Apprising Diagnostic and Prognostic Biomarkers in Cutaneous Melanoma—Persistent Updating
Abstract
:1. Introduction
2. Materials and Methods
3. Novel Genetic Aspects in Melanoma
4. miRNA Signature in Melanoma
5. Tumor Microenvironment—A Source of Biomarkers
6. Systemic Inflammatory Response as a Prognostic Factor in Melanoma
6.1. Peripheral Blood Cell Count Ratios
6.2. Eosinophils
7. New Insights into Angiogenesis in Melanoma
8. Proteins, Enzymes and Post-Translational Modifications as Biomarkers
8.1. Aberrant Glycosylation in Melanoma
8.2. TBC Proteins as Biomarkers in Melanoma
8.3. The Role of Nicotinamide N-Methyltransferase in Melanoma
9. Metabolomic Markers in Melanoma
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Naik, P.P. Role of Biomarkers in the Integrated Management of Melanoma. Dis. Markers 2021, 2021, 6238317. [Google Scholar] [CrossRef] [PubMed]
- Eddy, K.; Chen, S. Overcoming Immune Evasion in Melanoma. Int. J. Mol. Sci. 2020, 21, 8984. [Google Scholar] [CrossRef] [PubMed]
- Dzwierzynski, W.W. Melanoma Risk Factors and Prevention. Clin. Plast. Surg. 2021, 48, 543–550. [Google Scholar] [CrossRef]
- Suppa, M.; Gandini, S.; Njimi, H.; Bulliard, J.L.; Correia, O.; Duarte, A.F.; Peris, K.; Stratigos, A.J.; Nagore, E.; Longo, M.I.; et al. Association of Sunbed Use with Skin Cancer Risk Factors in Europe: An Investigation within the Euromelanoma Skin Cancer Prevention Campaign. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 76–88. [Google Scholar] [CrossRef]
- Rodríguez-Cerdeira, C.; Molares-Vila, A.; Carnero-Gregorio, M.; Corbalán-Rivas, A. Recent Advances in Melanoma Research via “Omics” Platforms. J. Proteom. 2018, 188, 152–166. [Google Scholar] [CrossRef]
- Ponti, G.; Manfredini, M.; Greco, S.; Pellacani, G.; Depenni, R.; Tomasi, A.; Maccaferri, M.; Cascinu, S. BRAF, NRAS and C-KIT Advanced Melanoma: Clinico-Pathological Features, Targeted-Therapy Strategies and Survival. Anticancer Res. 2017, 37, 7043–7048. [Google Scholar] [CrossRef]
- Leonardi, G.C.; Falzone, L.; Salemi, R.; Zanghì, A.; Spandidos, D.A.; Mccubrey, J.A.; Candido, S.; Libra, M. Cutaneous Melanoma: From Pathogenesis to Therapy. Int. J. Oncol. 2018, 52, 1071–1080. [Google Scholar] [CrossRef]
- Lugović-Mihić, L.; Ćesić, D.; Vuković, P.; Novak Bilić, G.; Šitum, M.; Špoljar, S. Melanoma Development: Current Knowledge on Melanoma Pathogenesis. Acta Dermatovenerol. Croat. 2019, 27, 163–168. [Google Scholar]
- Caruntu, C.; Mirica, A.; Roşca, A.; Mirica, R.; Caruntu, A.; Tampa, M.; Matei, C.; Constantin, C.; Neagu, M.; Badarau, A. The Role of Estrogens and Estrogen Receptors in Melanoma Development and Progression. Acta Endocrinol. 2016, 12, 234. [Google Scholar] [CrossRef]
- Teixido, C.; Castillo, P.; Martinez-Vila, C.; Arance, A.; Alos, L. Molecular Markers and Targets in Melanoma. Cells 2021, 10, 2320. [Google Scholar] [CrossRef] [PubMed]
- Yingjuan, W.; Li, Z.; Wei, C.; Xiaoyuan, W. Identification of Prognostic Genes and Construction of a Novel Gene Signature in the Skin Melanoma Based on the Tumor Microenvironment. Medicine 2021, 100, e26017. [Google Scholar] [CrossRef] [PubMed]
- Motwani, J.; Eccles, M.R. Genetic and Genomic Pathways of Melanoma Development, Invasion and Metastasis. Genes 2021, 12, 1543. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Suh, H.B.; Choi, S.J.; Kang, J.; Kang, J.W.; Kwon, E.J.; Kim, H.-J.; Kim, Y.H.; Shin, K. Identification of Prognostic MRNAs in Metastatic Cutaneous Melanoma. Melanoma Res. 2020, 30, 543–547. [Google Scholar] [CrossRef]
- Beechem, J.M. High-Plex Spatially Resolved RNA and Protein Detection Using Digital Spatial Profiling: A Technology Designed for Immuno-Oncology Biomarker Discovery and Translational Research. Methods Mol. Biol. 2020, 2055, 563–583. [Google Scholar] [CrossRef]
- Scatena, C.; Murtas, D.; Tomei, S. Cutaneous Melanoma Classification: The Importance of High-Throughput Genomic Technologies. Front. Oncol. 2021, 11, 635488. [Google Scholar] [CrossRef]
- Chen, J.; Sun, W.; Mo, N.; Chen, X.; Yang, L.; Tu, S.; Zhang, S.; Liu, J. Identification of Key Genes Involved in the Pathogenesis of Cutaneous Melanoma Using Bioinformatics Analysis. J. Int. Med. Res. 2020, 48, 30006051989586. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Niu, X.; Wu, Y.; Guan, X.; Hong, Y.; Chen, H.; Song, B. Identification and Validation of Prognostically Relevant Gene Signature in Melanoma. BioMed Res. Int. 2020, 2020, 5323614. [Google Scholar] [CrossRef]
- Liu, X.-T.; Liu, T.-T.; Wu, M.-Y.; Chen, Q.-X.; Zhuang, J.-X.; Wang, Q. Identifying FBLN1 (Gene ID: 2192) as a Potential Melanoma Biomarker for Melanoma Based on an Analysis of MicroRNA Expression Profiles in the GEO and TCGA Databases. Genet. Test. Mol. Biomark. 2021, 25, 68–78. [Google Scholar] [CrossRef]
- Yan, K.; Wang, Y.; Lu, Y.; Yan, Z. Coexpressed Genes That Promote the Infiltration of M2 Macrophages in Melanoma Can Evaluate the Prognosis and Immunotherapy Outcome. J. Immunol. Res. 2021, 2021, 6664791. [Google Scholar] [CrossRef]
- Li, Y.; Qi, J.; Yang, J. RTP4 Is a Novel Prognosis-Related Hub Gene in Cutaneous Melanoma. Hereditas 2021, 158, 22. [Google Scholar] [CrossRef] [PubMed]
- Ita, M.I.; Wang, J.H.; Fanning, N.; Kaar, G.; Lim, C.; Redmond, H.P. Plasma Circulating Cell Free Messenger RNA as a Potential Biomarker of Melanoma. Acta Oncol. 2021, 60, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Tampa, M.; Georgescu, S.R.; Mitran, C.I.; Mitran, M.I.; Matei, C.; Scheau, C.; Constantin, C.; Neagu, M. Recent Advances in Signaling Pathways Comprehension as Carcinogenesis Triggers in Basal Cell Carcinoma. J. Clin. Med. 2020, 9, 3010. [Google Scholar] [CrossRef] [PubMed]
- Skoda, A.M.; Simovic, D.; Karin, V.; Kardum, V.; Vranic, S.; Serman, L. The Role of the Hedgehog Signaling Pathway in Cancer: A Comprehensive Review. Bosn. J. Basic Med. Sci. 2018, 18, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Dunjic, M.; Lukic, N.; Djordjevic, B.; Uzelac, B.; Ostojic, N.; Supic, G. GLI-1 Polymorphisms of Hedgehog Pathway as Novel Risk and Prognostic Biomarkers in Melanoma Patients. Melanoma Res. 2022, 32, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.-P.; Huang, S.-F.; Li, J.-J.; Tang, X.-K.; Wang, X.-Y.; Li, H.-M. The Effects of Hedgehog Signaling Pathway on the Proliferation and Apoptosis of Melanoma Cells. J. Oncol. 2022, 2022, 4984866. [Google Scholar] [CrossRef]
- Tusa, I.; Gagliardi, S.; Tubita, A.; Pandolfi, S.; Menconi, A.; Lulli, M.; Dello Sbarba, P.; Stecca, B.; Rovida, E. The Hedgehog-GLI Pathway Regulates MEK5-ERK5 Expression and Activation in Melanoma Cells. Int. J. Mol. Sci. 2021, 22, 11259. [Google Scholar] [CrossRef]
- Kumar, S.; Mohapatra, T. Deciphering Epitranscriptome: Modification of MRNA Bases Provides a New Perspective for Post-Transcriptional Regulation of Gene Expression. Front. Cell Dev. Biol. 2021, 9, 628415. [Google Scholar] [CrossRef]
- Korfiati, A.; Grafanaki, K.; Kyriakopoulos, G.C.; Skeparnias, I.; Georgiou, S.; Sakellaropoulos, G.; Stathopoulos, C. Revisiting MiRNA Association with Melanoma Recurrence and Metastasis from a Machine Learning Point of View. Int. J. Mol. Sci. 2022, 23, 1299. [Google Scholar] [CrossRef]
- Nguyen, M.-H.T.; Luo, Y.-H.; Li, A.-L.; Tsai, J.-C.; Wu, K.-L.; Chung, P.-J.; Ma, N. MiRNA as a Modulator of Immunotherapy and Immune Response in Melanoma. Biomolecules 2021, 11, 1648. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Gholipour, M.; Taheri, M. MicroRNA Signature in Melanoma: Biomarkers and Therapeutic Targets. Front. Oncol. 2021, 11, 608987. [Google Scholar] [CrossRef] [PubMed]
- Neagu, M.; Constantin, C.; Cretoiu, S.M.; Zurac, S. MiRNAs in the Diagnosis and Prognosis of Skin Cancer. Front. Cell Dev. Biol. 2020, 8, 71. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.W.; Li, X.H.; Wang, H.; Wu, J. MiR-431 Is a Prognostic Marker and Suppresses Cell Growth, Migration and 654 Invasion by Targeting NOTCH2 in Melanoma. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 3876–3884. [Google Scholar] [CrossRef]
- Zhao, G.; Wei, Z.; Guo, Y. MicroRNA-107 Is a Novel Tumor Suppressor Targeting POU3F2 in Melanoma. Biol. Res. 2020, 53, 11. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, Q.; Zhu, X. MiR-135b Is a Novel Oncogenic Factor in Cutaneous Melanoma by Targeting LATS2. Melanoma Res. 2019, 29, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.-J.; Xu, W.-J.; Zeng, Z.; Zhang, M.; Zhang, D.-Y. MiR-424 Functions as Potential Diagnostic and Prognostic Biomarker in Melanoma. Clin. Lab. 2020, 66. [Google Scholar] [CrossRef]
- Lu, T.; Chen, S.; Qu, L.; Wang, Y.; Chen, H.; He, C. Identification of a Five-MiRNA Signature Predicting Survival in Cutaneous Melanoma Cancer Patients. PeerJ 2019, 7, e7831. [Google Scholar] [CrossRef]
- Galasso, M.; Morrison, C.; Minotti, L.; Corrà, F.; Zerbinati, C.; Agnoletto, C.; Baldassari, F.; Fassan, M.; Bartolazzi, A.; Vecchione, A.; et al. Loss of MiR-204 Expression Is a Key Event in Melanoma. Mol. Cancer 2018, 17, 71. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.; Jiang, L.; Zhang, X. Novel MicroRNA Biomarkers, MiR-142-5p, MiR-550a, MiR-1826, and MiR-1201, Were Identified for Primary Melanoma. J. Comput. Biol. 2020, 27, 815–824. [Google Scholar] [CrossRef]
- Sánchez-Sendra, B.; García-Giménez, J.L.; González-Muñoz, J.F.; Navarro, L.; Murgui, A.; Terrádez, L.; Pinazo, I.; Martin, J.M.; Monteagudo, C. Circulating Mi RNA Expression Analysis Reveals New Potential Biomarkers for Human Cutaneous Melanoma Staging. J. Eur. Acad. Dermatol. Venereol. 2020, 34, e126–e129. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, X.; Wang, L.; Li, M.; Shen, M.; Zhou, Z.; Zhu, S.; Li, K.; Fang, Z.; Yan, B.; et al. The Plasma Exosomal MiR-1180-3p Serves as a Novel Potential Diagnostic Marker for Cutaneous Melanoma. Cancer Cell Int. 2021, 21, 487. [Google Scholar] [CrossRef] [PubMed]
- Tengda, L.; Shuping, L.; Mingli, G.; Jie, G.; Yun, L.; Weiwei, Z.; Anmei, D. Serum Exosomal MicroRNAs as Potent Circulating Biomarkers for Melanoma. Melanoma Res. 2018, 28, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Avagliano, A.; Fiume, G.; Pelagalli, A.; Sanità, G.; Ruocco, M.R.; Montagnani, S.; Arcucci, A. Metabolic Plasticity of Melanoma Cells and Their Crosstalk With Tumor Microenvironment. Front. Oncol. 2020, 10, 722. [Google Scholar] [CrossRef]
- Romano, V.; Belviso, I.; Venuta, A.; Ruocco, M.R.; Masone, S.; Aliotta, F.; Fiume, G.; Montagnani, S.; Avagliano, A.; Arcucci, A. Influence of Tumor Microenvironment and Fibroblast Population Plasticity on Melanoma Growth, Therapy Resistance and Immunoescape. Int. J. Mol. Sci. 2021, 22, 5283. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, T.; Kambayashi, Y.; Fujisawa, Y.; Hidaka, T.; Aiba, S. Tumor-Associated Macrophages: Therapeutic Targets for Skin Cancer. Front. Oncol. 2018, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, S.R.; Tampa, M.; Mitran, C.I.; Mitran, M.I.; Caruntu, C.; Caruntu, A.; Lupu, M.; Matei, C.; Constantin, C.; Neagu, M. Tumour Microenvironment in Skin Carcinogenesis. Adv. Exp. Med. Biol. 2020, 1226, 123–142. [Google Scholar] [CrossRef]
- Papaccio, F.; Kovacs, D.; Bellei, B.; Caputo, S.; Migliano, E.; Cota, C.; Picardo, M. Profiling Cancer-Associated Fibroblasts in Melanoma. Int. J. Mol. Sci. 2021, 22, 7255. [Google Scholar] [CrossRef]
- Jacobs, J.F.; Nierkens, S.; Figdor, C.G.; de Vries, I.J.M.; Adema, G.J. Regulatory T Cells in Melanoma: The Final Hurdle towards Effective Immunotherapy? Lancet Oncol. 2012, 13, e32–e42. [Google Scholar] [CrossRef]
- Sabbatino, F.; Scognamiglio, G.; Liguori, L.; Marra, A.; Anniciello, A.M.; Polcaro, G.; Dal Col, J.; Caputo, A.; Peluso, A.L.; Botti, G.; et al. Peritumoral Immune Infiltrate as a Prognostic Biomarker in Thin Melanoma. Front. Immunol. 2020, 11, 561390. [Google Scholar] [CrossRef]
- Antohe, M.; Nedelcu, R.I.; Nichita, L.; Popp, C.G.; Cioplea, M.; Brinzea, A.; Hodorogea, A.; Calinescu, A.; Balaban, M.; Ion, D.A.; et al. Tumor Infiltrating Lymphocytes: The Regulator of Melanoma Evolution. Oncol. Lett. 2019, 17, 4155–4161. [Google Scholar] [CrossRef]
- Wu, P.; Cai, J.; Fan, S.; Liu, Q.; Huyan, T.; He, Y.; Li, X.; Zhang, L.; Su, J.; Tie, L. A Novel Risk Score Predicts Prognosis in Melanoma: The Combination of Three Tumor-Infiltrating Immune Cells and Four Immune-Related Genes. Clin. Immunol. 2021, 228, 108751. [Google Scholar] [CrossRef] [PubMed]
- Wagner, N.B.; Weide, B.; Gries, M.; Reith, M.; Tarnanidis, K.; Schuermans, V.; Kemper, C.; Kehrel, C.; Funder, A.; Lichtenberger, R.; et al. Tumor Microenvironment-Derived S100A8/A9 Is a Novel Prognostic Biomarker for Advanced Melanoma Patients and during Immunotherapy with Anti-PD-1 Antibodies. J. Immunother. Cancer 2019, 7, 343. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.; Tang, D.; Nasr, B.; Greenwood, A.; McConnell, A.; Anagnostou, M.; Elias, M.; Verykiou, S.; Bajwa, D.; Ewen, T.; et al. Epidermal Autophagy and Beclin 1 Regulator 1 and Loricrin: A Paradigm Shift in the Prognostication and Stratification of the American Joint Committee on Cancer Stage I Melanomas. Br. J. Dermatol. 2020, 182, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Tagawa, H.; Kanemaru, H.; Kimura, T.; Kuriyama, H.; Sawamura, S.; Kajihara, I.; Miyashita, A.; Aoi, J.; Fukushima, S.; Ihn, H. BATF2 Expression as a Novel Marker for Invasive Phenotype in Malignant Melanoma. J. Dermatol. 2020, 47, e372–e373. [Google Scholar] [CrossRef]
- Huo, Y.; Zhang, K.; Han, S.; Feng, Y.; Bao, Y. Lymphocyte Cytosolic Protein 2 Is a Novel Prognostic Marker in Lung Adenocarcinoma. J. Int. Med. Res. 2021, 49, 030006052110596. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, M. A Novel Prognostic Biomarker LCP2 Correlates with Metastatic Melanoma-Infiltrating CD8+ T Cells. Sci. Rep. 2021, 11, 9164. [Google Scholar] [CrossRef]
- Wu, J.N.; Koretzky, G.A. The SLP-76 Family of Adapter Proteins; Elsevier: Amsterdam, The Netherlands, 2004; Volume 16, pp. 379–393. [Google Scholar]
- Wade, R.G.; Robinson, A.V.; Lo, M.C.I.; Keeble, C.; Marples, M.; Dewar, D.J.; Moncrieff, M.D.S.; Peach, H. Baseline Neutrophil–Lymphocyte and Platelet–Lymphocyte Ratios as Biomarkers of Survival in Cutaneous Melanoma: A Multicenter Cohort Study. Ann. Surg. Oncol. 2018, 25, 3341–3349. [Google Scholar] [CrossRef]
- Lino-Silva, L.S.; Salcedo-Hernández, R.A.; García-Pérez, L.; Meneses-García, A.; Zepeda-Najar, C. Basal Neutrophil-to-Lymphocyte Ratio Is Associated with Overall Survival in Melanoma. Melanoma Res. 2017, 27, 140–144. [Google Scholar] [CrossRef]
- Kumarasamy, C.; Sabarimurugan, S.; Madurantakam, R.M.; Lakhotiya, K.; Samiappan, S.; Baxi, S.; Nachimuthu, R.; Gothandam, K.M.; Jayaraj, R. Prognostic Significance of Blood Inflammatory Biomarkers NLR, PLR, and LMR in Cancer—A Protocol for Systematic Review and Meta-Analysis. Medicine 2019, 98, e14834. [Google Scholar] [CrossRef]
- Wagner, N.B.; Luttermann, F.; Gassenmaier, M.; Forschner, A.; Leiter, U.; Garbe, C.; Eigentler, T.K. Absolute and Relative Differential Blood Count Predicts Survival of AJCC Stage I-II Melanoma Patients Scheduled for Sentinel Lymph Node Biopsy. Australas. J. Dermatol. 2020, 61, e310–e318. [Google Scholar] [CrossRef]
- Robinson, A.V.; Keeble, C.; Lo, M.C.I.; Thornton, O.; Peach, H.; Moncrieff, M.D.S.; Dewar, D.J.; Wade, R.G. The Neutrophil–Lymphocyte Ratio and Locoregional Melanoma: A Multicentre Cohort Study. Cancer Immunol. Immunother. 2020, 69, 559–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.T.; Miner, T.J.; Vezeridis, M.P. Is the Neutrophil-to-Lymphocyte Ratio a Useful Prognostic Indicator in Melanoma Patients? Melanoma Manag. 2020, 7, MMT47. [Google Scholar] [CrossRef] [PubMed]
- Iacono, D.; Basile, D.; Gerratana, L.; Vitale, M.G.; Pelizzari, G.; Cinausero, M.; Poletto, E.; Puglisi, F.; Fasola, G.; Minisini, A.M. Prognostic Role of Disease Extent and Lymphocyte–Monocyte Ratio in Advanced Melanoma. Melanoma Res. 2019, 29, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Jairath, N.K.; Farha, M.W.; Jairath, R.; Harms, P.W.; Tsoi, L.C.; Tejasvi, T. Prognostic Value of Intratumoral Lymphocyte-to-Monocyte Ratio and M0 Macrophage Enrichment in Tumor Immune Microenvironment of Melanoma. Melanoma Manag. 2020, 7, MMT51. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Gong, W. Prognostic Value of the Platelet-to-Lymphocyte Ratio in Patients With Melanoma: A Meta-Analysis. Front. Oncol. 2020, 10, 1116. [Google Scholar] [CrossRef]
- Kartolo, A.; Holstead, R.; Khalid, S.; Emack, J.; Hopman, W.; Robinson, A.; Baetz, T. Serum Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Prognosticating Immunotherapy Efficacy. Immunotherapy 2020, 12, 785–798. [Google Scholar] [CrossRef]
- Rachidi, S.; Kaur, M.; Lautenschlaeger, T.; Li, Z. Platelet Count Correlates with Stage and Predicts Survival in Melanoma. Platelets 2019, 30, 1042–1046. [Google Scholar] [CrossRef]
- Staniewska, E.; Tomasik, B.; Tarnawski, R.; Łaszczych, M.; Miszczyk, M. The Prognostic Value of Red Cell Distribution Width (RDW), Neutrophil-to-Lymphocyte Ratio (NLR), and Platelet-to-Lymphocyte Ratio (PLR) in Radiotherapy for Oropharyngeal Cancer. Rep. Pract. Oncol. Radiother. 2021, 26, 1010–1018. [Google Scholar] [CrossRef]
- Xu, W.-Y.; Yang, X.-B.; Wang, W.-Q.; Bai, Y.; Long, J.-Y.; Lin, J.-Z.; Xiong, J.-P.; Zheng, Y.-C.; He, X.-D.; Zhao, H.-T.; et al. Prognostic Impact of the Red Cell Distribution Width in Esophageal Cancer Patients: A Systematic Review and Meta-Analysis. World J. Gastroenterol. 2018, 24, 2120–2129. [Google Scholar] [CrossRef]
- Pedrazzani, C.; Tripepi, M.; Turri, G.; Fernandes, E.; Scotton, G.; Conci, S.; Campagnaro, T.; Ruzzenente, A.; Guglielmi, A. Prognostic Value of Red Cell Distribution Width (RDW) in Colorectal Cancer. Results from a Single-Center Cohort on 591 Patients. Sci. Rep. 2020, 10, 1072. [Google Scholar] [CrossRef]
- Fu, L.; Li, Q.; Fan, Q. Combination of Preoperative Red Cell Distribution Width and Neutrophil to Lymphocyte Ratio as a Prognostic Marker for Gastric Cancer Patients. J. Gastrointest. Oncol. 2021, 12, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Hannarici, Z.; Yilmaz, A.; Buyukbayram, M.E.; Tekin, S.B.; Bilici, M. A Novel Prognostic Biomarker for Cutaneous Malignant Melanoma: Red Cell Distribution Width (RDW) to Lymphocyte Ratio. Melanoma Res. 2021, 31, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Simon, S.C.S.; Utikal, J.; Umansky, V. Opposing Roles of Eosinophils in Cancer. Cancer Immunol. Immunother. 2019, 68, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Tepper, R.I.; Coffman, R.L.; Leder, P. An Eosinophil-Dependent Mechanism for the Antitumor Effect of Interleukin-4. Science 1992, 257, 548–551. [Google Scholar] [CrossRef]
- Zaynagetdinov, R.; Sherrill, T.P.; Gleaves, L.A.; McLoed, A.G.; Saxon, J.A.; Habermann, A.C.; Connelly, L.; Dulek, D.; Peebles, R.S.; Fingleton, B.; et al. Interleukin-5 Facilitates Lung Metastasis by Modulating the Immune Microenvironment. Cancer Res. 2015, 75, 1624–1634. [Google Scholar] [CrossRef]
- Kratochvill, F.; Neale, G.; Haverkamp, J.M.; Van de Velde, L.-A.; Smith, A.M.; Kawauchi, D.; McEvoy, J.; Roussel, M.F.; Dyer, M.A.; Qualls, J.E.; et al. TNF Counterbalances the Emergence of M2 Tumor Macrophages. Cell Rep. 2015, 12, 1902–1914. [Google Scholar] [CrossRef]
- Moreira, A.; Leisgang, W.; Schuler, G.; Heinzerling, L. Eosinophilic Count as a Biomarker for Prognosis of Melanoma Patients and Its Importance in the Response to Immunotherapy. Immunotherapy 2017, 9, 115–121. [Google Scholar] [CrossRef]
- Pereira, M.C.; Oliveira, D.T.; Kowalski, L.P. The Role of Eosinophils and Eosinophil Cationic Protein in Oral Cancer: A Review. Arch. Oral Biol. 2011, 56, 353–358. [Google Scholar] [CrossRef]
- Krückel, A.; Moreira, A.; Fröhlich, W.; Schuler, G.; Heinzerling, L. Eosinophil-Cationic Protein—A Novel Liquid Prognostic Biomarker in Melanoma. BMC Cancer 2019, 19, 207. [Google Scholar] [CrossRef]
- Robinson, I.; Santa Lucia, G.; Li, A.; Oberholtzer, N.; Plante, J.; Quinn, K.M.; Reuben, D.; Mehrotra, S.; Valdebran, M. Eosinophils and Melanoma: Implications for Immunotherapy. Pigment. Cell Melanoma Res. 2022, 35, 192–202. [Google Scholar] [CrossRef]
- Jour, G.; Ivan, D.; Aung, P.P. Angiogenesis in Melanoma: An Update with a Focus on Current Targeted Therapies. J. Clin. Pathol. 2016, 69, 472–483. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Jiang, Z.K.; Yang, B.; Manzuk, L.; Rosfjord, E.; Yao, J.; Lemon, L.; Noorbehesht, K.; David, J.; Puthenveetil, S.; et al. Targeting and Pharmacology of an Anti-IL13Rα2 Antibody and Antibody-Drug Conjugate in a Melanoma Xenograft Model. MAbs 2021, 13, 1958662. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, H.; Yoshimatsu, Y.; Tomizawa, T.; Kunita, A.; Takayama, R.; Morikawa, T.; Komura, D.; Takahashi, K.; Oshima, T.; Sato, M.; et al. Interleukin-13 Receptor A2 Is a Novel Marker and Potential Therapeutic Target for Human Melanoma. Sci. Rep. 2019, 9, 1281. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.C.; Muenzner, J.K.; Andrade, F.; Rius, F.E.; Ostalecki, C.; Geppert, C.I.; Agaimy, A.; Hartmann, A.; Fujita, A.; Schneider-Stock, R.; et al. Gene Expression and Promoter Methylation of Angiogenic and Lymphangiogenic Factors as Prognostic Markers in Melanoma. Mol. Oncol. 2019, 13, 1433–1449. [Google Scholar] [CrossRef]
- Abdul Pari, A.A.; Singhal, M.; Hübers, C.; Mogler, C.; Schieb, B.; Gampp, A.; Gengenbacher, N.; Reynolds, L.E.; Terhardt, D.; Géraud, C.; et al. Tumor Cell–Derived Angiopoietin-2 Promotes Metastasis in Melanoma. Cancer Res. 2020, 80, 2586–2598. [Google Scholar] [CrossRef]
- Mauro, C.D.; Pesapane, A.; Formisano, L.; Rosa, R.; D’Amato, V.; Ciciola, P.; Servetto, A.; Marciano, R.; Orsini, R.C.; Monteleone, F.; et al. Urokinase-Type Plasminogen Activator Receptor (UPAR) Expression Enhances Invasion and Metastasis in RAS Mutated Tumors. Sci. Rep. 2017, 7, 9388. [Google Scholar] [CrossRef]
- Hugdahl, E.; Bachmann, I.M.; Schuster, C.; Ladstein, R.G.; Akslen, L.A. Prognostic Value of UPAR Expression and Angiogenesis in Primary and Metastatic Melanoma. PLoS ONE 2019, 14, e0210399. [Google Scholar] [CrossRef]
- De Vellis, C.; Pietrobono, S.; Stecca, B. The Role of Glycosylation in Melanoma Progression. Cells 2021, 10, 2136. [Google Scholar] [CrossRef]
- Perez, M.; Chakraborty, A.; Lau, L.S.; Mohammed, N.B.B.; Dimitroff, C.J. Melanoma-associated Glycosyltransferase GCNT2 as an Emerging Biomarker and Therapeutic Target*. Br. J. Dermatol. 2021, 185, 294–301. [Google Scholar] [CrossRef]
- Sweeney, J.G.; Liang, J.; Antonopoulos, A.; Giovannone, N.; Kang, S.; Mondala, T.S.; Head, S.R.; King, S.L.; Tani, Y.; Brackett, D.; et al. Loss of GCNT2/I-Branched Glycans Enhances Melanoma Growth and Survival. Nat. Commun. 2018, 9, 3368. [Google Scholar] [CrossRef]
- Hu, H.; Li, Z.; Zhou, Y.; Zhang, Y.; Zhao, L.; Zhao, W.; Huang, Y.; Song, X. GLT8D1 Overexpression as a Novel Prognostic Biomarker in Human Cutaneous Melanoma. Melanoma Res. 2019, 29, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Dong, W.; Zhang, L.; Cai, X.; Zhao, Y.; Chen, Q.; Yan, Q.; Liu, J. Role of Fucosyltransferase IV in the Migration and Invasion of Human Melanoma Cells. IUBMB Life 2020, 72, 942–956. [Google Scholar] [CrossRef]
- Virág, D.; Kremmer, T.; Lőrincz, K.; Kiss, N.; Jobbágy, A.; Bozsányi, S.; Gulyás, L.; Wikonkál, N.; Schlosser, G.; Borbély, A.; et al. Altered Glycosylation of Human Alpha-1-Acid Glycoprotein as a Biomarker for Malignant Melanoma. Molecules 2021, 26, 6003. [Google Scholar] [CrossRef] [PubMed]
- Gabernet-Castello, C.; O’Reilly, A.J.; Dacks, J.B.; Field, M.C. Evolution of Tre-2/Bub2/Cdc16 (TBC) Rab GTPase-Activating Proteins. Mol. Biol. Cell 2013, 24, 1574–1583. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Zhang, M.; Li, C.; Huang, W.; Fan, Y.; Guo, J.; Khater, M.; Fukuda, M.; Dong, Z.; Hu, G.; et al. Specific TBC Domain-Containing Proteins Control the ER-Golgi-Plasma Membrane Trafficking of GPCRs. Cell Rep. 2019, 28, 554–566.e4. [Google Scholar] [CrossRef]
- Sato, N.; Koinuma, J.; Ito, T.; Tsuchiya, E.; Kondo, S.; Nakamura, Y.; Daigo, Y. Activation of an Oncogenic TBC1D7 (TBC1 Domain Family, Member 7) Protein in Pulmonary Carcinogenesis. Genes Chromosom. Cancer 2010, 49, 353–367. [Google Scholar] [CrossRef]
- Qi, T.F.; Guo, L.; Huang, M.; Li, L.; Miao, W.; Wang, Y. Discovery of TBC1D7 as a Potential Driver for Melanoma Cell Invasion. Proteomics 2020, 20, e1900347. [Google Scholar] [CrossRef]
- Masuda-Robens, J.M.; Kutney, S.N.; Qi, H.; Chou, M.M. The TRE17 Oncogene Encodes a Component of a Novel Effector Pathway for Rho GTPases Cdc42 and Rac1 and Stimulates Actin Remodeling. Mol. Cell. Biol. 2003, 23, 2151–2161. [Google Scholar] [CrossRef]
- Tang, L.; Peng, C.; Zhu, S.-S.; Zhou, Z.; Liu, H.; Cheng, Q.; Chen, X.; Chen, X.-P. Tre2-Bub2-Cdc16 Family Proteins Based Nomogram Serve as a Promising Prognosis Predicting Model for Melanoma. Front. Oncol. 2020, 10, 579625. [Google Scholar] [CrossRef]
- Iyamu, I.D.; Huang, R. Mechanisms and Inhibitors of Nicotinamide N-Methyltransferase. RSC Med. Chem. 2021, 12, 1254–1261. [Google Scholar] [CrossRef]
- Lu, X.M.; Long, H. Nicotinamide N-Methyltransferase as a Potential Marker for Cancer. Neoplasma 2018, 65, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Ganzetti, G.; Sartini, D.; Campanati, A.; Rubini, C.; Molinelli, E.; Brisigotti, V.; Cecati, M.; Pozzi, V.; Campagna, R.; Offidani, A.; et al. Nicotinamide N-Methyltransferase: Potential Involvement in Cutaneous Malignant Melanoma. Melanoma Res. 2018, 28, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, C.; Wang, T.; Deng, H. Complex Roles of Nicotinamide N-Methyltransferase in Cancer Progression. Cell Death Dis. 2022, 13, 267. [Google Scholar] [CrossRef] [PubMed]
- Campagna, R.; Salvolini, E.; Pompei, V.; Pozzi, V.; Salvucci, A.; Molinelli, E.; Brisigotti, V.; Sartini, D.; Campanati, A.; Offidani, A.; et al. Nicotinamide N-methyltransferase Gene Silencing Enhances Chemosensitivity of Melanoma Cell Lines. Pigment Cell Melanoma Res. 2021, 34, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Mascitti, M.; Santarelli, A.; Sartini, D.; Rubini, C.; Colella, G.; Salvolini, E.; Ganzetti, G.; Offidani, A.; Emanuelli, M. Analysis of Nicotinamide N-Methyltransferase in Oral Malignant Melanoma and Potential Prognostic Significance. Melanoma Res. 2019, 29, 151–156. [Google Scholar] [CrossRef]
- Pompei, V.; Salvolini, E.; Rubini, C.; Lucarini, G.; Molinelli, E.; Brisigotti, V.; Pozzi, V.; Sartini, D.; Campanati, A.; Offidani, A.; et al. Nicotinamide N-Methyltransferase in Nonmelanoma Skin Cancers. Eur. J. Clin. Investig. 2019, 49, e13175. [Google Scholar] [CrossRef]
- Hah, Y.-S.; Cho, H.Y.; Jo, S.Y.; Park, Y.S.; Heo, E.P.; Yoon, T.-J. Nicotinamide N-methyltransferase Induces the Proliferation and Invasion of Squamous Cell Carcinoma Cells. Oncol. Rep. 2019, 42, 1805–1814. [Google Scholar] [CrossRef]
- Campagna, R.; Pozzi, V.; Sartini, D.; Salvolini, E.; Brisigotti, V.; Molinelli, E.; Campanati, A.; Offidani, A.; Emanuelli, M. Beyond Nicotinamide Metabolism: Potential Role of Nicotinamide N-Methyltransferase as a Biomarker in Skin Cancers. Cancers 2021, 13, 4943. [Google Scholar] [CrossRef]
- Neagu, M. Metabolic Traits in Cutaneous Melanoma. Front. Oncol. 2020, 10, 851. [Google Scholar] [CrossRef]
- De Vitto, H.; Arachchige, D.B.; Richardson, B.C.; French, J.B. The Intersection of Purine and Mitochondrial Metabolism in Cancer. Cells 2021, 10, 2603. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, Z.; Cao, Y.; Ruan, S.; Wang, M.; Shi, J. Solute Carrier Transporter Superfamily Member SLC16A1 Is a Potential Prognostic Biomarker and Associated with Immune Infiltration in Skin Cutaneous Melanoma. Channels 2021, 15, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Nájera, L.; Alonso-Juarranz, M.; Garrido, M.; Ballestín, C.; Moya, L.; Martínez-Díaz, M.; Carrillo, R.; Juarranz, A.; Rojo, F.; Cuezva, J.M.; et al. Prognostic Implications of Markers of the Metabolic Phenotype in Human Cutaneous Melanoma. Br. J. Dermatol. 2019, 181, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Ene, C.D.; Tampa, M.; Nicolae, I.; Mitran, C.I.; Mitran, M.I.; Matei, C.; Caruntu, A.; Caruntu, C.; Georgescu, S.R. Antiganglioside Antibodies and Inflammatory Response in Cutaneous Melanoma. J. Immunol. Res. 2020, 2020, e2491265. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-Y.; Lee, H.; Kim, S.-H.; Jin, H.; Bae, J.; Choi, H.-K. Discovery of Potential Biomarkers in Human Melanoma Cells with Different Metastatic Potential by Metabolic and Lipidomic Profiling. Sci. Rep. 2017, 7, 8864. [Google Scholar] [CrossRef]
- Corn, K.C.; Windham, M.A.; Rafat, M. Lipids in the Tumor Microenvironment: From Cancer Progression to Treatment. Prog. Lipid Res. 2020, 80, 101055. [Google Scholar] [CrossRef]
- Wasinger, C.; Hofer, A.; Spadiut, O.; Hohenegger, M. Amino Acid Signature in Human Melanoma Cell Lines from Different Disease Stages. Sci. Rep. 2018, 8, 6245. [Google Scholar] [CrossRef]
- Weber, D.D.; Thapa, M.; Aminzadeh-Gohari, S.; Redtenbacher, A.-S.; Catalano, L.; Feichtinger, R.G.; Koelblinger, P.; Dallmann, G.; Emberger, M.; Kofler, B.; et al. Targeted Metabolomics Identifies Plasma Biomarkers in Mice with Metabolically Heterogeneous Melanoma Xenografts. Cancers 2021, 13, 434. [Google Scholar] [CrossRef]
- Bayci, A.; Baker, D.; Somerset, A.; Turkoglu, O.; Hothem, Z.; Callahan, R.; Mandal, R.; Han, B.; Bjorndahl, T.; Wishart, D.; et al. Metabolomic Identification of Diagnostic Serum-Based Biomarkers for Advanced Stage Melanoma. Metabolomics 2018, 14, 105. [Google Scholar] [CrossRef]
- Kosmopoulou, M.; Giannopoulou, A.F.; Iliou, A.; Benaki, D.; Panagiotakis, A.; Velentzas, A.D.; Konstantakou, E.G.; Papassideri, I.S.; Mikros, E.; Stravopodis, D.J.; et al. Human Melanoma-Cell Metabolic Profiling: Identification of Novel Biomarkers Indicating Metastasis. Int. J. Mol. Sci. 2020, 21, 2436. [Google Scholar] [CrossRef] [Green Version]
miRNA/miRNA Panels | Function/Significance |
---|---|
miR-431 | Downregulates cell proliferation, migration and invasion via NOTCH2 [33] |
miR-107 | Inhibits cell growth, migration and invasion via POU3F2 [34] |
miR-135b | Promotes cell proliferation and migration via LATS2 [35] |
miR-424 | Associated with decreased overall survival [36] |
miR-25, miR-204, miR-211, miR-510, miR-513c | Regulate genes related to PI3K-Akt pathways, ubiquitin-mediated proteolysis and focal adhesion [37] |
miR-142-5p, miR-550a, miR-1826, and miR-1201 | Involved in the development of primary melanoma [39] |
miR-182-5p, miR-199a-5p, miR-877-3p, miR-1228-3p and miR-3613-5p | Associated with micrometastatic regional lymph node disease [40] |
exo-miRNA-532-5p and exo-miR-106b | May be used to identify patients with early-stage melanoma [42] |
exo-miR-1180-3p | Negatively corelates with melanoma cell proliferation [41] |
Glycosylation Deregulation | Significance |
---|---|
Loss of GCNT2 | Promotes melanoma growth and stimulates cell survival [91] |
Overexpression of GLT8D1 | Correlates with Clark level, AJCC stage, the presence of ulceration, Ki-67 expression and histopathological type [92] |
Overexpression of FUT 4 | Enhances the migration and invasion of melanoma cells [93] |
Altered glycosylation pattern of human serum AGP | An increased level of fucosylated glycans and a low level of their non-fucosylated counterparts in melanoma patients compared to healthy subjects [94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgescu, S.R.; Mitran, C.I.; Mitran, M.I.; Matei, C.; Constantin, C.; Neagu, M.; Tampa, M. Apprising Diagnostic and Prognostic Biomarkers in Cutaneous Melanoma—Persistent Updating. J. Pers. Med. 2022, 12, 1506. https://doi.org/10.3390/jpm12091506
Georgescu SR, Mitran CI, Mitran MI, Matei C, Constantin C, Neagu M, Tampa M. Apprising Diagnostic and Prognostic Biomarkers in Cutaneous Melanoma—Persistent Updating. Journal of Personalized Medicine. 2022; 12(9):1506. https://doi.org/10.3390/jpm12091506
Chicago/Turabian StyleGeorgescu, Simona Roxana, Cristina Iulia Mitran, Madalina Irina Mitran, Clara Matei, Carolina Constantin, Monica Neagu, and Mircea Tampa. 2022. "Apprising Diagnostic and Prognostic Biomarkers in Cutaneous Melanoma—Persistent Updating" Journal of Personalized Medicine 12, no. 9: 1506. https://doi.org/10.3390/jpm12091506
APA StyleGeorgescu, S. R., Mitran, C. I., Mitran, M. I., Matei, C., Constantin, C., Neagu, M., & Tampa, M. (2022). Apprising Diagnostic and Prognostic Biomarkers in Cutaneous Melanoma—Persistent Updating. Journal of Personalized Medicine, 12(9), 1506. https://doi.org/10.3390/jpm12091506