Unraveling Extremely Damaging IRAK4 Variants and Their Potential Implications for IRAK4 Inhibitor Efficacy
Abstract
:1. Introduction
2. Results
2.1. General Information
2.2. IRAK4 Gene Variant Retrieval
2.3. Predicting Variants That Exhibit the Most Deleterious Implications
2.4. The Examination of the Impact of Genetic Variations on the Stability of IRAK4 Protein
2.5. The Identification of the Positioning of SNPs on IRAK4 Protein Domains
2.6. Secondary Structure Analysis
2.7. The Examination of the Conservation of IRAK4 Protein Residues in Terms of Phylogenetics
2.8. Conducting an Analysis of the Impact of the Determined Variants on IRAK4 Protein Structure
2.9. Gene–Gene Interactions Analysis
2.10. Molecular Docking Analysis
2.11. Molecular Dynamics Simulation
3. Discussion
4. Materials and Methods
4.1. General Information
4.2. Retrieving the Genetic Variations in IRAK4 Gene
4.3. The Prediction of SNPs That Exhibit the Most Deleterious Implications
4.4. The Examination of the Impact of Genetic Variations on the Stability of IRAK4 Protein
4.5. The Identification of the Positioning of SNPs on IRAK4 Protein Domains
4.6. The Investigation of Secondary Structure
4.7. The Examination of the Conservation of IRAK4 Protein Residues in Terms of Phylogenetics
4.8. Conducting an Analysis of the Impact of the Determined Variants on IRAK4 Protein Structure
4.9. The Examination of Interactions between Genes
4.10. Assessing IRAK4 SNP Variants via Molecular-Docking-Coupled Dynamics Simulations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Candan, G.; Kahraman, R.; Ergen, H.A. Irak-4 rs4251481 Gene Variant: As a Risk Factor on Inflammatory Bowel Disease. Turk. J. Med. Sci. 2019, 49, 478–482. [Google Scholar] [CrossRef]
- Janssens, S.; Beyaert, R. Functional Diversity and Regulation of Different Interleukin-1 Receptor-Associated Kinase (IRAK) Family Members. Mol. Cell 2003, 11, 293–302. [Google Scholar] [CrossRef]
- Suzuki, N.; Suzuki, S.; Duncan, G.S.; Millar, D.G.; Wada, T.; Mirtsos, C.; Takada, H.; Wakeham, A.; Itie, A.; Li, S.; et al. Severe Impairment of Interleukin-1 and Toll-like Receptor Signalling in Mice Lacking IRAK-4. Nature 2002, 416, 750–754. [Google Scholar] [CrossRef]
- Sutherland, A.M.; Walley, K.R.; Nakada, T.-A.; Sham, A.H.P.; Wurfel, M.M.; Russell, J.A. A Nonsynonymous Polymorphism of IRAK4 Associated with Increased Prevalence of Gram-Positive Infection and Decreased Response to Toll-like Receptor Ligands. J. Innate Immun. 2011, 3, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhou, H.; Zhang, Q.; Poulsen, K.L.; Taylor, V.; McMullen, M.R.; Czarnecki, D.; Dasarathy, D.; Yu, M.; Liao, Y.; et al. Inhibition of IRAK4 Kinase Activity Improves Ethanol-Induced Liver Injury in Mice. J. Hepatol. 2020, 73, 1470–1481. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Balupuri, A.; Jung, Y.-R.; Choi, S.; Lee, A.; Cho, Y.S.; Kang, N.S. Design of a Novel and Selective IRAK4 Inhibitor Using Topological Water Network Analysis and Molecular Modeling Approaches. Molecules 2018, 23, 3136. [Google Scholar] [CrossRef] [PubMed]
- Kawagoe, T.; Sato, S.; Jung, A.; Yamamoto, M.; Matsui, K.; Kato, H.; Uematsu, S.; Takeuchi, O.; Akira, S. Essential Role of IRAK-4 Protein and Its Kinase Activity in Toll-like Receptor–Mediated Immune Responses but Not in TCR Signaling. J. Exp. Med. 2007, 204, 1013–1024. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, D.; Robinson, S.; Romero, D.L. Recent Advances in the Discovery of Small Molecule Inhibitors of Interleukin-1 Receptor-Associated Kinase 4 (IRAK4) as a Therapeutic Target for Inflammation and Oncology Disorders. J. Med. Chem. 2015, 58, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wiklund, F.; Hsu, F.-C.; Balter, K.; Zheng, S.L.; Johansson, J.-E.; Chang, B.; Liu, W.; Li, T.; Turner, A.R.; et al. Interactions of Sequence Variants in Interleukin-1 Receptor–Associated Kinase4 and the Toll-Like Receptor 6-1-10 Gene Cluster Increase Prostate Cancer Risk. Cancer Epidemiol. Biomarkers Prev. 2006, 15, 480–485. [Google Scholar] [CrossRef]
- Picard, C.; Puel, A.; Bonnet, M.; Ku, C.-L.; Bustamante, J.; Yang, K.; Soudais, C.; Dupuis, S.; Feinberg, J.; Fieschi, C.; et al. Pyogenic Bacterial Infections in Humans with IRAK-4 Deficiency. Science 2003, 299, 2076–2079. [Google Scholar] [CrossRef]
- Alshatwi, A.A.; Hasan, T.N.; Syed, N.A.; Shafi, G.; Grace, B.L. Identification of Functional SNPs in BARD1 Gene and In Silico Analysis of Damaging SNPs: Based on Data Procured from dbSNP Database. PLoS ONE 2012, 7, e43939. [Google Scholar] [CrossRef] [PubMed]
- Emadi, E.; Akhoundi, F.; Kalantar, S.M.; Emadi-Baygi, M. Predicting the Most Deleterious Missense nsSNPs of the Protein Isoforms of the Human HLA-G Gene and In Silico Evaluation of Their Structural and Functional Consequences. BMC Genet. 2020, 21, 94. [Google Scholar] [CrossRef] [PubMed]
- Behairy, M.Y.; Abdelrahman, A.A.; Abdallah, H.Y.; Ibrahim, E.E.-D.A.; Hashem, H.R.; Sayed, A.A.; Azab, M.M. Role of MBL2 Polymorphisms in Sepsis and Survival: A Pilot Study and In Silico Analysis. Diagnostics 2022, 12, 460. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Zhang, Y.; Pan, Y.; Zhang, Y.; Liu, M.; Huang, Y.; Xiao, Y.; Mo, W.; Jiao, J.; Wang, X.; et al. Association of Three Missense Mutations in the Homocysteine-Related MTHFR and MTRR Gene with Risk of Polycystic Ovary Syndrome in Southern Chinese Women. Reprod. Biol. Endocrinol. 2021, 19, 5. [Google Scholar] [CrossRef]
- Behairy, M.Y.; Abdelrahman, A.A.; Toraih, E.A.; Ibrahim, E.E.-D.A.; Azab, M.M.; Sayed, A.A.; Hashem, H.R. Investigation of TLR2 and TLR4 Polymorphisms and Sepsis Susceptibility: Computational and Experimental Approaches. Int. J. Mol. Sci. 2022, 23, 10982. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Zhang, L.; Luo, J.; Zhao, H.; Zhang, J.; Wen, C. A New SNP Genotyping Technology Target SNP-seq and Its Application in Genetic Analysis of Cucumber Varieties. Sci. Rep. 2020, 10, 5623. [Google Scholar] [CrossRef]
- Behairy, M.Y.; Soltan, M.A.; Adam, M.S.; Refaat, A.M.; Ezz, E.M.; Albogami, S.; Fayad, E.; Althobaiti, F.; Gouda, A.M.; Sileem, A.E.; et al. Computational Analysis of Deleterious SNPs in NRAS to Assess Their Potential Correlation with Carcinogenesis. Front. Genet. 2022, 13, 872845. [Google Scholar] [CrossRef]
- Navapour, L.; Mogharrab, N. In Silico Screening and Analysis of Nonsynonymous SNPs in Human CYP1A2 to Assess Possible Associations with Pathogenicity and Cancer Susceptibility. Sci. Rep. 2021, 11, 4977. [Google Scholar] [CrossRef]
- Pires, A.S.; Porto, W.F.; Franco, O.L.; Alencar, S.A. In Silico Analyses of Deleterious Missense SNPs of Human Apolipoprotein E3. Sci. Rep. 2017, 7, 2509. [Google Scholar] [CrossRef]
- Behairy, M.Y.; Abdelrahman, A.A.; Abdallah, H.Y.; Ibrahim, E.E.-D.A.; Sayed, A.A.; Azab, M.M. In Silico Analysis of Missense Variants of the C1qA Gene Related to Infection and Autoimmune Diseases. J. Taibah Univ. Med. Sci. 2022, 17, 1074–1082. [Google Scholar] [CrossRef]
- Soltan, M.A.; Behairy, M.Y.; Abdelkader, M.S.; Albogami, S.; Fayad, E.; Eid, R.A.; Darwish, K.M.; Elhady, S.S.; Lotfy, A.M.; Eldeen, M.A. In Silico Designing of an Epitope-Based Vaccine against Common E. coli Pathotypes. Front. Med. 2022, 9, 829467. [Google Scholar] [CrossRef] [PubMed]
- Eid, R.A.; Eldeen, M.A.; Soltan, M.A.; Al-Shraim, M.; Aldehri, M.; Alqahtani, L.S.; Alsharif, G.; Albogami, S.; Jafri, I.; Fayad, E.; et al. Integrative Analysis of WDR12 as a Potential Prognostic and Immunological Biomarker in Multiple Human Tumors. Front. Genet. 2023, 13, 1008502. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Liu, Y.; Guo, Y.; Liu, P.; Li, F.; Yang, C.; Pan, X.; Yi, L.; Fan, F.; Zhao, H.; et al. Association of the IRAK4 rs4251545 Genetic Polymorphism with Severity of Enterovirus-71 Infection in Chinese Children. Immun. Inflamm. Dis. 2022, 10, e614. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Chen-Ling, Y.; Liu, C.-L.; Song, Z.-J.; Tong, C.-Y.; Huang, P.-Z. Association of Genetic Variants in the IRAK-4 Gene with Susceptibility to Severe Sepsis. World J. Emerg. Med. 2012, 3, 123–127. [Google Scholar] [CrossRef]
- Yeyeodu, S.T.; Kidd, L.R.; Oprea-Ilies, G.M.; Burns, B.G.; Vancleave, T.T.; Shim, J.-Y.; Kimbro, K.S. IRAK4 and TLR3 Sequence Variants May Alter Breast Cancer Risk among African-American Women. Front. Immunol. 2013, 4, 338. [Google Scholar] [CrossRef]
- Wang, H.; Song, C.; Qi, Q.; Huang, T.; Wang, L.; Chen, J.; Zhu, J.; Hu, Z.; Dai, J. Functional Polymorphisms in IRAKs Are Related to Hepatocellular Carcinoma Risk in Chinese Population. BioMed Res. Int. 2018, 2018, 1252849. [Google Scholar] [CrossRef]
- Mullard, A. IRAK4 Degrader to Take on Innate Immunity. Nat. Biotechnol. 2020, 38, 1221–1223. [Google Scholar] [CrossRef]
- Zhang, L.; Ghosh, S.K.; Basavarajappa, S.C.; Chen, Y.; Shrestha, P.; Penfield, J.; Brewer, A.; Ramakrishnan, P.; Buck, M.; Weinberg, A. HBD-2 Binds SARS-CoV-2 RBD and Blocks Viral Entry: Strategy to Combat COVID-19. iScience 2022, 25, 103856. [Google Scholar] [CrossRef]
- Albuquerque, S.O.; Barros, T.G.; Dias, L.R.; Lima, C.H.d.S.; Azevedo, P.H.d.A.; Flores-Junior, L.A.; dos Santos, E.G.; Loponte, H.F.; Pinheiro, S.; Dias, W.B.; et al. Biological Evaluation and Molecular Modeling of Peptidomimetic Compounds as Inhibitors for O-GlcNAc Transferase (OGT). Eur. J. Pharm. Sci. 2020, 154, 105510. [Google Scholar] [CrossRef]
- de Souza, A.S.; Pacheco, B.D.; Pinheiro, S.; Muri, E.M.; Dias, L.R.; Lima, C.H.; Garrett, R.; de Moraes, M.B.; de Souza, B.E.; Puzer, L. 3-Acyltetramic Acids as a Novel Class of Inhibitors for Human Kallikreins 5 and 7. Bioorg. Med. Chem. Lett. 2019, 29, 1094–1098. [Google Scholar] [CrossRef]
- Verma, N.; Tadros, S.; Bahal, S.; Lowe, D.M.; Burns, S.O. Case of Fatal Meningitis in an Adult Patient with IRAK4 Deficiency. J. Clin. Immunol. 2023, 43, 1137–1138. [Google Scholar] [CrossRef]
- Tepe, Z.G.; Yazıcı, Y.Y.; Tank, U.; Köse, L.I.; Özer, M.; Aytekin, C.; Belkaya, S. Inherited IRAK-4 Deficiency in Acute Human Herpesvirus-6 Encephalitis. J. Clin. Immunol. 2023, 43, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Deller, M.C.; Kong, L.; Rupp, B. Protein Stability: A Crystallographer’s Perspective. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2016, 72, 72–95. [Google Scholar] [CrossRef]
- Ji, Y.-Y.; Li, Y.-Q. The Role of Secondary Structure in Protein Structure Selection. Eur. Phys. J. E 2010, 32, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Berezin, C.; Glaser, F.; Rosenberg, J.; Paz, I.; Pupko, T.; Fariselli, P.; Casadio, R.; Ben-Tal, N. ConSeq: The Identification of Functionally and Structurally Important Residues in Protein Sequences. Bioinformatics 2004, 20, 1322–1324. [Google Scholar] [CrossRef] [PubMed]
- Cordell, H.J. Detecting Gene–Gene Interactions That Underlie Human Diseases. Nat. Rev. Genet. 2009, 10, 392–404. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ferrao, R.; Li, Q.; Hatcher, J.M.; Choi, H.G.; Buhrlage, S.J.; Gray, N.S.; Wu, H. Conformational Flexibility and Inhibitor Binding to Unphosphorylated Interleukin-1 Receptor–Associated Kinase 4 (IRAK4). J. Biol. Chem. 2019, 294, 4511–4519. [Google Scholar] [CrossRef]
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef]
- Behairy, M.Y.; Soltan, M.A.; Eldeen, M.A.; Abdulhakim, J.A.; Alnoman, M.M.; Abdel-Daim, M.M.; Otifi, H.; Al-Qahtani, S.M.; Zaki, M.S.A.; Alsharif, G.; et al. HBD-2 Variants and SARS-CoV-2: New Insights into Inter-Individual Susceptibility. Front. Immunol. 2022, 13, 1008463. [Google Scholar] [CrossRef]
- Hao, G.-F.; Yang, G.-F.; Zhan, C.-G. Structure-Based Methods for Predicting Target Mutation-Induced Drug Resistance and Rational Drug Design to Overcome the Problem. Drug Discov. Today 2012, 17, 1121–1126. [Google Scholar] [CrossRef]
- Chang, M.W.; Lindstrom, W.; Olson, A.J.; Belew, R.K. Analysis of HIV Wild-Type and Mutant Structures via in Silico Docking against Diverse Ligand Libraries. J. Chem. Inf. Model. 2007, 47, 1258–1262. [Google Scholar] [CrossRef] [PubMed]
- Coban, M.A.; Fraga, S.; Caulfield, T.R. Structural and Computational Perspectives of Selectively Targeting Mutant Proteins. Curr. Drug Discov. Technol. 2021, 18, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Kontoyianni, M.; McClellan, L.M.; Sokol, G.S. Evaluation of Docking Performance: Comparative Data on Docking Algorithms. J. Med. Chem. 2004, 47, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Degorce, S.L.; Anjum, R.; Dillman, K.S.; Drew, L.; Groombridge, S.D.; Halsall, C.T.; Lenz, E.M.; Lindsay, N.A.; Mayo, M.F.; Pink, J.H.; et al. Optimization of Permeability in a Series of Pyrrolotriazine Inhibitors of IRAK4. Bioorg. Med. Chem. 2018, 26, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Gummadi, V.R.; Boruah, A.; Ainan, B.R.; Vare, B.R.; Manda, S.; Gondle, H.P.; Kumar, S.N.; Mukherjee, S.; Gore, S.T.; Krishnamurthy, N.R.; et al. Discovery of CA-4948, an Orally Bioavailable IRAK4 Inhibitor for Treatment of Hematologic Malignancies. ACS Med. Chem. Lett. 2020, 11, 2374–2381. [Google Scholar] [CrossRef]
- Lee, K.L.; Ambler, C.M.; Anderson, D.R.; Boscoe, B.P.; Bree, A.G.; Brodfuehrer, J.I.; Chang, J.S.; Choi, C.; Chung, S.; Curran, K.J.; et al. Discovery of Clinical Candidate 1-{[(2S,3S,4S)-3-Ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy}-7-methoxyisoquinoline-6-carboxamide (PF-06650833), a Potent, Selective Inhibitor of Interleukin-1 Receptor Associated Kinase 4 (IRAK4), by Fragment-Based Drug Design. J. Med. Chem. 2017, 60, 5521–5542. [Google Scholar] [CrossRef]
- Rosenzweig, S.A. Acquired Resistance to Drugs Targeting Tyrosine Kinases. Adv. Cancer Res. 2018, 138, 71–98. [Google Scholar] [CrossRef]
- Barouch-Bentov, R.; Sauer, K. Mechanisms of Drug Resistance in Kinases. Expert Opin. Investig. Drugs 2011, 20, 153–208. [Google Scholar] [CrossRef]
- Yun, C.-H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.K.; Meyerson, M.; Eck, M.J. The T790M Mutation in EGFR Kinase Causes Drug Resistance by Increasing the Affinity for ATP. Proc. Natl. Acad. Sci. USA 2008, 105, 2070–2075. [Google Scholar] [CrossRef]
- O’Hare, T.; Eide, C.A.; Deininger, M.W.N. Bcr-Abl Kinase Domain Mutations, Drug Resistance, and the Road to a Cure for Chronic Myeloid Leukemia. Blood 2007, 110, 2242–2249. [Google Scholar] [CrossRef]
- Erguven, M.; Karakulak, T.; Diril, M.K.; Karaca, E. How Far Are We from the Rapid Prediction of Drug Resistance Arising Due to Kinase Mutations? ACS Omega 2021, 6, 1254–1265. [Google Scholar] [CrossRef]
- Gosu, V.; Choi, S. Structural Dynamic Analysis of Apo and ATP-Bound IRAK4 Kinase. Sci. Rep. 2014, 4, 5748. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Sudom, A.; Ayres, M.; Li, S.; Wesche, H.; Powers, J.P.; Walker, N.P. Crystal Structures of IRAK-4 Kinase in Complex with Inhibitors: A Serine/Threonine Kinase with Tyrosine as a Gatekeeper. Structure 2006, 14, 1835–1844. [Google Scholar] [CrossRef]
- Jang, W.D.; Lee, M.H.; Kang, N.S. Quantitative Assessment of Kinase Selectivity Based the Water-Ring Network in Protein Binding Sites Using Molecular Dynamics Simulations. J. Mol. Liq. 2016, 221, 316–322. [Google Scholar] [CrossRef]
- Noble, M.E.M.; Endicott, J.A.; Johnson, L.N. Protein Kinase Inhibitors: Insights into Drug Design from Structure. Science 2004, 303, 1800–1805. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wesche, H.; Stevens, T.; Walker, N.; Yeh, W.-C. IRAK-4 Inhibitors for Inflammation. Curr. Top. Med. Chem. 2009, 9, 724–737. [Google Scholar] [CrossRef] [PubMed]
- Kuglstatter, A.; Villaseñor, A.G.; Shaw, D.; Lee, S.W.; Tsing, S.; Niu, L.; Song, K.W.; Barnett, J.W.; Browner, M.F. Cutting Edge: IL-1 Receptor-Associated Kinase 4 Structures Reveal Novel Features and Multiple Conformations. J. Immunol. 2007, 178, 2641–2645. [Google Scholar] [CrossRef] [PubMed]
- Huse, M.; Kuriyan, J. The Conformational Plasticity of Protein Kinases. Cell 2002, 109, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Watanabe, E.; Kokubo, H. Exploring the Stability of Ligand Binding Modes to Proteins by Molecular Dynamics Simulations. J. Comput.-Aided Mol. Des. 2017, 31, 201–211. [Google Scholar] [CrossRef]
- Manandhar, A.; Blass, B.E.; Colussi, D.J.; Almi, I.; Abou-Gharbia, M.; Klein, M.L.; Elokely, K.M. Targeting SARS-CoV-2 M3CLpro by HCV NS3/4a Inhibitors: In Silico Modeling and In Vitro Screening. J. Chem. Inf. Model. 2021, 61, 1020–1032. [Google Scholar] [CrossRef]
- Almalki, A.J.; Ibrahim, T.S.; Elhady, S.S.; Hegazy, W.A.H.; Darwish, K.M. Computational and Biological Evaluation of β-Adrenoreceptor Blockers as Promising Bacterial Anti-Virulence Agents. Pharmaceuticals 2022, 15, 110. [Google Scholar] [CrossRef]
- Fragoza, R.; Das, J.; Wierbowski, S.D.; Liang, J.; Tran, T.N.; Liang, S.; Beltran, J.F.; Rivera-Erick, C.A.; Ye, K.; Wang, T.-Y.; et al. Extensive Disruption of Protein Interactions by Genetic Variants across the Allele Frequency Spectrum in Human Populations. Nat. Commun. 2019, 10, 4141. [Google Scholar] [CrossRef]
- Solem, A.C.; Halvorsen, M.; Ramos, S.B.V.; Laederach, A. The Potential of the RiboSNitch in Personalized Medicine. Wiley Interdiscip. Rev. RNA 2015, 6, 517–532. [Google Scholar] [CrossRef]
- Zhao, N.; Han, J.G.; Shyu, C.-R.; Korkin, D. Determining Effects of Non-Synonymous SNPs on Protein-Protein Interactions using Supervised and Semi-Supervised Learning. PLoS Comput. Biol. 2014, 10, e1003592. [Google Scholar] [CrossRef]
- Kim, P.; Li, H.; Wang, J.; Zhao, Z. Landscape of Drug-Resistance Mutations in Kinase Regulatory Hotspots. Briefings Bioinform. 2021, 22, bbaa108. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Xu, H.; Jia, P.; Zhao, Z. KinaseMD: Kinase Mutations and Drug Response Database. Nucleic Acids Res. 2020, 49, D552–D561. [Google Scholar] [CrossRef] [PubMed]
- Chmielecki, J.; Peifer, M.; Jia, P.; Socci, N.D.; Hutchinson, K.; Viale, A.; Zhao, Z.; Thomas, R.K.; Pao, W. Targeted Next-Generation Sequencing of DNA Regions Proximal to a Conserved GXGXXG Signaling Motif Enables Systematic Discovery of Tyrosine Kinase Fusions in Cancer. Nucleic Acids Res. 2010, 38, 6985–6996. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.L.; Reznik, E.; Gauthier, N.P.; Aksoy, B.A.; Korkut, A.; Gao, J.; Ciriello, G.; Schultz, N.; Sander, C. Pan-Cancer Analysis of Mutation Hotspots in Protein Domains. Cell Syst. 2015, 1, 197–209. [Google Scholar] [CrossRef]
- Paladino, A.; Morra, G.; Colombo, G. Structural Stability and Flexibility Direct the Selection of Activating Mutations in Epidermal Growth Factor Receptor Kinase. J. Chem. Inf. Model. 2015, 55, 1377–1387. [Google Scholar] [CrossRef] [PubMed]
- Marino, K.A.; Sutto, L.; Gervasio, F.L. The Effect of a Widespread Cancer-Causing Mutation on the Inactive to Active Dynamics of the B-Raf Kinase. J. Am. Chem. Soc. 2015, 137, 5280–5283. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Guo, X.; Huang, T.; Han, J.; Gao, J.; Xu, D.; Han, W. How Oncogenic Mutations Activate Human MAP Kinase 1 (MEK1): A Molecular Dynamics Simulation Study. J. Biomol. Struct. Dyn. 2019, 38, 3942–3958. [Google Scholar] [CrossRef]
- Verma, D.; Jacobs, D.J.; Livesay, D.R. Changes in Lysozyme Flexibility upon Mutation Are Frequent, Large and Long-Ranged. PLoS Comput. Biol. 2012, 8, e1002409. [Google Scholar] [CrossRef]
- Wu, T.-J.; Wang, X.; Zhang, Y.; Meng, L.; Kerrigan, J.E.; Burley, S.K.; Zheng, X.S. Identification of a Non-Gatekeeper Hot Spot for Drug-Resistant Mutations in mTOR Kinase. Cell Rep. 2015, 11, 446–459. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, Y.; Wu, M.; Wu, C.; Li, X.; Bao, J. Structure and Energy Based Quantitative Missense Variant Effect Analysis Provides Insights into Drug Resistance Mechanisms of Anaplastic Lymphoma Kinase Mutations. Sci. Rep. 2018, 8, 10664. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wang, Z.; Wang, L.; Wang, Q.; Tang, R.; Xiang, S.; Deng, Q.; Hou, T.; Sun, H. Deciphering the Shared and Specific Drug Resistance Mechanisms of Anaplastic Lymphoma Kinase via Binding Free Energy Computation. Research 2023, 6, 0170. [Google Scholar] [CrossRef] [PubMed]
- Lovera, S.; Morando, M.; Pucheta-Martinez, E.; Martinez-Torrecuadrada, J.L.; Saladino, G.; Gervasio, F.L. Towards a Molecular Understanding of the Link between Imatinib Resistance and Kinase Conformational Dynamics. PLoS Comput. Biol. 2015, 11, e1004578. [Google Scholar] [CrossRef]
- McTigue, M.; Murray, B.W.; Chen, J.H.; Deng, Y.-L.; Solowiej, J.; Kania, R.S. Molecular Conformations, Interactions, and Properties Associated with Drug Efficiency and Clinical Performance among VEGFR TK Inhibitors. Proc. Natl. Acad. Sci. USA 2012, 109, 18281–18289. [Google Scholar] [CrossRef]
- McTigue, M.A.; Wickersham, J.A.; Pinko, C.; Showalter, R.E.; Parast, C.V.; Tempczyk-Russell, A.; Gehring, M.R.; Mrocz-kowski, B.; Kan, C.C.; Villafranca, J.E.; et al. Crystal Structure of the Kinase Domain of Human Vascular Endothelial Growth Factor Receptor 2: A Key Enzyme in Angiogenesis. Structure 1999, 7, 319–330. [Google Scholar] [CrossRef]
- Modi, S.J.; Kulkarni, V.M. Vascular Endothelial Growth Factor Receptor (VEGFR-2)/KDR Inhibitors: Medicinal Chemistry Perspective. Med. Drug Discov. 2019, 2, 100009. [Google Scholar] [CrossRef]
- Chong, C.R.; Jänne, P.A. The Quest to Overcome Resistance to EGFR-Targeted Therapies In cancer. Nat. Med. 2013, 19, 1389–1400. [Google Scholar] [CrossRef]
- Duggirala, K.B.; Lee, Y.; Lee, K. Chronicles of EGFR Tyrosine Kinase Inhibitors: Targeting EGFR C797S Containing Triple Mutations. Biomol. Ther. 2022, 30, 19–27. [Google Scholar] [CrossRef]
- Yang, H.; Rudge, D.G.; Koos, J.D.; Vaidialingam, B.; Yang, H.J.; Pavletich, N.P. mTOR Kinase Structure, Mechanism and Regulation. Nature 2013, 497, 217–223. [Google Scholar] [CrossRef]
- Bai, X.; Sun, P.; Wang, X.; Long, C.; Liao, S.; Dang, S.; Zhuang, S.; Du, Y.; Zhang, X.; Li, N.; et al. Structure and Dynamics of the EGFR/HER2 Heterodimer. Cell Discov. 2023, 9, 18. [Google Scholar] [CrossRef]
- Sim, N.-L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT Web Server: Predicting Effects of Amino Acid Substitutions on Proteins. Nucleic Acids Res. 2012, 40, W452–W457. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A Method and Server for Predicting Damaging Missense Mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef]
- Capriotti, E.; Calabrese, R.; Fariselli, P.; Martelli, P.L.; Altman, R.B.; Casadio, R. WS-SNPs&GO: A Web Server for Predicting the Deleterious Effect of Human Protein Variants Using Functional Annotation. BMC Genom. 2013, 14, S6. [Google Scholar] [CrossRef]
- Capriotti, E.; Calabrese, R.; Casadio, R. Predicting the Insurgence of Human Genetic Diseases Associated to single Point Protein Mutations with Support Vector Machines and Evolutionary Information. Bioinformatics 2006, 22, 2729–2734. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Thomas, P.D. PANTHER-PSEP: Predicting Disease-Causing Genetic Variants Using Position-Specific Evolutionary Preservation. Bioinformatics 2016, 32, 2230–2232. [Google Scholar] [CrossRef] [PubMed]
- Hecht, M.; Bromberg, Y.; Rost, B. Better Prediction of Functional Effects for Sequence Variants. BMC Genom. 2015, 16 (Suppl. 8), S1. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, E.; Fariselli, P.; Casadio, R. I-Mutant2.0: Predicting Stability Changes upon Mutation from the Protein Sequence or Structure. Nucleic Acids Res. 2005, 33, W306–W310. [Google Scholar] [CrossRef]
- Bava, K.A.; Gromiha, M.M.; Uedaira, H.; Kitajima, K.; Sarai, A. ProTherm, version 4.0: Thermodynamic Database for Proteins and Mutants. Nucleic Acids Res. 2004, 32, D120–D121. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Randall, A.; Baldi, P. Prediction of Protein Stability Changes for Single-Site Mutations Using Support Vector Machines. Proteins Struct. Funct. Bioinform. 2005, 62, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.; Chang, H.-Y.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro Protein Families and Domains Database: 20 Years on. Nucleic Acids Res. 2021, 49, D344–D354. [Google Scholar] [CrossRef]
- Jones, D.T. Protein Secondary Structure Prediction Based on Position-Specific Scoring Matrices. J. Mol. Biol. 1999, 292, 195–202. [Google Scholar] [CrossRef]
- Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf 2016: An Improved Methodology to Estimate and Visualize Evolutionary Conservation in Macromolecules. Nucleic Acids Res. 2016, 44, W344–W350. [Google Scholar] [CrossRef] [PubMed]
- Ashkenazy, H.; Erez, E.; Martz, E.; Pupko, T.; Ben-Tal, N. ConSurf 2010: Calculating Evolutionary Conservation in Sequence and Structure of Proteins and Nucleic Acids. Nucleic Acids Res. 2010, 38, W529–W533. [Google Scholar] [CrossRef] [PubMed]
- Venselaar, H.; Beek, T.A.T.; Kuipers, R.K.; Hekkelman, M.L.; Vriend, G. Protein Structure Analysis of Mutations Causing Inheritable Diseases. An e-Science Approach with Life Scientist Friendly Interfaces. BMC Bioinform. 2010, 11, 548. [Google Scholar] [CrossRef]
- Warde-Farley, D.; Donaldson, S.L.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, C.T.; et al. The GeneMANIA Prediction Server: Biological Network Integration for Gene Prioritization and Predicting Gene Function. Nucleic Acids Res. 2010, 38, W214–W220. [Google Scholar] [CrossRef]
- Sobolev, O.V.; Afonine, P.V.; Moriarty, N.W.; Hekkelman, M.L.; Joosten, R.P.; Perrakis, A.; Adams, P.D. A Global Ramachandran Score Identifies Protein Structures with Unlikely Stereochemistry. Structure 2020, 28, 1249–1258.e2. [Google Scholar] [CrossRef]
- Yang, Z.; Bogdan, P.; Nazarian, S. An In Silico Deep Learning Approach to Multi-Epitope Vaccine Design: A SARS-CoV-2 Case Study. Sci. Rep. 2021, 11, 3238. [Google Scholar] [CrossRef]
- Çolak, Y.C. Computational Design of a Multi-epitope Vaccine against Clostridium chauvoei: An Immunoinformatics Approach. Int. J. Pept. Res. Ther. 2021, 27, 2639–2649. [Google Scholar] [CrossRef] [PubMed]
- Bhujbal, S.P.; He, W.; Hah, J.-M. Design of Novel IRAK4 Inhibitors Using Molecular Docking, Dynamics Simulation and 3D-QSAR Studies. Molecules 2022, 27, 6307. [Google Scholar] [CrossRef] [PubMed]
- Elrayess, R.; Darwish, K.M.; Nafie, M.S.; El-Sayyed, G.S.; Said, M.M.; Yassen, A.S.A. Quinoline–Hydrazone Hybrids as Dual Mutant EGFR Inhibitors with Promising Metallic Nanoparticle Loading: Rationalized Design, Synthesis, Biological Investigation and Computational Studies. New J. Chem. 2022, 46, 18207–18232. [Google Scholar] [CrossRef]
- Edwards, M.; Price, D. Role of Physicochemical Properties and Ligand Lipophilicity Efficiency in Addressing Drug Safety Risks. Annu. Rep. Med. Chem. 2010, 45, 380–391. [Google Scholar] [CrossRef]
- Seeliger, D.; de Groot, B.L. Ligand Docking and Binding Site Analysis with PyMOL and Autodock/Vina. J. Comput.-Aided Mol. Des. 2010, 24, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Janssen, E.M.; Dy, S.M.; Meara, A.S.; Kneuertz, P.J.; Presley, C.J.; Bridges, J.F. Analysis of Patient Preferences in Lung Cancer—Estimating Acceptable Tradeoffs between Treatment Benefit and Side Effects. Patient Prefer. Adherence 2020, 14, 927–937. [Google Scholar] [CrossRef]
- Sasidharan, S.; Radhakrishnan, K.; Lee, J.-Y.; Saudagar, P.; Gosu, V.; Shin, D. Molecular Dynamics of the ERRγ Ligand-Binding Domain Bound with Agonist and Inverse Agonist. PLoS ONE 2023, 18, e0283364. [Google Scholar] [CrossRef]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM General Force Field: A Force Field for Drug-Like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef]
- Páll, S.; Abraham, M.J.; Kutzner, C.; Hess, B.; Lindahl, E. Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS. In Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS, Solving Software Challenges for Exascale; Markidis, S., Laure, E., Eds.; Springer: Cham, Switzerland, 2015; pp. 3–27. [Google Scholar]
- Elhady, S.S.; Abdelhameed, R.F.A.; Malatani, R.T.; Alahdal, A.M.; Bogari, H.A.; Almalki, A.J.; Mohammad, K.A.; Ahmed, S.A.; Khedr, A.I.M.; Darwish, K.M. Molecular Docking and Dynamics Simulation Study of Hyrtios erectus Isolated Scalarane Sesterterpenes as Potential SARS-CoV-2 Dual Target Inhibitors. Biology 2021, 10, 389. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations. J. Chem. Inf. Model. 2014, 54, 1951–1962. [Google Scholar] [CrossRef] [PubMed]
SNP | AA Change | SIFT | PolyPhen-2 | SNP&GO | PHD-SNP | PANTHER | SNAP2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prediction | Score | Prediction | Score | Prediction | Reliability Index (RI) | Probability | Prediction | Reliability Index (RI) | Prediction | Pdel | Prediction | Score | Expected Accuracy | ||
rs1326024929 | G195R | Deleterious | 0 | Probably damaging | 1 | Disease | 8 | 0.89 | Disease | 8 | Probably damaging | 0.89 | effect | 95 | 95% |
rs773245379 | G198R | Deleterious | 0 | Probably damaging | 1 | Disease | 8 | 0.901 | Disease | 8 | Probably damaging | 0.85 | effect | 94 | 95% |
rs1592233207 | G198E | Deleterious | 0 | Probably damaging | 1 | Disease | 8 | 0.923 | Disease | 8 | Probably damaging | 0.85 | effect | 93 | 95% |
rs149453390 | K213M | Deleterious | 0.01 | Probably damaging | 1 | Disease | 5 | 0.749 | Disease | 7 | Probably damaging | 0.89 | effect | 87 | 91% |
rs1428184383 | D311H | Deleterious | 0 | Probably damaging | 1 | Disease | 5 | 0.754 | Disease | 4 | Probably damaging | 0.89 | effect | 92 | 95% |
rs1265334986 | L318S | Deleterious | 0 | Probably damaging | 1 | Disease | 5 | 0.755 | Disease | 8 | Probably damaging | 0.89 | effect | 73 | 85% |
rs1335719111 | L318F | Deleterious | 0 | Probably damaging | 1 | Disease | 3 | 0.645 | Disease | 6 | Probably damaging | 0.89 | effect | 50 | 75% |
rs1941851625 | F330V | Deleterious | 0 | Probably damaging | 0.999 | Disease | 5 | 0.732 | Disease | 4 | Probably damaging | 0.89 | effect | 84 | 91% |
rs774525787 | R334W | Deleterious | 0 | Probably damaging | 1 | Disease | 6 | 0.808 | Disease | 7 | Probably damaging | 0.89 | effect | 93 | 95% |
rs748570560 | R334Q | Deleterious | 0.02 | Probably damaging | 0.999 | Disease | 4 | 0.703 | Disease | 2 | Probably damaging | 0.89 | effect | 85 | 91% |
SNP | AA Change | Mu-Pro | I-Mutant 2 | |||
---|---|---|---|---|---|---|
Prediction | Delta Delta G | I-Mutant 2 Prediction | Reliability Index (RI) | DDG Value (kcal/mol) | ||
rs1326024929 | G195R | Decrease stability | −0.38 | Decrease | 1 | −0.36 |
rs773245379 | G198R | Decrease stability | −0.32 | Decrease | 2 | −0.3 |
rs1592233207 | G198E | Decrease stability | −0.22 | Increase | 4 | 0.52 |
rs149453390 | K213M | Increase stability | 0.26 | Increase | 4 | 0.76 |
rs1428184383 | D311H | Decrease stability | −1.92 | Decrease | 3 | −0.36 |
rs1265334986 | L318S | Decrease stability | −1.65 | Decrease | 10 | −2.29 |
rs1335719111 | L318F | Decrease stability | −1.13 | Decrease | 9 | −0.84 |
rs1941851625 | F330V | Decrease stability | −1.32 | Decrease | 6 | −2.17 |
rs774525787 | R334W | Decrease stability | −0.78 | Decrease | 6 | −0.71 |
rs748570560 | R334Q | Decrease stability | −0.78 | Decrease | 7 | −0.43 |
SNP | AA Change | InterPro | PSIPRED | ConSurf | ||||
---|---|---|---|---|---|---|---|---|
Location on Protein | Secondary Structure (Wild) | Secondary Structure (Mutated) | ConSurf Prediction | Conservation Score | Functional/Structural | Buried/Exposed | ||
rs1326024929 | G195R | Protein kinase domain | Coil | Coil | highly conserved | 9 | Functional | Exposed |
rs773245379 | G198R | Protein kinase domain | Strand | Strand | highly conserved | 9 | Structural | Buried |
rs1592233207 | G198E | Protein kinase domain | Strand | Strand | highly conserved | 9 | Structural | Buried |
rs1428184383 | D311H | Protein kinase domain | Coil | Coil | highly conserved | 9 | Functional | Exposed |
rs1265334986 | L318S | Protein kinase domain | Coil | Strand | highly conserved | 9 | Structural | Buried |
rs1335719111 | L318F | Protein kinase domain | Coil | Strand | highly conserved | 9 | Structural | Buried |
rs1941851625 | F330V | Protein kinase domain | Helix | Helix | highly conserved | 9 | Structural | Buried |
rs774525787 | R334W | Protein kinase domain | Helix | Helix | highly conserved | 7 | Exposed | |
rs748570560 | R334Q | Protein kinase domain | Helix | Helix | highly conserved | 7 | Exposed |
SNP Id | AA Change | Amino Acid Properties | Location/Structure | Variants’ Impact on IRAK4 Protein |
---|---|---|---|---|
rs1326024929 | G195R | The mutant residue differs from wild-type residue in size and charge. Being situated on the surface of our protein, the mutation can disrupt the needed interactions. Moreover, mutation could lead to the disruption of the protein’s local structure. | Residues situated near the mutated amino acid are annotated as a binding site, which could be affected by this mutation as the local structure could be impacted. In addition, the different amino acid properties could lead to disruption in the protein domain and its function. | Being situated in an important domain for protein activity that is also in contact with another important domain, this mutation could disrupt the needed interaction and impact protein function. |
rs1592233207 | G198E | The mutant residue differs from wild-type residue in charge and size. Being buried in a protein core, the mutant amino acid may not fit. Moreover, the mutation could lead to the disruption of the protein’s local structure. | Residues situated near the mutated amino acid are annotated as a binding site, which could be affected by this mutation as the local structure could be impacted. In addition, the different amino acid properties could lead to disruption in the protein domain and its function. | Being situated in an important domain for protein activity that is also in contact with another important domain, this mutation could disrupt the needed interaction and impact protein function. |
rs773245379 | G198R | The mutant residue differs from wild-type residue in size and charge. Being buried in a protein core, the mutant amino acid may not fit. Moreover, the mutation could lead to the disruption of the protein’s local structure. | Residues situated near the mutated amino acid are annotated as a binding site, which could be affected by this mutation as the local structure could be impacted. In addition, the different amino acid properties could lead to disruption in the protein domain and its function. | Being situated in an important domain for protein activity that is also in contact with another important domain, this mutation could disrupt the needed interaction and impact protein function. |
rs1428184383 | D311H | The mutant residue differs from wild-type residue in size and charge. Being buried in a protein core, the mutant amino acid may not fit. | Being situated in an active site, the mutation will result in disabling the protein function. In addition, the mutant amino acid leads to problems in making hydrogen bonds and salt bridges formed by wild residue. In addition, the different amino acid properties could lead to disruption in the protein domain and its function. | Being situated in an important domain for protein activity that is also in contact with another important domain, this mutation could disrupt the needed interaction and impact protein function. |
rs1265334986 | L318S | The mutant residue differs from wild-type residue in size, which could possibly result in losing external interactions. Moreover, there is a difference in hydrophobicity between wild residue and mutated one. | The 3D structure displayed the presence of interactions between wild-type amino acids and certain ligands, which could be lost in case of the mutated residue leading to disruption of protein function. In addition, the different amino acid properties could lead to disruption in the protein domain and its function. | Being situated in an important domain for protein activity that is also in contact with another important domain, this mutation could disrupt the needed interaction and impact protein function. |
rs1335719111 | L318F | The mutant residue differs from wild-type residue in size. Being situated on the surface of our protein, the mutation can disrupt the needed interactions. | The 3D structure displayed the presence of interactions between wild-type amino acids and certain ligands, which could be lost in case of the mutated residue leading to disruption of protein function. In addition, the different amino acid properties could lead to disruption in the protein domain and its function. | Being situated in an important domain for protein activity that is also in contact with another important domain, this mutation could disrupt the needed interaction and impact protein function. |
rs1941851625 | F330V | The mutant amino acid possesses a smaller size, which causes the presence of empty space in the protein core. | Residues situated near the mutated amino acid are annotated as a binding site, which could be affected by this mutation as the local structure could be impacted. In addition, the different amino acid properties could lead to disruption in the protein domain and its function. | Being situated in an important domain for protein activity that is also in contact with another important domain, this mutation could disrupt the needed interaction and impact protein function. |
rs774525787 | R334W | The mutant residue differs from wild-type residue in size and charge. Being situated on the surface of our protein, the mutation can disrupt the needed interactions. Moreover, there is a difference in hydrophobicity between wild residue and mutated one. | The different amino acid properties could lead to disruption in domain function. | Being situated in an important domain for protein activity that is also in contact with another important domain, this mutation could disrupt the needed interaction and impact protein function. |
rs748570560 | R334Q | The mutant residue differs from wild-type residue in charge and size with possible damage to interactions. | The different amino acid properties could lead to disruption in the protein domain and its function. | Being situated in an important domain for protein activity that is also in contact with another important domain, this mutation could disrupt the needed interaction and impact protein function. |
IRAK4 Isoforms | Binding Energy (Kcal/mol) | RMSD * (Å) | Ki (nM) | H-Bond Interactions [Binding Residues; Length (Å); Angle (°)] | Hydrophobic Interactions | π-Driven Interactions |
---|---|---|---|---|---|---|
D311H | −8.040 | 1.658 | 1300.534 | Tyr262 sidechain (2.1 Å; 130.7°) Met265 mainchain (2.6 Å; 160.6°) Asp329 sidechain (1.9 Å; 150.0°) Asp329 mainchain (2.4 Å; 142.4°) | Ala211, Val236, Leu245, Val246, Val263, Tyr264, Gly268, Leu302, His309, His311, Leu318, Ile327 | Tyr262 (3.8 Å) Phe330 (4.3 Å) |
F330V | −8.986 | 1.557 | 264.018 | Met265 mainchain (2.2 Å; 157.6°) Met265 mainchain (2.8 Å; 147.4°) Ile308 mainchain (1.9 Å; 144.6°) Asp329 sidechain (1.9 Å; 118.2°) | Phe197, Val200, Ala211, Val246, Val263, Gly268, His309, Leu318, Val330 | Tyr262 (4.2 Å) |
G195R | −9.007 | 1.174 | 255.044 | Tyr262 sidechain (2.4 Å; 119.3°) Met265 mainchain (2.2 Å; 158.7°) Met265 mainchain (2.5 Å; 169.1°) Ile308 mainchain (2.2 Å; 131.9°) Asp329 sidechain (1.9 Å; 154.1°) | Val200, Ala211, Val236, Val246, Val263, Tyr264, Gly268, Ile308, His309, Leu318 | Tyr262 (3.8 Å) Phe330 (5.0 Å) |
G198E | −7.667 | 1.987 | 2439.170 | Tyr262 sidechain (3.2 Å; 124.1°) Tyr264 sidechain (2.8 Å; 126.1°) Ile308 mainchain (2.1 Å; 133.9°) Asp329 sidechain (2.0 Å; 156.2°) | Val200, Ala211, Val236, Leu245, Val263, Gly268, Leu302, His309, Leu318 | Tyr262 (4.1 Å) Phe330 (5.0 Å) |
G198R | −9.145 | 1.062 | 202.072 | Glu233 sidechain (2.5 Å; 111.2°) Met265 mainchain (2.0 Å; 151.6°) Met265 mainchain (2.1 Å; 156.6°) Ile308 mainchain (1.8 Å; 140.4°) Asp329 sidechain (2.4 Å; 160.1°) | Phe197, Val200, Ala211, Val246, Val263, Tyr264, Gly268, His309, Leu318 | Phe197 (4.4 Å) Tyr262 (4.0 Å) Phe330 (4.9 Å) |
L318S | −9.162 | 1.145 | 196.292 | Glu233 sidechain (2.4 Å; 151.8°) Met265 mainchain (2.1 Å; 154.1°) Met265 mainchain (2.1 Å; 163.3°) Ile308 mainchain (3.5 Å; 126.5°) Asp329 sidechain (2.0 Å; 166.7°) | Ala211, Val236, Val246, Val263, Gly268, Leu302, His307, Ile308, His309 | Tyr262 (4.0 Å) Phe330 (5.0 Å) |
L318F | −8.313 | 1.633 | 821.136 | Met265 mainchain (1.9 Å; 162.3°) Met265 mainchain (2.0 Å; 156.3°) Ile308 mainchain (2.0 Å; 131.0°) Asp329 sidechain (1.9 Å; 160.2°) | Val200, Ala211, Val236, Val246, Val263, Tyr264, Gly268, Leu302, Ile308, His309, Phe318 | Tyr262 (4.1 Å) Phe330 (4.4 Å) |
Native | −9.333 | 0.947 | 147.014 | Tyr262 sidechain (2.7 Å; 124.6°) Met265 mainchain (2.0 Å; 157.3°) Met265 mainchain (2.1 Å; 130.4°) Ile308 mainchain (2.3 Å; 124.1°) His309 mainchain (3.3 Å; 128.6°) Asp329 sidechain (1.7 Å; 157.0°) | Ala211, Val236, Val246, Val263, Tyr264, Gly268, Leu302, His309, Leu318, Ile327 | Phe330 (4.9 Å) Tyr262 (3.9 Å) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behairy, M.Y.; Eid, R.A.; Otifi, H.M.; Mohammed, H.M.; Alshehri, M.A.; Asiri, A.; Aldehri, M.; Zaki, M.S.A.; Darwish, K.M.; Elhady, S.S.; et al. Unraveling Extremely Damaging IRAK4 Variants and Their Potential Implications for IRAK4 Inhibitor Efficacy. J. Pers. Med. 2023, 13, 1648. https://doi.org/10.3390/jpm13121648
Behairy MY, Eid RA, Otifi HM, Mohammed HM, Alshehri MA, Asiri A, Aldehri M, Zaki MSA, Darwish KM, Elhady SS, et al. Unraveling Extremely Damaging IRAK4 Variants and Their Potential Implications for IRAK4 Inhibitor Efficacy. Journal of Personalized Medicine. 2023; 13(12):1648. https://doi.org/10.3390/jpm13121648
Chicago/Turabian StyleBehairy, Mohammed Y., Refaat A. Eid, Hassan M. Otifi, Heitham M. Mohammed, Mohammed A. Alshehri, Ashwag Asiri, Majed Aldehri, Mohamed Samir A. Zaki, Khaled M. Darwish, Sameh S. Elhady, and et al. 2023. "Unraveling Extremely Damaging IRAK4 Variants and Their Potential Implications for IRAK4 Inhibitor Efficacy" Journal of Personalized Medicine 13, no. 12: 1648. https://doi.org/10.3390/jpm13121648
APA StyleBehairy, M. Y., Eid, R. A., Otifi, H. M., Mohammed, H. M., Alshehri, M. A., Asiri, A., Aldehri, M., Zaki, M. S. A., Darwish, K. M., Elhady, S. S., El-Shaer, N. H., & Eldeen, M. A. (2023). Unraveling Extremely Damaging IRAK4 Variants and Their Potential Implications for IRAK4 Inhibitor Efficacy. Journal of Personalized Medicine, 13(12), 1648. https://doi.org/10.3390/jpm13121648