Knee Orthotics Do Not Influence Coordinative Skills—A Randomized Controlled Crossover Pilot Trial
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ISO 8549-1:2020; Prosthetics and Orthotics—Vocabulary—Part 1: General Terms for External Limb Prostheses and External Orthoses. Available online: https://www.iso.org/obp/ui/#iso:std:iso:8549:-3:ed-2:v1:en (accessed on 5 September 2022).
- Paluska, S.A.; McKeag, D.B. Knee braces: Current evidence and clinical recommendations for their use. Am. Fam. Phys. 2000, 61, 411–418, 423–424. [Google Scholar]
- Sugimoto, D.; LeBlanc, J.C.; Wooley, S.E.; Micheli, L.J.; Kramer, D.E. The Effectiveness of a Functional Knee Brace on Joint-Position Sense in Anterior Cruciate Ligament-Reconstructed Individuals. J. Sport Rehabil. 2016, 25, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Salata, M.J.; Gibbs, A.E.; Sekiya, J.K. The effectiveness of prophylactic knee bracing in american football: A systematic review. Sports Health 2010, 2, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Ramstrand, N.; Gjøvaag, T.; Starholm, I.M.; Rusaw, D.F. Effects of knee orthoses on kinesthetic awareness and balance in healthy individuals. J. Rehabil. Assist. Technol. Eng. 2019, 6, 2055668319852537. [Google Scholar] [CrossRef]
- Riemann, B.L.; Lephart, S.M. The Sensorimotor System, Part II: The Role of Proprioception in Motor Control and Functional Joint Stability. J. Athl. Train. 2002, 37, 80–84. [Google Scholar]
- Dwan, K.; Li, T.; Altman, D.G.; Elbourne, D. CONSORT 2010 statement: Extension to randomised crossover trials. BMJ 2019, 366, l4378. [Google Scholar] [CrossRef]
- Schulz, R.; Langen, G.; Prill, R.; Cassel, M.; Weissgerber, T.L. Reporting and transparent research practices in sports medicine and orthopaedic clinical trials: A meta-research study. BMJ Open 2022, 12, e059347. [Google Scholar] [CrossRef]
- Ebert, J.R.; Edwards, P.; Currie, J.; Smith, A.; Joss, B.; Ackland, T.; Buelow, J.-U.; Hewitt, B. Comparison of the ‘Back in Action’ Test Battery to Standard Hop Tests and Isokinetic Knee Dynamometry in Patients Following Anterior Cruciate Ligament Reconstruction. Int. J. Sports Phys. Ther. 2018, 13, 389–400. [Google Scholar] [CrossRef]
- Hildebrandt, C.; Muller, L.; Zisch, B.; Huber, R.; Fink, C.; Raschner, C. Functional assessments for decision-making regarding return to sports following ACL reconstruction. Part I: Development of a new test battery. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 1273–1281. [Google Scholar] [CrossRef]
- Collins, J.J.; De Luca, C.J. Open-loop and closed-loop control of posture: A random-walk analysis of center-of-pressure trajectories. Exp. Brain Res. 1993, 95, 308–318. [Google Scholar] [CrossRef]
- Riemann, B.L.; Lephart, S.M. The sensorimotor system, part I: The physiologic basis of functional joint stability. J. Athl. Train. 2002, 37, 71–79. [Google Scholar]
- Prill, R.; Appell Coriolano, H.J.; Michel, S.; Alfuth, M. The Influence of the Special Throwing Technique on the Prevalence of Knee Joint Injuries in Judo. Arch. Budo 2014, 10, 211–216. [Google Scholar]
- Khan, S.J.; Khan, S.S.; Usman, J.; Mokhtar, A.H.; Abu Osman, N.A. Combined effects of knee brace, laterally wedged insoles and toe-in gait on knee adduction moment and balance in moderate medial knee osteoarthritis patients. Gait Posture 2018, 61, 243–249. [Google Scholar] [CrossRef]
- Norte, G.E.; Hertel, J.; Saliba, S.A.; Diduch, D.R.; Hart, J.M. Quadriceps Neuromuscular Function in Patients With Anterior Cruciate Ligament Reconstruction With or Without Knee Osteoarthritis: A Cross-Sectional Study. J. Athl. Train. 2018, 53, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Prill, R.; Michel, S.; Schulz, R.; Coriolano, H.A. Body Composition and Strength Parameters in Elite Judo Athletes 5 Years after Anterior Cruciate Ligament Reconstruction. Int. J. Sports Med. 2019, 40, 38–42. [Google Scholar] [CrossRef]
- Relph, N.; Herrington, L.; Tyson, S. The effects of ACL injury on knee proprioception: A meta-analysis. Physiotherapy 2014, 100, 187–195. [Google Scholar] [CrossRef]
- Bates, N.A.; Myer, G.D.; Hale, R.F.; Schilaty, N.D.; Hewett, T.E. Prospective Frontal Plane Angles Used to Predict ACL Strain and Identify Those at High Risk for Sports-Related ACL Injury. Orthop. J. Sports Med. 2020, 8, 2325967120957646. [Google Scholar] [CrossRef]
- Moon, J.; Kim, H.; Lee, J.; Panday, S.B. Effect of wearing a knee brace or sleeve on the knee joint and anterior cruciate ligament force during drop jumps: A clinical intervention study. Knee 2018, 25, 1009–1015. [Google Scholar] [CrossRef]
- Hacker, S.P.; Schall, F.; Ignatius, A.; Dürselen, L. The effect of knee brace misalignment on the anterior cruciate ligament: An experimental study. Prosthet. Orthot. Int. 2019, 43, 309–315. [Google Scholar] [CrossRef]
- Oleksy, Ł.; Królikowska, A.; Mika, A.; Kuchciak, M.; Szymczyk, D.; Rzepko, M.; Bril, G.; Prill, R.; Stolarczyk, A.; Reichert, P. A Compound Hop Index for Assessing Soccer Players’ Performance. J. Clin. Med. 2022, 11, 255. [Google Scholar] [CrossRef]
- Prill, R.; Walter, M.; Królikowska, A.; Becker, R. A Systematic Review of Diagnostic Accuracy and Clinical Applications of Wearable Movement Sensors for Knee Joint Rehabilitation. Sensors 2021, 21, 8221. [Google Scholar] [CrossRef]
- Rebel, M.; Paessler, H.H. The effect of knee brace on coordination and neuronal leg muscle control: An early postoperative functional study in anterior cruciate ligament reconstructed patients. Knee Surg. Sports Traumatol. Arthrosc. 2001, 9, 272–281. [Google Scholar] [CrossRef]
- Peebles, A.T.; Miller, T.K.; Moskal, J.T.; Queen, R.M. Hop testing symmetry improves with time and while wearing a functional knee brace in anterior cruciate ligament reconstructed athletes. Clin. Biomech. 2019, 70, 66–71. [Google Scholar] [CrossRef]
- Dickerson, L.C.; Peebles, A.T.; Moskal, J.T.; Miller, T.K.; Queen, R.M. Physical Performance Improves With Time and a Functional Knee Brace in Athletes After ACL Reconstruction. Orthop. J. Sports Med. 2020, 8, 2325967120944255. [Google Scholar] [CrossRef]
- Herbst, E.; Hoser, C.; Hildebrandt, C.; Raschner, C.; Hepperger, C.; Pointner, H.; Fink, C. Functional assessments for decision-making regarding return to sports following ACL reconstruction. Part II: Clinical application of a new test battery. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 1283–1291. [Google Scholar] [CrossRef]
- Csapo, R.; Pointner, H.; Hoser, C.; Gfoller, P.; Raschner, C.; Fink, C. Physical Fitness after Anterior Cruciate Ligament Reconstruction: Influence of Graft, Age, and Sex. Sports 2020, 8, 30. [Google Scholar] [CrossRef]
- Marigi, E.M.; Bernard, C.D.; Hale, R.F.; Stuart, M.J.; Levy, B.A.; Dahm, D.L.; Hewett, T.E.; Krych, A.J. Return to Sport: Does 6-month Functional Testing Predict Second ACL Injuries at Long-term Follow-Up? Orthop. J. Sports Med. 2019. [Google Scholar] [CrossRef]
- Kyritsis, P.; Bahr, R.; Landreau, P.; Miladi, R.; Witvrouw, E. Likelihood of ACL graft rupture: Not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br. J. Sports Med. 2016, 50, 946–951. [Google Scholar] [CrossRef]
- Briggs, K.K.; Lysholm, J.; Tegner, Y.; Rodkey, W.G.; Kocher, M.S.; Steadman, J.R. The reliability, validity, and responsiveness of the Lysholm score and Tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later. Am. J. Sports Med. 2009, 37, 890–897. [Google Scholar] [CrossRef]
- Kaplan, Y.; Witvrouw, E. When Is It Safe to Return to Sport After ACL Reconstruction? Reviewing the Criteria. Sports Health 2019, 11, 301–305. [Google Scholar] [CrossRef]
- Nagelli, C.; Di Stasi, S.; Tatarski, R.; Chen, A.; Wordeman, S.; Hoffman, J.; Hewett, T.E. Neuromuscular Training Improves Self-Reported Function and Single-Leg Landing Hip Biomechanics in Athletes After Anterior Cruciate Ligament Reconstruction. Orthop. J. Sports Med. 2020, 8, 2325967120959347. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, V.G.; Prill, R.; Jahnke, S.; Zaffagnini, S.; Becker, R. The influence of gluteal muscle strength deficits on dynamic knee valgus: A scoping review. J. Exp. Orthop. 2022, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, S.; Ishida, T.; Yamanaka, M.; Ueno, R.; Ikuta, R.; Chijimatsu, M.; Samukawa, M.; Koshino, Y.; Kasahara, S.; Tohyama, H. Landing Biomechanics During a Single-leg Landing With Lateral Trunk Obliquity in Female Athletes. Res. Square 2021. [Google Scholar] [CrossRef]
- Bourne, M.N.; Webster, K.E.; Hewett, T.E. Is Fatigue a Risk Factor for Anterior Cruciate Ligament Rupture? Sports Med. 2019, 49, 1629–1635. [Google Scholar] [CrossRef]
- Ueno, R.; Navacchia, A.; Schilaty, N.D.; Myer, G.D.; Hewett, T.E.; Bates, N.A. Hamstrings Contraction Regulates the Magnitude and Timing of the Peak ACL Loading During the Drop Vertical Jump in Female Athletes. Orthop. J. Sports Med. 2021, 9, 23259671211034487. [Google Scholar] [CrossRef]
Studied Group | Group A (n = 8) | Group B (n = 8) | Group C (n = 8) |
---|---|---|---|
Test run preceded by a warm-up | |||
Run 1 | No aid | Brace | Orthosis |
Run 2 | Brace | Orthosis | No aid |
Run 3 | Orthosis | No aid | Brace |
SQUARE SUM | Chi2/F * | Sig. | Effect Size (ETA Square) | ||
---|---|---|---|---|---|
Two-legged stability | Friedmann | 2.396 | 0.302 | 0.031 | |
One-legged stability | Friedmann | 1.542 | 0.463 | 0.026 | |
Plyometric jump test | ANOVA | 1.203 | 0.303 | 0.053 | |
Two-legged CMJ | ANOVA | 0.598 | 0.528 | 0.025 | |
one-leg CMJ | ANOVA | 0.536 | 0.589 | 0.023 | |
Parkour test | ANOVA | 0.643 | 0.484 | 0.027 | |
Quick feet test | ANOVA | 0.765 | 0.471 | 0.032 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prill, R.; Cruysen, C.; Królikowska, A.; Kopf, S.; Becker, R. Knee Orthotics Do Not Influence Coordinative Skills—A Randomized Controlled Crossover Pilot Trial. J. Pers. Med. 2022, 12, 1509. https://doi.org/10.3390/jpm12091509
Prill R, Cruysen C, Królikowska A, Kopf S, Becker R. Knee Orthotics Do Not Influence Coordinative Skills—A Randomized Controlled Crossover Pilot Trial. Journal of Personalized Medicine. 2022; 12(9):1509. https://doi.org/10.3390/jpm12091509
Chicago/Turabian StylePrill, Robert, Caren Cruysen, Aleksandra Królikowska, Sebastian Kopf, and Roland Becker. 2022. "Knee Orthotics Do Not Influence Coordinative Skills—A Randomized Controlled Crossover Pilot Trial" Journal of Personalized Medicine 12, no. 9: 1509. https://doi.org/10.3390/jpm12091509
APA StylePrill, R., Cruysen, C., Królikowska, A., Kopf, S., & Becker, R. (2022). Knee Orthotics Do Not Influence Coordinative Skills—A Randomized Controlled Crossover Pilot Trial. Journal of Personalized Medicine, 12(9), 1509. https://doi.org/10.3390/jpm12091509