The Functional Hearing Gain with an Active Transcutaneous Bone Conduction Implant Does Not Correlate with the Subjective Hearing Performance
Abstract
:1. Introduction
2. Material and Methods
2.1. Subjects
2.2. Audiological Testing
2.3. Questionnaires
2.3.1. Health Utility Index Mark 3
2.3.2. Speech, Spatial and Qualities (SSQ)
2.4. Statistical Analysis
3. Results
3.1. Audiological Results
3.2. Subjective Hearing Quality
3.2.1. SSQ—Speech, Spatial and Qualities
3.2.2. Health Utility Index
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sprinzl, G.; Lenarz, T.; Ernst, A.; Hagen, R.; Wolf-Magele, A.; Mojallal, H.; Ingo, T.; Robert, M.; Mario, W.D. First European multicenter results with a new transcutaneous bone conduction hearing implant system: Short-term safety and efficacy. Otol. Neurotol. 2013, 34, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, W.-D.; Hamzavi, J.-S.; Böheim, K.; Wolf-Magele, A.; Schlögel, M.; Riechelmann, H.; Zorowka, P.; Koci, V.; Keck, T.; Potzinger, P.; et al. A New Transcutaneous Bone Con-duction Hearing Implant: Short-term Safety and Efficacy in Children. Otol. Neurotol. 2016, 37, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Hobson, J.C.; Roper, A.J.; Andrew, R.; Rothera, M.P.; Hill, P.; Green, K.M. Complications of bone-anchored hearing aid implantation. J. Laryngol. Otol. 2009, 124, 132–136. [Google Scholar] [CrossRef]
- Reyes, R.A.; Tjellström, A.; Granström, G. Evaluation of implant losses and skin reactions around extraoral bone-anchored implants: A 0- to 8-year follow-up. Otolaryngol Head Neck Surg. 2000, 122, 272–276. [Google Scholar] [CrossRef]
- Brkic, F.F.; Riss, D.; Scheuba, K.; Arnoldner, C.; Gstöttner, W.; Baumgartner, W.-D.; Vyskocil, E. Medical, Technical and Audiological Outcomes of Hearing Rehabilitation with the Bonebridge Transcutaneous Bone-Conduction Implant: A Single-Center Experience. J. Clin. Med. 2019, 8, 1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormack, A.; Fortnum, H. Why do people fitted with hearing aids not wear them? Int. J. Audiol. 2013, 52, 360–368. [Google Scholar] [CrossRef] [Green Version]
- Mulrow, C.D.; Aguilar, C.; Endicott, J.E.; Velez, R.; Tuley, M.R.; Charlip, W.S.; Hill, J.A. Association Between Hearing Impairment and the Quality of Life of Elderly Individuals. J. Am. Geriatr. Soc. 1990, 38, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Bianchin, G.; Bonali, M.; Russo, M.; Tribi, L. Active Bone Conduction System: Outcomes with the Bonebridge Transcutaneous Device. ORL 2015, 77, 17–26. [Google Scholar] [CrossRef]
- Monini, S.; Bianchi, A.; Talamonti, R.; Atturo, F.; Filippi, C.; Barbara, M. Patient satisfaction after auditory implant surgery: Ten-year experience from a single implanting unit center. Acta Oto-Laryngologica 2016, 137, 1–9. [Google Scholar] [CrossRef]
- Johnson, C.E.; Danhauer, J.L.; Reith, A.C.; Latiolais, L.N. A Systematic Review of the Nonacoustic Benefits of Bone-Anchored Hearing Aids. Ear Hear. 2006, 27, 703–713. [Google Scholar] [CrossRef]
- Skarżyński, P.H.; Ratuszniak, A.; Król, B.; Kozieł, M.; Osińska, K.; Cywka, K.B.; Sztabnicka, A.; Skarżyński, H. The Bonebridge in Adults with Mixed and Conductive Hearing Loss: Audiological and Quality of Life Outcomes. Audiol. Neurotol. 2019, 24, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.-J.; Goh, E.-K.; Choi, S.-W.; Lee, S.; Lee, H.M.; Lee, I.-W.; Kong, S.-K. Audiologic, surgical and subjective outcomes of active transcutaneous bone conduction implant system (Bonebridge). Int. J. Audiol. 2019, 58, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Chung, K. Challenges and recent developments in hearing aids. Part II. Feedback and occlusion effect reduction strategies, laser shell manufacturing processes, and other signal processing technologies. Trends Amplif. 2004, 8, 125–164. [Google Scholar] [CrossRef] [Green Version]
- Van de Heyning, P.; Távora-Vieira, D.; Mertens, G.; Van Rompaey, V.; Rajan, G.P.; Müller, J.; Hempel, J.M.; Leander, D.; Polterauer, D.; Marx, M.; et al. Towards a Unified Testing Framework for Single-Sided Deafness Studies: A Consensus Paper. Audiol. Neurootol. 2016, 21, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Czerniejewska-Wolska, H.; Kałos, M.; Gawłowska, M.; Sekula, A.; Mickiewicz, P.; Wiskirska-Woźnica, B.; Karlik, M. Evaluation of quality of life in patients after cochlear implantation surgery in 2014–2017. Otolaryngol. Polska 2019, 73, 11–17. [Google Scholar] [CrossRef]
- Quality, O.H. Implantable Devices for Single-Sided Deafness and Conductive or Mixed Hearing Loss: A Health Technology As-sessment. Ont Health Technol. Assess Ser. 2020, 20, 1–165. [Google Scholar]
- Furlong, W.J.; Feeny, D.H.; Torrance, G.W.; Barr, R.D. The Health Utilities Index (HUI®) system for assessing health-related quality of life in clinical studies. Ann. Med. 2001, 33, 375–384. [Google Scholar] [CrossRef]
- Horsman, J.; Furlong, W.; Feeny, D.; Torrance, G. The Health Utilities Index (HUI): Concepts, measurement properties and applications. Health Qual. Life Outcomes 2003, 1, 54. [Google Scholar] [CrossRef] [Green Version]
- Gatehouse, S.; Noble, W. The Speech, Spatial and Qualities of Hearing Scale (SSQ). Int. J. Audiol. 2004, 43, 85–99. [Google Scholar] [CrossRef]
- Den Besten, C.A.; Monksfield, P.; Bosman, A.; Skarzynski, P.H.; Green, K.; Runge, C.; Wigren, S.; Blechert, J.I.; Flynn, M.C.; Mylanus, E.A.M.; et al. Audiological and clinical outcomes of a transcutaneous bone conduction hearing implant: Six-month results from a multicentre study. Clin. Otolaryngol. 2019, 44, 144–157. [Google Scholar] [CrossRef]
- Hougaard, D.D.; Boldsen, S.K.; Jensen, A.M.; Hansen, S.; Thomassen, P.C. A multicenter study on objective and subjective benefits with a transcutaneous bone-anchored hearing aid device: First Nordic results. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 3011–3019. [Google Scholar] [CrossRef] [PubMed]
- Garcier, M.; Lavedrine, A.; Gagneux, C.; Eluecque, T.; Bozorg Grayeli, A. Bone-Anchored and Closed Skin Bonebridge Implant in Adults: Hearing Performances and Quality of Life. Audiol. Neurootol. 2021, 26, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Sprinzl, G.; Lenarz, T.; Hagen, R.; Baumgartner, W.D.; Keintzel, T.; Keck, T.; Riechelmann, H.; Magele, A.; Salcher, R.; Maier, H.; et al. Long-Term, Multicenter Results With the First Transcutaneous Bone Conduction Implant. Otol. Neurotol. 2021, 42, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Laske, R.D.; Röösli, C.; Pfiffner, F.; Veraguth, D.; Huber, A.M. Functional Results and Subjective Benefit of a Transcutaneous Bone Conduction Device in Patients With Single-Sided Deafness. Otol. Neurotol. 2015, 36, 1151–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, S.R.; Kobylk, D. Outcomes of Bone Anchored Hearing Aids (BAHA) for Single Sided Deafness in Nontraditional Candidates. Otol. Neurotol. 2016, 37, 1608–1613. [Google Scholar] [CrossRef]
- Arndt, S.; Aschendorff, A.; Laszig, R.; Beck, R.; Schild, C.; Kroeger, S.; Ihorst, G.; Wesarg, T. Comparison of Pseudobinaural Hearing to Real Binaural Hearing Rehabilitation After Cochlear Implantation in Patients With Unilateral Deafness and Tinnitus. Otol. Neurotol. 2011, 32, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Francis, H.W.; Chee, N.; Yeagle, J.; Cheng, A.; Niparko, J.K. Impact of Cochlear Implants on the Functional Health Status of Older Adults. Laryngoscope 2002, 112, 1482–1488. [Google Scholar] [CrossRef] [Green Version]
- Manrique-Huarte, R.; Calavia, D.; Irujo, A.H.; Girón, L.; Manrique-Rodríguez, M. Treatment for Hearing Loss among the Elderly: Auditory Outcomes and Impact on Quality of Life. Audiol. Neurotol. 2016, 21, 29–35. [Google Scholar] [CrossRef]
- Palmer, C.S.; Niparko, J.K.; Wyatt, J.R.; Rothman, M.; de Lissovoy, G. A prospective study of the cost-utility of the multichannel cochlear implant. Arch. Otolaryngol. Head Neck Surg. 1999, 125, 1221–1228. [Google Scholar] [CrossRef] [Green Version]
- Cheng, A.K.; Niparko, J.K. Cost-utility of the cochlear implant in adults: A meta-analysis. Arch. Otolaryngol. Head Neck Surg. 1999, 125, 1214–1218. [Google Scholar] [CrossRef] [Green Version]
Participants | n = 34 (37 Ears) |
---|---|
Sex | |
Male | 17 (50.0%) |
Female | 17 (50.0%) |
Age | |
Age at implantation | 38 +/- 20 years |
Age at follow-up | 43 +/- 20 years |
Indication | |
Conductive | 18 (50.0%) |
Mixed | 14 (40.0%) |
Single-sided deafness | 5 (10.0%) |
Cause | |
Atresia/anotia | 20 |
Chronic otitis media | 10 |
Otosclerosis | 1 |
Squamous cell carcinoma | 1 |
SSD | 5 |
Meningitis (n = 1) | |
Congenital hearing loss (n = 2) | |
Sudden hearing loss (n = 2) | |
Previous used hearing device | |
None | 17 |
BAHA headband | 3 |
Hearing aid | 5 |
Bone conduction hearing aid | 2 |
Stapes prothesis | 1 |
Vibrant Soundbridge | 2 |
CROS hearing aid | 1 |
Xomed Audiant | 1 |
Sophono | 2 |
BAHA implant | 1 |
Bone conduction spectacles | 2 |
Mixed/Conductive (n = 32) | SSD (n = 5) | |||
---|---|---|---|---|
PTApreop | PTApostop | PTApreop | ||
AC | 66 ±19 | 68 ± 15 | 99 ± 10 | |
BC | 21 ± 15 | 23 ±13 | ||
PTAunaided | PTAaided | PTAaided | ||
66 ± 14 | 37 ± 10 | 30 ± 4 |
Mean Difference | Lower 95% CI | Upper 95% CI | df | p-Value | |
---|---|---|---|---|---|
PTA4 BCI aided vs. unaided | 26.9 dB | 23.2 | 34.6 | 33 | <0.0001 |
Mean Difference | Lower 95% CI | Upper 95% CI | df | p-Value | |
---|---|---|---|---|---|
SSQ12 total | 1.85 | 1.07 | 2.63 | 23 | <0.0001 |
SSQ12 speech | 2.15 | 1.29 | 3.02 | 25 | <0.0001 |
SSQ12 spatial | 1.03 | 0.13 | 1.93 | 19 | 0.027 |
SSQ12 qualities | 2.38 | 1.61 | 3.15 | 23 | <0.0001 |
HUI3 | Conductive/Mixed N = 29 | SSD N = 5 | Rc FG |
---|---|---|---|
Multi | 0.68 ± 0.25 | 0.58 ± 0.30 | −0.097 p = 0.622 |
Vision | 0.98 ± 0.02 | 0.98 ± 0.03 | −0.051 p = 0.797 |
Hearing | 0.65 ± 0.30 | 0.55 ± 0.38 | −0.331 p = 0.085 |
Speech | 1.00 ± 0.00 | 1.00 ± 0.00 | |
Ambulation | 0.93 ±0.22 | 1.00 ± 0.00 | 0.087 p = 0.661 |
Dexterity | 0.98 ± 0.06 | 0.98 ± 0.05 | 0.168 p = 0.393 |
Emotion | 1.00 ± 0.00 | 1.00 ± 0.00 | |
Cognition | 0.94 ± 0.07 | 0.97 ± 0.06 | 0.042 p = 0.833 |
Pain | 0.90 ± 0.14 | 0.78 ± 0.44 | −0.026 p = 0.897 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auinger, A.B.; Liepins, R.; Brkic, F.F.; Vyskocil, E.; Arnoldner, C. The Functional Hearing Gain with an Active Transcutaneous Bone Conduction Implant Does Not Correlate with the Subjective Hearing Performance. J. Pers. Med. 2022, 12, 1064. https://doi.org/10.3390/jpm12071064
Auinger AB, Liepins R, Brkic FF, Vyskocil E, Arnoldner C. The Functional Hearing Gain with an Active Transcutaneous Bone Conduction Implant Does Not Correlate with the Subjective Hearing Performance. Journal of Personalized Medicine. 2022; 12(7):1064. https://doi.org/10.3390/jpm12071064
Chicago/Turabian StyleAuinger, Alice B., Rudolfs Liepins, Faris F. Brkic, Erich Vyskocil, and Christoph Arnoldner. 2022. "The Functional Hearing Gain with an Active Transcutaneous Bone Conduction Implant Does Not Correlate with the Subjective Hearing Performance" Journal of Personalized Medicine 12, no. 7: 1064. https://doi.org/10.3390/jpm12071064
APA StyleAuinger, A. B., Liepins, R., Brkic, F. F., Vyskocil, E., & Arnoldner, C. (2022). The Functional Hearing Gain with an Active Transcutaneous Bone Conduction Implant Does Not Correlate with the Subjective Hearing Performance. Journal of Personalized Medicine, 12(7), 1064. https://doi.org/10.3390/jpm12071064