy. Eur. J. Radiol. 2012, 81, 3530–3534. [Google Scholar] [CrossRef] [PubMed]
- Hofman, P. New insights into the interaction of the immune system with non-small cell lung carcinomas. Transl. Lung Cancer Res. 2020, 9, 2199–2213. [Google Scholar] [CrossRef]
- Mattonen, S.A.; Davidzon, G.A.; Benson, J.; Leung, A.N.C.; Vasanawala, M.; Horng, G.; Shrager, J.B.; Napel, S.; Nair, V.S. Bone Marrow and Tumor Radiomics at 18F-FDG PET/CT: Impact on Outcome Prediction in Non–Small Cell Lung Cancer. Radiology 2019, 293, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Kim, S.Y.; Lee, H.J.; Han, S.W.; Lee, J.E.; Lee, S.M. Prognostic Significance of CT-Attenuation of Tumor-Adjacent Breast Adipose Tissue in Breast Cancer Patients with Surgical Resection. Cancers 2019, 11, 1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, M.L.; McMurry, T.L.; Stukenborg, G.J.; Francescatti, A.B.; Amato-Martz, C.; Schumacher, J.R.; Chang, G.J.; Greenberg, C.C.; Winchester, D.P.; McKellar, D.P.; et al. Impact of age and comorbidity on treatment of non-small cell lung cancer recurrence following complete resection: A nationally representative cohort study. Lung Cancer 2016, 102, 108–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denault, M.-H.; Melosky, B. Immunotherapy in the First-Line Setting in Wild-Type NSCLC. Curr. Oncol. 2021, 28, 378. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Number (%) | Median (Range) | |
---|---|---|---|
Age (years) | 67 (38–86) | ||
Sex | Men | 144 (68.2%) | |
Women | 67 (31.8%) | ||
Smoking history | No | 78 (37.0%) | |
Yes | 133 (63.0%) | ||
Histopathology | Adenocarcinoma | 135 (64.0%) | |
Squamous cell carcinoma | 72 (34.1%) | ||
Large cell carcinoma | 3 (1.4%) | ||
Adenosquamous carcinoma | 1 (0.5%) | ||
T stage | T1–T2 | 163 (77.3%) | |
T3–T4 | 48 (22.7%) | ||
N stage | N0 | 130 (61.6%) | |
N1 | 28 (13.3%) | ||
N2–N3 | 53 (25.1%) | ||
TNM stage | Stage I | 103 (48.8%) | |
Stage II | 40 (19.0%) | ||
Stage III | 68 (32.2%) | ||
Blood test | CRP (mg/dL) | 0.29 (0.03–34.34) | |
WBC (×109 cells/L) | 7.23 (2.97–35.60) | ||
NLR | 2.09 (0.13–18.68) | ||
PLR | 126.32 (11.93–2238.96) | ||
Early PET/CT scan | Maximum SUV of primary tumor | 12.20 (0.90–50.30) | |
BM SUV | 2.19 (1.28–3.66) | ||
Delayed PET/CT scan | Maximum SUV of primary tumor | 17.26 (0.55–64.02) | |
BM SUV | 2.66 (1.41–5.23) | ||
∆PET parameter | ∆Maximum SUV | 27.92 (−38.89–157.29) | |
∆BM SUV | 23.12 (−17.98–119.85) | ||
Treatment | Surgery | 143 (67.8%) | |
Concurrent chemoradiotherapy | 39 (18.5%) | ||
Chemotherapy alone | 17 (8.1%) | ||
Radiotherapy alone | 12 (5.7%) |
PET/CT Parameters | No Progression (n = 117) | Locoregional Progression (n = 75) | Distant Progression (n = 19) | p-Value of the Kruskal–Wallis Test |
---|---|---|---|---|
Maximum SUV on early PET/CT | 8.50 (3.44–13.75) | 16.90 (13.10–21.80) | 14.88 (9.18–19.40) | <0.001 |
BM SUV on early PET/CT | 2.15 (1.87–2.34) | 2.34 (2.01–2.68) | 2.32 (1.91–2.91) | 0.002 |
Maximum SUV on delayed PET/CT | 11.61 (3.65–18.90) | 21.90 (17.44–29.23) | 19.60 (13.40–26.82) | <0.001 |
BM SUV on delayed PET/CT | 2.53 (2.30–2.84) | 2.96 (2.48–3.30) | 3.12 (2.43–3.88) | <0.001 |
∆Maximum SUV | 23.16 (10.92–39.98) | 30.15 (23.32–38.63) | 34.22 (30.89–49.35) | <0.001 |
∆BM SUV | 20.68 (12.60–27.72) | 26.04 (19.07–32.39) | 31.45 (25.54–40.18) | <0.001 |
Variables | PFS | DMFS | ||
---|---|---|---|---|
p-Value | Hazard Ratio (95% Confidence Interval) | p-Value | Hazard Ratio (95% Confidence Interval) | |
Age (1-year increase) | 0.019 | 1.026 (1.004–1.049) | 0.466 | 1.018 (0.971–1.067) |
Sex (women vs. men) | 0.003 | 2.111 (1.287–3.462) | 0.209 | 2.031 (0.673–6.130) |
Histopathology | ||||
Adenocarcinoma vs. squamous cell carcinoma | 0.420 | 0.841 (0.348–1.884) | 0.377 | 0.646 (0.245–1.703) |
Adenocarcinoma vs. large cell carcinoma and adenosquamous carcinoma | 0.633 | 1.331 (0.411–4.308) | 0.415 | 5.147 (0.652–24.867) |
TNM stage | ||||
Stage I vs. stage II | <0.001 | 3.634 (1.918–6.887) | 0.173 | 2.226 (0.704–7.043) |
Stage I vs. stage III | <0.001 | 12.717 (7.311–22.118) | 0.012 | 4.791 (1.951–8.195) |
Treatment | ||||
Surgery vs. concurrent chemoradiotherapy | <0.001 | 4.803 (2.541–9.078) | 0.531 | 1.614 (0.361–7.216) |
Surgery vs. chemotherapy | <0.001 | 9.642 (5.925–15.688) | 0.489 | 1.565 (0.440–5.575) |
Surgery vs. radiotherapy | 0.001 | 3.799 (1.764–8.182) | 0.945 | 1.067 (0.140–8.169) |
CRP (1.0 mg/dL increase) | <0.001 | 1.060 (1.024–1.097) | 0.060 | 1.072 (0.997–1.153) |
WBC (1.0 × 109 cells/L increase) | 0.020 | 1.055 (1.009–1.103) | 0.126 | 1.098 (0.913–1.182) |
NLR (1.0 increase) | <0.001 | 1.182 (1.111–1.258) | 0.009 | 1.176 (1.056–1.309) |
PLR (1.0 increase) | <0.001 | 1.001 (1.001–1.002) | 0.641 | 1.000 (0.998–1.003) |
Maximum SUV on early PET/CT (1.0 increase) | <0.001 | 1.057 (1.040–1.075) | 0.118 | 1.035 (0.991–1.080) |
BM SUV on early PET/CT (1.0 increase) | <0.001 | 2.662 (1.734–4.087) | 0.063 | 2.604 (0.953–6.563) |
Maximum SUV on delayed PET/CT (1.0 increase) | <0.001 | 1.047 (1.033–1.060) | 0.068 | 1.030 (0.998–1.064) |
BM SUV on delayed PET/CT (1.0 increase) | <0.001 | 1.975 (1.503–2.596) | 0.011 | 2.563 (1.458–4.507) |
∆Maximum SUV (1.0 increase) | 0.013 | 1.009 (1.002–1.016) | 0.009 | 1.017 (1.004–1.030) |
∆BM SUV (1.0 increase) | 0.029 | 1.012 (1.001–1.023) | 0.006 | 1.025 (1.007–1.043) |
Variables | PFS with Early PET/CT Parameters | PFS with Delayed PET/CT Parameters | DMFS | |||
---|---|---|---|---|---|---|
p-Value | Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | |
TNM stage | ||||||
Stage II | 0.048 | 2.091 (1.007–4.342) | 0.045 | 2.107 (1.016–4.368) | 0.224 | |
Stage III | <0.001 | 7.605 (4.089–14.106) | <0.001 | 7.592 (4.042–14.584) | 0.009 | 4.541 (2.010–7.952) |
Treatment | ||||||
Surgery vs. concurrent chemoradiotherapy | 0.057 | 0.053 | - | - | ||
Surgery vs. chemotherapy | 0.001 | 4.005 (2.024–7.924) | <0.001 | 4.059 (2.056–8.016) | - | - |
Surgery vs. radiotherapy | 0.014 | 3.092 (1.254–7.626) | 0.016 | 3.057 (1.237–7.552) | - | - |
CRP | 0.084 | 0.060 | - | - | ||
WBC | 0.240 | 0.201 | - | - | ||
NLR | 0.417 | 0.451 | 0.134 | |||
PLR | 0.947 | 0.907 | - | - | ||
Maximum SUV on early PET/CT | 0.015 | 1.033 (1.006–1.061) | - | - | - | - |
BM SUV on early PET/CT | 0.016 | 1.770 (1.114–2.8139) | - | - | - | - |
Maximum SUV on delayed PET/CT | - | - | 0.017 | 1.025 (1.005–1.046) | - | - |
BM SUV on delayed PET/CT | - | - | 0.018 | 1.556 (1.078–2.244) | 0.201 | |
∆Maximum SUV | 0.148 | 0.287 | 0.008 | 1.020 (1.005–1.035) | ||
∆BM SUV | 0.091 | 0.767 | 0.009 | 1.029 (1.010–1.052) |
∆BM SUV | |||
---|---|---|---|
<27.50 | ≥27.50 | ||
∆Maximum SUV of primary lung cancer | <30.00 | 1/80 (1.3%) | 3/35 (8.6%) |
≥30.00 | 4/57 (7.0%) | 11/39 (28.2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.M.; Lee, J.W.; Lee, J.-H.; Jo, I.Y.; Jang, S.J. Prognostic Value of Dual-Time-Point [18F]FDG PET/CT for Predicting Distant Metastasis after Treatment in Patients with Non-Small Cell Lung Cancer. J. Pers. Med. 2022, 12, 592. https://doi.org/10.3390/jpm12040592
Lee SM, Lee JW, Lee J-H, Jo IY, Jang SJ. Prognostic Value of Dual-Time-Point [18F]FDG PET/CT for Predicting Distant Metastasis after Treatment in Patients with Non-Small Cell Lung Cancer. Journal of Personalized Medicine. 2022; 12(4):592. https://doi.org/10.3390/jpm12040592
Chicago/Turabian StyleLee, Sang Mi, Jeong Won Lee, Ji-Hyun Lee, In Young Jo, and Su Jin Jang. 2022. "Prognostic Value of Dual-Time-Point [18F]FDG PET/CT for Predicting Distant Metastasis after Treatment in Patients with Non-Small Cell Lung Cancer" Journal of Personalized Medicine 12, no. 4: 592. https://doi.org/10.3390/jpm12040592
APA StyleLee, S. M., Lee, J. W., Lee, J.-H., Jo, I. Y., & Jang, S. J. (2022). Prognostic Value of Dual-Time-Point [18F]FDG PET/CT for Predicting Distant Metastasis after Treatment in Patients with Non-Small Cell Lung Cancer. Journal of Personalized Medicine, 12(4), 592. https://doi.org/10.3390/jpm12040592