Immunotherapy for Squamous Esophageal Cancer: A Review
Abstract
:1. Introduction
2. Non-Metastatic ESCC: Adjuvant and Neoadjuvant Settings
3. Metastatic Disease
3.1. First-Line Treatment
3.2. Second and Later Lines Treatment
Trial/ NCT Number | Phase/Line/State of the Trial * | Ethnicity: Asian/Western (%) | Tumour Histology and Primary Site Location | Regimens | Patients (n) |
---|---|---|---|---|---|
Landmark Trials | |||||
ATTRACTION-3 [21] | III/2nd line | Asian (96%) Western (4%) | ESCC (100%); NR | Nivolumab Chemotherapy (docetaxel or paclitaxel) | 210 209 |
Keynote-181 [22] | III/2nd line | Asian (38.7%) Western (61.3%) | ESCC (64.2%) EAC and GEJA Siewert I (35.8%) | Pembrolizumab Chemotherapy (docetaxel, paclitaxel or irinotecan) | 314 314 |
ESCORT [23] | III/2nd line | Asian (100%) | ESCC (100%); NR | Camrelizumab Chemotherapy (docetaxel or irinotecan) | 228 220 |
RATIONAL 302 [24] | III/2nd line | Asian (79%) Western (21%) | ESCC (100%); NR | Tislelizumab Chemotherapy (docetaxel, paclitaxel or irinotecan) | 256 256 |
Ongoing trials | |||||
BEAR (NCT04839471) | II/≥ 2nd line/Enrolling by invitation | Asian | ESCC; NR | BI-754091 plus afatinib | NA |
RAMONA [28] (NCT03416244) | II/2nd line/active, not recruiting | Western, elderly | ESCC; NR | Nivolumab Nivolumab + ipilimumab | NA |
4. Molecular Biomarkers for Immunotherapy
5. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Research Network; Kim, J.; Bowlby, R.; Mungall, A.J.; Robertson, A.G.; Odze, R.D.; Cherniack, A.D.; Shih, J.; Pedamallu, C.S.; Cibulskis, C.; et al. Integrated genomic characterization of oesophageal carcinoma. Nature 2017, 541, 169–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lordick, F.; Mariette, C.; Haustermans, K.; Obermannová, R.; Arnold, D. Oesophageal cancer: ESMO clinical practice guidelines. Ann. Oncol. 2016, 27 (Suppl. S5), v50–v57. [Google Scholar] [CrossRef] [PubMed]
- NCCN Clinical Practice Guidelines in Oncology. Esophageal and Esophagogastric Juncion Cancer. Version 2022—21 December 2021. Available online: https://www.nccn.org/professionals/physician_gls/pdf/esophageal.pdf (accessed on 29 January 2022).
- Vaddepally, R.K.; Kharel, P.; Pandey, R.; Garje, R.; Chandra, A.B. Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers 2020, 12, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hagen, P.; Hulshof, M.C.; van Lanschot, J.J.; Steyerberg, E.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.; Richel, D.J.; Nieuwenhuijzen, G.A.; Hospers, G.A.; Bonenkamp, J.J.; et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef] [Green Version]
- Eyck, B.M.; van Lanschot, J.J.B.; Hulshof, M.C.C.M.; van der Wilk, B.J.; Shapiro, J.; van Hagen, P.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; van Laarhoven, H.W.M.; Nieuwenhuijzen, G.A.P.; et al. CROSS Study Group. Ten-Year Outcome of Neoadjuvant Chemoradiotherapy Plus Surgery for Esophageal Cancer: The Randomized Controlled CROSS Trial. J. Clin. Oncol. 2021, 39, 1995–2004. [Google Scholar] [CrossRef]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lièvre, A.; et al. CheckMate 577 Investigators. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef]
- Goodman, K.A.; Xu, R.I.; Chau, I.; Chen, M.H.; Cho, B.C.; Shah, M.A.; Muro, K.; Wang, Y.; Ichimaru, M.; Liu, O.; et al. SKYSCRAPER-07: A phase III, randomized, double-blind, placebo-controlled study of atezolizumab with or without tiragolumab in patients with unresectable ESCC who have not progressed following definitive concurrent chemoradiotherapy. J. Clin. Oncol. 2022, 40 (Suppl. S4), TPS374. [Google Scholar] [CrossRef]
- Yang, P.; Zhou, X.; Yang, X.; Wang, Y.; Sun, T.; Feng, S.; Ma, X. Neoadjuvant camrelizumab plus chemotherapy in treating locally advanced esophageal squamous cell carcinoma patients: A pilot study. World J. Surg. Oncol. 2021, 19, 33. [Google Scholar] [CrossRef]
- Wu, Z.; Zheng, Q.; Chen, H.; Xiang, J.; Hu, H.; Li, H.; Pan, Y.; Peng, Y.; Yao, X.; Liu, P.; et al. Efficacy and safety of neoad-juvant chemotherapy and immunotherapy in locally resectable advanced esophageal squamous cell carcino-ma. Thorac. Dis. 2021, 13, 3518–3528. [Google Scholar] [CrossRef]
- Shen, D.; Chen, Q.; Wu, J.; Li, J.; Tao, K.; Jiang, Y. The safety and efficacy of neoadjuvant PD-1 inhibitor with chemotherapy for locally advanced esophageal squamous cell carcinoma. J. Gastrointest. Oncol. 2021, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Bennouna, J.; Doi, T.; Shen, L.; Kato, K.; Adenis, A.; Mamon, H.J.; Moehler, M.; Fu, X.; Cho, B.C.; et al. KEYNOTE-975 study design: A Phase III study of definitive chemoradiotherapy plus pembrolizumab in patients with esophageal carcinoma. Futur. Oncol. 2021, 17, 1143–1153. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.P.; Li, Z.; Kim, S.B.; et al. KEYNOTE-590 Investigators. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): A randomised, placebo-controlled, phase 3 study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef]
- Metges, J.P.; Kato, K.; Sun, J.M.; Shah, M.A.; Enzinger, P.C.; Adenis, A.; Doi, T.; Kojima, T.; Li, Z.; Kim, S.B.; et al. First-line pembrolizumab plus chemotherapy versus chemotherapy in advanced esophageal cancer: Longer-term efficacy, safety, and quality-of-life results from the phase 3 KEYNOTE-590 study. J. Clin. Oncol. 2022, 40 (Suppl. S4), 241. [Google Scholar] [CrossRef]
- Luo, H.; Lu, J.; Bai, Y.; Mao, T.; Wang, J.; Fan, Q.; Zhang, Y.; Zhao, K.; Chen, Z.; Gao, S.; et al. ESCORT-1st Investigators. Effect of Camrelizumab vs Placebo Added to Chemotherapy on Survival and Progression-Free Survival in Patients with Advanced or Metastatic Esophageal Squamous Cell Carcinoma: The ESCORT-1st Randomized Clinical Trial. JAMA 2021, 326, 916–925. [Google Scholar] [CrossRef]
- Doki, Y.; Ajani, J.A.; Kato, K.; Xu, J.; Wyrwicz, L.; Motoyama, S.; Ogata, T.; Kawakami, H.; Hsu, C.H.; Adenis, A.; et al. CheckMate 648 Trial Investigators. Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma. N. Engl. J. Med. 2022, 386, 449–462. [Google Scholar] [CrossRef]
- Shen, L.; Lu, Z.; Wang, J.; Shu, Y.; Kong, L.; Yang, L.; Wang, B.; Wang, Z.; Ji, Y.; Cao, G.; et al. Sintilimab plus chemotherapy versus chemotherapy as first-line therapy in patients with advanced or metastatic esophageal squamous cell cancer: First results of the phase III ORIENT-15 study. Ann. Oncol. 2021, 32 (Suppl. S5), S1283–S1346. [Google Scholar] [CrossRef]
- Xu, R.; Wang, F.; Cui, C.; Yao, J.; Zhang, Y.; Wang, G.; Feng, J.; Yang, S.; Fan, Y.; Shi, J.; et al. JUPITER-06: A randomized, double-blind, phase III study of toripalimab versus placebo in combination with first-line chemotherapy for treatment naive advanced or metastatic esophageal squamous cell carcinoma (ESCC). Ann. Oncol. 2021, 32 (Suppl. S5), S1040–S1075. [Google Scholar] [CrossRef]
- Sun, J.M.; Enzinger, P.C.; Adenis, A.; Shah, M.A.; Kato, K.; Bennouna, J.; Doi, T.; Hawk, N.N.; Yu, L.; Shah, S.; et al. LEAP-014: An open-label, randomized, phase 3 study of first-line lenvatinib plus pembrolizumab plus chemotherapy in esophageal squamous cell carcinoma. J. Clin. Oncol. 2022, 40 (Suppl. S4), TPS367. [Google Scholar] [CrossRef]
- Kato, K.; Cho, B.C.; Takahashi, M.; Okada, M.; Lin, C.-Y.; Chin, K.; Kadowaki, S.; Ahn, M.-J.; Hamamoto, Y.; Doki, Y.; et al. Nivolumab Versus Chemotherapy in Patients With Advanced Oesophageal Squamous Cell Carcinoma Refractory or Intolerant to Previous Chemotherapy (ATTRACTION-3): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2019, 20, 1506–1517. [Google Scholar] [CrossRef]
- Kojima, T.; Shah, M.A. Randomized Phase III KEYNOTE-181 Study of Pembrolizumab Versus Chemotherapy in Advanced Esophageal Cancer. J. Clin. Oncol. 2020, 38, 4138–4148. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xu, J.; Chen, Y.; Zhuang, W.; Zhang, Y.; Chen, Z.; Chen, J.; Zhang, H.; Niu, Z.; Fan, Q.; et al. Camrelizumab Versus Investigator’s Choice of Chemotherapy as Second-Line Therapy for Advanced or Metastatic Oesophageal Squa-mous Cell Carcinoma (ESCORT): A Multicentre, Randomised, Open-Label, Phase 3 Study. Lancet Oncol. 2020, 21, 832–842. [Google Scholar] [CrossRef]
- Shen, L.; Kato, K.; Kim, S.B.; Ajani, J.A.; Zhao, K.; He, Z.; Yu, X.; Shu, Y.; Luo, Q.; Wang, J.; et al. RATIONALE 302: Randomized, phase 3 study of tislelizumab versus chemotherapy as second-line treat-ment for advanced unresectable/metastatic esophageal squamous cell carcinoma. J. Clin. Oncol. 2021, 39 (Suppl. S15), 4012. [Google Scholar] [CrossRef]
- Motzer, R.J.; Escudier, B.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Plimack, E.R.; Procopio, G.; McDer-mott, D.F.; et al. Nivolumab versus everolimus in patients with advanced renal cell carcinoma: Updated results with long-term follow-up of the randomized, open-label, phase 3 CheckMate 025 trial. Cancer 2020, 126, 4156–4167. [Google Scholar] [CrossRef] [PubMed]
- Ferris, R.L.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Lic-itra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://news.bms.com/news/details/2020/Bristol-Myers-Squibb-Receives-European-Commission-Approval-for-Opdivo-nivolumab-as-Second-Line-Treatment-for-Unresectable-Advanced-Recurrent-or-Metastatic-Esophageal-Squamous-Cell-Carcinoma/default.aspx (accessed on 30 January 2022).
- Meindl-Beinker, N.M.; Betge, J.; Gutting, T.; Burgermeister, E.; Belle, S.; Zhan, T.; Schulte, N.; Maenz, M.; Ebert, M.P.; Haertel, N. A multicenter open-label phase II trial to evaluate nivolumab and ipilimumab for 2nd line therapy in elderly patients with advanced esophageal squamous cell cancer (RAMONA). BMC Cancer 2019, 19, 231. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.X.; Chen, P.; Sun, Y.T.; Zhang, B.; Qiu, M.Z. Comparison of PD-1 Inhibitors in Patients with Advanced Esophageal Squamous Cell Carcinoma in the Second-Line Setting. Front. Oncol. 2021, 11, 698732. [Google Scholar] [CrossRef]
- Leone, A.G.; Petrelli, F.; Ghidini, A.; Raimondi, A.; Smyth, E.C.; Pietrantonio, F. Efficacy and activity of PD-1 blockade in patients with advanced esophageal squamous cell carcinoma: A systematic review and meta-analysis with focus on the value of PD-L1 combined positive score. ESMO Open 2022, 7, 100380. [Google Scholar] [CrossRef]
- Yao, J.; Duan, L.; Huang, X.; Liu, J.; Fan, X.; Xiao, Z.; Yan, R.; Liu, H.; An, G.; Hu, B.; et al. Development and Validation of a Prognostic Gene Signature Correlated With M2 Macrophage Infiltration in Esophageal Squamous Cell Carcinoma. Front. Oncol. 2021, 11, 769727. [Google Scholar] [CrossRef]
- Cao, K.; Ma, T.; Ling, X.; Liu, M.; Jiang, X.; Ma, K.; Zhu, J.; Ma, J. Development of immune gene pair-based signature predictive of prognosis and immunotherapy in esophageal cancer. Ann. Transl. Med. 2021, 9, 1591. [Google Scholar] [CrossRef]
- Chidambaram, S.; Markar, S.R. Clinical utility and applicability of circulating tumor DNA testing in esophageal cancer: A systematic review and meta-analysis. Dis. Esophagus 2021, 35, doab046. [Google Scholar] [CrossRef] [PubMed]
Trial/ NCT Number * | Phase | Ethnicity: Asian/Western (%) | Tumour Histology and Primary Site Location | Regimens | Patients (n) | Survival Outcomes/Status * |
---|---|---|---|---|---|---|
Landmark trials | ||||||
Keynote-590 [14] | III | Asian (53%) Western (47%) | ESCC (73%), EAC (14.8%), GEJA Siewert I (12.1%) | CF CF + pembrolizumab | 376 373 | Median OS: ESCC and PD-L1 ≥ 10:13.9 vs. 8.8 months, HR: 0.57, p < 0.0001 ESCC: 12.6 vs. 9.8 months; HR: 0.72; p: 0.0006 PD-L1 ≥ 10:13.5 vs. 9.4 months; HR: 0.62; p < 0.0001 entire study population: 12.4 vs. 9.8 months; HR: 0.73; p < 0.0001 PD-L1 < 10:10.5 vs. 10.6 months; HR 0·86 median PFS: ESCC: 6.3 vs. 5.8 months, HR: 0.65, p < 0.0001; PD-L1 ≥ 10:7.5 vs. 5.5 months, HR: 0.51, p < 0.0001; PD-L1 < 10:6.2 vs. 6 months; HR: 0.8; all patients: 6.3 versus 5.8 months, HR: 0.65, p < 0.0001. |
ESCORT-1 [16] | III | Asian (100%) | ESCC (100%) | C+ paclitaxel C+ paclitaxel + camrelizumab | 298 298 | Median OS: 15.3 vs. 12.0 months, HR: 0.70, p = 0.001 PD-L1 ≥ 1%:HR: 0.59; <1%: HR: 0.79 Median PFS: 6.9 vs. 5.6 months, HR: 0.56, p< 0.001 PD-L1 ≥ 1%:HR: 0.51; <1%: HR: 0.62 |
Checkmate 648 [17] | III | Asian (70%) Western (30%) | ESCC (100%) | CF (a) CF+ nivolumab (b) Nivolumab+ ipilimumab (c) | 324 321 325 | Median OS: 13.2 (b) versus 12.8 (c) versus 10.7 (a) months PD-L1 ≥ 1%:15.4 (b) versus 13.7 (c) versus 9.1 (a) months PFS: PD-L1 ≥ 1%:HR (b) versus a)): 0.65; HR (c) vs. a)): NR |
ORIENT-15 [18] | III | Asian (97.1% Chinese) | ESCC (100%) | CF C+ paclitaxel Chemotherapy+ sintilimab | 23 309 327 | Median OS: All patients: 16.7 versus 12.5 months, HR: 0.628, p < 0.0001 PD-L1 ≥ 10:17.2 versus 13.6 months, HR: 0.638, p = 0.0018 Median PFS: All patients: 7.2 versus 5.7 months, HR: 0.558, p < 0.0001 PD-L1 ≥ 10:8.3 versus 6.4 months, HR: 0.58, p < 0.0001 |
JUPITER-06 [19] | III | Asian (NR) | ESCC (100%) | C + paclitaxel C + paclitaxel + toripalimab | 257 257 | Median OS: 17 versus 11 months, HR: 0.58, p = 0.00037; Median PFS: HR: 0.58, p < 0.00001 |
Ongoing trials | ||||||
LEAP-014 [20] (NCT04949256) | III | Asian and western | ESCC | CF + pembrolizumab CF + pembrolizumab + lenvatinib | NA | Active, recruiting |
HERES (NCT05170256) | II | Western | ESCC, HER-2 positive | CF+ pembrolizumab +/− trastuzumab | NA | Active, not yet recruiting |
NCT03603756 | II | Asian | ESCC | SHR-1210 + apatinib + irinotecan SHR-1210 + apatinib + paclitaxel liposome + nedaplatin | NA | Active, Recruiting |
NCT04821765 | II | Asian | ESCC, oligometastatic disease | C + nab- paclitaxel+ Tislelizumab + RT→ C + nabpaclitaxel + tislelizumab | NA | Active, Recruiting |
Trial | ICI and Target | Median OS * | OS Rate 1-Year (%) * | OS According to PD-L1 Status * | Median PFS * | PFS Rate 1-Year (%) * | ORR * | DCR * |
---|---|---|---|---|---|---|---|---|
ATTRACTION-3 [21] | Nivolumab (PD-1) | 10.9 vs. 8.4 months | 47% vs. 34% | PD-L1 TPS ≥1%: 10.9 vs. 8.1 months PD-L1 TPS <1%: 10.9 vs. 9.3 months | 1.7 vs. 3.4 months | 12% vs. 7% | 19% vs. 22% | 37% vs. 63% |
Keynote-181 ** [22] | Pembrolizumab (PD-1) | 8.2 vs. 7.1 months | 39.4% vs. 24.9% | PD-L1 CPS ≥10: 10.3 vs. 6.7 months | 2.2 vs. 3.1 months | 15.3 vs. 9.4% | 16.7% vs. 7.4% | 42.9% vs. 49.7% |
ESCORT [23] | Camrelizumab (PD-1) | 8.3 vs. 6.2 months | 34% vs. 22% | PD-L1 TPS ≥1%: 9.2 vs. 6.3 months | 1.9 vs. 1.9 months | 10% vs. NA | 20.2% vs. 6.4% | 44.7% vs. 34.5% |
RATIONAL 302 [24] | Tislelizumab (PD-1) | 8.6 vs. 6.3 months | 37% vs. 24% | PD-L1 vCPS: 10.3 vs. 6.8 months | NR | NR | 20.3% vs. 9.8% | NR |
Trial | Line of Treatment | Selection by PD-L1 | PD-L1 Expression Test and Score | PD-L1 Cut off | PD-L1 Patients % |
---|---|---|---|---|---|
Keynote-590 [14] | 1st | unselected | IHC (available on 97.5% of patients) CPS | ≥10 | Pos: 51.1% Neg: 46.3% |
ESCORT-1 [16] | 1st | unselected | IHC (available on 98.2% of patients) TPS | ≥1% | pos: 55.2% neg: 42.9% |
Checkmate 648 [17] | 1st | unselected | IHC (available on 99.5% of patients) TPS CPS (preplanned) | ≥1% | Pos: 49% Neg: 50.7% |
ORIENT-15 [18] | 1st | unselected | NR TPS and CPS | ≥10% on TPS ≥10 on CPS | Pos: TPS ≥ 10%: 36.1% CPS ≥ 10%: 57.8% Neg: NR |
JUPITER-06 [19] | 1st | unselected | IHC (available on 94.9% of patients) CPS | ≥1 | Pos: 78% Neg: 16.9% |
ATTRACTION-3 [21] | 2nd | unselected | IHC (available on 94.9% of patients) TPS | ≥1% | Pos: 48.5% Neg: 51.5% |
Keynote-181 [22] | 2nd | unselected | IHC (available on 98.6% of patients) CPS | ≥10 | Pos: 35.35% Neg: 63.2% |
ESCORT [23] | 2nd | unselected | IHC (available on 100% of patients) TPS | ≥1% | Pos: 44.9% Neg: 55.1% |
RATIONAL 302 [24] | 2nd | unselected | IHC (available on % of patients: NR) vCPS | ≥10 | Pos: 30.6% Neg: 63.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrillo, A.; Smyth, E.C. Immunotherapy for Squamous Esophageal Cancer: A Review. J. Pers. Med. 2022, 12, 862. https://doi.org/10.3390/jpm12060862
Petrillo A, Smyth EC. Immunotherapy for Squamous Esophageal Cancer: A Review. Journal of Personalized Medicine. 2022; 12(6):862. https://doi.org/10.3390/jpm12060862
Chicago/Turabian StylePetrillo, Angelica, and Elizabeth C. Smyth. 2022. "Immunotherapy for Squamous Esophageal Cancer: A Review" Journal of Personalized Medicine 12, no. 6: 862. https://doi.org/10.3390/jpm12060862
APA StylePetrillo, A., & Smyth, E. C. (2022). Immunotherapy for Squamous Esophageal Cancer: A Review. Journal of Personalized Medicine, 12(6), 862. https://doi.org/10.3390/jpm12060862